高一数学集合练习题及答案

合集下载

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典一、单选题1.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅2.已知集合{2,3,1}A =-,集合2{3,}B m =.若B A ⊆,则实数m 的取值集合为( ) A .{1} B .{}3 C .{1,1}- D .{}3,3- 3.已知集合U =R ,则正确表示集合U ,1{}1M =-,,{}²|0N x x x =+=之间关系的维恩图是( )A .B .C .D .4.若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B =( ) A .(]0,9 B .[)4,9 C .[]4,6 D .[]0,9 5.若集合302x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x <<B .{}3x x >C .{}2x x >-D .{}3x x >-6.已知集合{}1,0,1A =-,(){}20B x x x =-≤,那么A B =( )A .{}1-B .{}0,1C .{}0,1,2D .{}01x x ≤≤ 7.设集合{}{}123235M N ==,,,,,,则M N ⋃=( ) A .{2,3} B .{1,2,3,5} C .{1,2,5} D .{1,5}8.已知集合{}22A x x x =<,集合{}1B x x =<,则A B =( ) A .(),2-∞ B .(),1-∞ C .()0,1 D .()0,29.已知集合{}1,0,1,2,|sin 02k A B k π⎧⎫=-==⎨⎬⎩⎭,则A ∩B =( ) A .{-1,1} B .{1,2} C .{0,2} D .{0,1,2} 10.已知集合{}N 15A x x =∈≤≤,{}05B x x =<<,则A B =( )A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}15x x ≤<11.已知集合{|A x y ==,集合{|1}B x x =<,则A B =( )A .[)1,1-B .(1,1)-C .(,1)-∞D .(0,1)12.已知集合{}2,3,4A =,{}28120B x Z x x =∈-+<,则A B 中元素的个数是( ) A .4 B .5 C .6 D .713.已知集合{}2320A x x x =-+>,{}1,B m =,若A B ⋂≠∅,则实数m 的取值范围是( )A .()1,2B .()(),12,-∞+∞C .[]1,2D .()2,+∞ 14.已知集合1|2,[,4]2x A x B a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( ) A .2B .1-C .2-D .5- 15.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( )A .{0,1,2,3,4}B .{3,2,1,0,1,2,3}---C .{2,1,0,1,2}--D .()3,3- 二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________. 17.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 18.记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________.19.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题: ①{} 2,3,5,6,8,9,A B =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数;③A 、B 两个集合元素个数相等;④n A ∀∈,22n n ≥.其中真命题序号是______.20.设集合(),5P =-∞,[),Q m =+∞,若P Q =∅,则实数m 的取值范围是______.21.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个22.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________. 23.若集合234|0A x x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.24.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________.25.设P 、Q 为两个非空实数集合,定义集合{},,b P Q z z a a P b Q *==∈∈,若{}1,2P =,{}1,0,1Q =-,则集合P Q *中元素的个数为______个.三、解答题26.已知集合*N M ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a ,b ,c ,d ,使得a b c d +=+,则称集合M 是“关联的”,并称集合{,,,}a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”.(1)分别判断集合{2,4,6,8,10}与{1,2,3,5,8}是“关联的”还是“独立的”?(2)写出(1)中“关联的”集合的所有的“关联子集”;(3)已知集合{}12345,,,,M a a a a a =是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的“关联子集”A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:1a ,2a ,3a ,4a ,5a 是等差数列.27.已知集合{}3A x x =≤,{}31B x a x a =-<<+.(1)当4a =时,求()A B R ;(2)若A B A =,求实数a 的取值范围.28.如图所示阴影部分角的集合.29.已知集合{}4222x A x =<≤,{}122B x a x a =-<≤+(1)当0a =,求A B ;(2)若A B =∅,求a 的取值范围.30.已知集合A ={x |2a <x <a +1},B ={|1x -<x <5},求满足A ⊆B 的实数a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂.【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-,所以{|14}M N x x ⋂=-≤<.故选:A2.C【解析】【分析】根据B 是A 的子集列方程,由此求得m 的取值集合.【详解】由于B A ⊆,所以211m m =⇒=±,所以实数m 的取值集合为{1,1}-.故选:C3.A【解析】【分析】先求得集合N ,判断出,M N 的关系,由此确定正确选项.【详解】∵{}{}2|1,00N x x x =-=+=,1{}1M =-,, ∴{1}M N ⋂=-,故A 正确,BCD 错误.故选:A.4.A【解析】【分析】先解出集合A 、B,再求A B .【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .5.C【解析】【分析】解分式不等式确定集合A ,再由并集的定义计算.【详解】 解:依题意,{}30232x A x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C .6.B【解析】【分析】先化简集合B ,再求A B【详解】()20x x -≤02x ⇒≤≤,所以{}|02B x x =≤≤所以{}0,1A B =故选:B7.B【解析】【分析】依据并集的定义去求M N ⋃即可解决.【详解】{}{}{}1232351235M N ⋃=⋃=,,,,,,,故选:B8.C【解析】【分析】解一元二次不等式,求得集合A ,根据集合的交集运算,求得答案.【详解】{}22{|02}A x x x x x =<=<<, 故{|01}A B x x =<<,故选:C.9.C【解析】【分析】 先求{}2,B k k n n Z ==∈,再求交集即可.【详解】∵集合{}1,0,1,2A =-,{}sin 0?2,2k B k k k n n Z π⎧⎫====∈⎨⎬⎩⎭, 则{}0,2A B =.故选:C .10.B【解析】【分析】由集合的交运算求A B 即可.【详解】由题设,集合{}1,2,3,4,5A =,{}05B x x =<<,所以{}1,2,3,4A B ⋂=.故选:B11.A【解析】【分析】求出集合A ,根据集合的交集运算即可求得答案.【详解】由题意得:{|{|1}A x y x x ===≥-,故{|11}A B x x ⋂=-≤<,故选:A12.A【解析】【分析】求出集合B ,再根据并集的定义即可求出答案.【详解】{}()(){}{}{}28120260263,4,5B x Z x x x Z x x x Z x =∈-+<=∈--<=∈<<=, 所以{}2,3,4,5A B ⋃=.所以A B 中元素的个数是4.故选:A.13.B【解析】【分析】根据一元二次不等式的解法求出集合A ,结合交集的概念和运算与空集的概念即可得出结果.【详解】由题可知,{}()(){}{}232012012A x x x x x x x x x =-+>=-->=或. 因为A B ⋂≠∅,所以m A ∈,即1m <或2m >,所以实数m 的取值范围是()(),12,-∞+∞.故选:B14.C【解析】【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案.【详解】 解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+, 又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-, 故选:C.15.C【解析】【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解.【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<,又由集合{4,3,2,1,0,1,2,3,4}A =----,所以A B ={2,1,0,1,2}--.故选:C.二、填空题16.2-【解析】【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数. 【详解】由()()2140x x ax -++=得10x -=或240x ax ++= 所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =-故答案为:2-.17.[)3,+∞【解析】【分析】根据A B ⊆列出不等式即可求解.【详解】 因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意.故答案为:[)3,+∞.18.()1,2-【解析】【分析】首先将不等式变形,再对a 与1a -分三种情况讨论,分别求出集合A ,根据集合的包含关系得到不等式组,即可求出参数a 的取值范围;【详解】解:原不等式220x x a a -+-≤可变形为()()10x a x a -+-≤,当1a a ,即12a =时,12A ⎧⎫=⎨⎬⎩⎭,满足题意; 当1a a <-,即12a <时,{}1A x a x a =≤≤-,所以112a a ≥-⎧⎨-<⎩,解得1a >-,所以112a -<<; 当1a a ,即12a >时,{}1A x a x a =-≤≤,所以21112a a a ⎧⎪<⎪-≥-⎨⎪⎪>⎩,解得122a <<. 综上可得1a 2-<<,即()1,2a ∈-;故答案为:()1,2-19.①②③【解析】【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立.【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31A B n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③.20.5m ≥【解析】【分析】由交集和空集的定义解之即可.【详解】(),5P =-∞,[),Q m =+∞由P Q =∅可知,5m ≥故答案为:5m ≥21.7【解析】【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可.【详解】因为{}2320{1,2}A x x x =-+==∣,{06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素,集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.故答案为:722.{1,2,3,4,6,8}【解析】【分析】先化简集合B ,再求两集合的并集. 【详解】因为B ={x x 是6的正因数}{1,2,3,6}=, 所以{1,2,3,4,6,8}A B =.故答案为:{1,2,3,4,6,8}.23.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭. 24.{x |2<x <3}【解析】【分析】解二次不等式可得集合B ,再求交集即可.【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3},∴A ∩B ={x |2<x <3}.故答案为:{x |2<x <3}25.3【解析】【分析】分别对a 、b 进行赋值,求出z 的所有可能取值即可求解.【详解】由题意,得当1a =时,1b z a ==;当2a =且1b =-时,12b z a ==; 当2a =且0b =时,1b z a ==;当2a =且1b =时,2b z a ==;所以P Q *含有的元素有:1、2、12,即P Q *中元素个数为3个.故答案为:3. 三、解答题26.(1){2,4,6,8,10}是“关联的”,{1,2,3,5,8}是“独立的”;(2){2,4,6,8},{2,4,8,10},{4,6,8,10};(3)证明见解析.【解析】【分析】(1)根据给定定义直接判断作答.(2)由(1)及所给定义直接写出“关联子集”作答.(3)写出M 的所有4元素子集,再利用反证法确定“关联子集”,然后推理作答.(1)集合{2,4,6,8,10}中,因2846+=+,所以集合{2,4,6,8,10}是“关联的”,集合{1,2,3,5,8}中,不存在某两个数的和等于另外两个数的和,所以集合{1,2,3,5,8}是“独立的”.(2)由(1)知,有2846+=+,21048+=+,41068+=+,所以{2,4,6,8,10}的“关联子集”有:{2,4,6,8},{2,4,8,10},{4,6,8,10}.(3)集合M 的4元素子集有5个,分别记为:1234521345{,,,},{,,,}A a a a a A a a a a ==, 312454123551234{,,,},{,,,},{,,,}A a a a a A a a a a A a a a a ===,因此,集合M 至多有5个“关联子集”,若21345{,,,}A a a a a =是“关联子集”,则12345{,,,}A a a a a =不是“关联子集”,否则12a a =,矛盾,若21345{,,,}A a a a a =是“关联子集”,同理可得31245{,,,}A a a a a =,41235{,,,}A a a a a =不是“关联子集”,因此,集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾,于是得21345{,,,}A a a a a =一定不是“关联子集”,同理41235{,,,}A a a a a =一定不是“关联子集”,即集合M 的“关联子集”至多为12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =, 若12345{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾,若31245{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾,若51234{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾,因此,12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =都是“关联子集”, 即有25345432a a a a a a a a +=+⇔-=-,15245421a a a a a a a a +=+⇔-=-,14234321a a a a a a a a +=+⇔-=-,从而得54433221a a a a a a a a -=-=-=-,所以1a ,2a ,3a ,4a ,5a 是等差数列.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){}35x x <<(2)(6,)+∞【解析】【分析】(1)求出集合A ,进而求出A 的补集,根据集合的交集运算求得答案;(2)根据A B A =,可得A B ⊆,由此列出相应的不等式组,解得答案.(1){}{}333A x x x x =≤=-≤≤,则R {|3A x x =<-或3}x > , 当4a =时,{}15B x x =-<<,(){}R =35A B x x ∴⋂<< ;(2)若A B A =,则A B ⊆,3313a a -<-⎧∴⎨+>⎩, ∴实数a 的取值范围为6a >,即(6,)a ∈+∞ .28.{}45?18045?180,n n n Z αα-+≤≤+∈ 【解析】【分析】观察图形, 按图索骥即可.【详解】}{1|45?36045?360,S k k k Z αα︒︒︒︒=-+≤≤+∈,}{2|135?360225?360,S k k k Z αα︒︒︒︒=+≤≤+∈,{}12|452180452180S S S k k αα︒︒︒︒=+=-+≤≤+ ()(){}|45211804521180k k αα︒︒︒︒-++≤≤++()k ∈Z{}()|4518045180n n n Z αα︒︒︒︒=-+≤≤+∈ ,故答案为:{}()|4518045180n n n Z αα︒︒︒︒-+≤≤+∈.29.(1){12}A B xx ⋂=<≤∣ (2)1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦ 【解析】【分析】(1)首先求出集合,A B ,然后根据集合的交集运算可得答案; (2)分B =∅、B ≠∅两种情况讨论求解即可.(1)因为0a =,所以{12}B xx =-<≤∣ 因为{}4222{14}x A x x x =<≤=<≤∣, 所以{12}A B xx ⋂=<≤∣. (2)当B =∅,即122a a -≥+,3a ≤-时,符合题意当B ≠∅时可得12214a a a -<+⎧⎨-≥⎩或122221a a a -<+⎧⎨+≤⎩, 解得5a ≥或132a -<≤-. 综上,a 的取值范围为1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦. 30.1,2⎡⎫-+∞⎪⎢⎣⎭ 【解析】【分析】根据集合之间的关系,列出相应的不等式组,解不等式组即可求解.【详解】由题意,集合{|21}{|15}A x a x a B x x =<<+=-<<,,因为A B ⊆,若=A ∅,则21a a ≥+,解得1a ≥,符合题意;若A ≠∅,则212115a a a a <+⎧⎪≥-⎨⎪+≤⎩,解得112a -≤<, 所求实数a 的取值范围为1,2⎡⎫-+∞⎪⎢⎣⎭.。

高一数学集合练习题及答案

高一数学集合练习题及答案

高一数学集合练习题及答案一、单选题1.集合{}22A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}1,1,2-B .{}2,1,0,1--C .{}1,0,1-D .{}2,1,0,1,2-- 2.已知集合(){}2{|14,},1,0,1M x x x R N =-<∈=-则M N =( )A .{}0,12,B .{}0,1C .{}1,0,2,3-D .{}0,123,, 3.集合,2k M x x k π⎧⎫==∈⎨⎬⎩⎭Z ,,2P x x k k ππ⎧⎫==+∈⎨⎬⎩⎭Z ,则M 、P 之间的关系为( )A .M P =B .M P ⊆C .P M ⊆D .M P ⋂=∅4.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3- 5.设{|1},{|12}P x x Q x x ==-<≤≤,那么P Q =( )A .{|11}x x -<<B .{|12}x x -≤<C .{|12}x x ≤<D .{|11}x x -≤≤ 6.已知集合{}0,1,2,3,4,5A =,{}1,3,6,9B =,{}3,7,8C =,则 ()A B C ⋂⋃=( ) A .{}3 B .{}3,7,8 C .{}1,3,7,8 D .{}1,3,6,7,87.已知集合{}21A x x =<,{}02B x x =<<,则A B =( ) A .1,2 B .0,1 C .()0,2 D .1,28.已知集合{3,1,2}A =-,{}2|60B x N x x =∈--≤,则A B ⋃=( ) A .{}1,2B .{}3,0,1,2-C .{}3,1,2,3-D .{}3,0,1,2,3-9.下列命题说法错误的是( ) A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 10.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-11.已知集合2{|30}A x x x =-≥,集合{1234}B =,,,,则A B =( )A .{01234},,,,B .{123},,C .[0,4]D .[1,3]12.设全集U =R ,集合(){}ln 1|M x y x ==-,2{|4}N x y x ==-,则下面Venn 图中阴影部分表示的集合是( )A .()1,2B .(]1,2C .(2,)+∞D .[2,)+∞ 13.已知集合{1,5,},{2,}A a B b ==,若{2,5}A B ⋂=,则a b +的值是( )A .10B .9C .7D .4 14.已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ( )A .2B .3C .4D .515.设集合{}260A x x x =--≤,{}15B x x =≤<,则A B =( ) A .{}23x x -<<B .{}13x x ≤≤C .{}13x x ≤<D .{}23x x -≤≤二、填空题16.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.17.已知集合[)[)2,6,1,4A B ==-,则A B ⋃=__________.18.全集U =R ,集合{}3A x x =≤-,则 U A =______.19.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0};④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.20.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________. 21.用适当的符号填空:(1){}0______()2,3-; (2){},,a c b ______{},,a b c ;(3)R______(],3-∞-; (4){}1,2,4______{}8x x 是的约数. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.已知集合{}1,3,5,6,8A =,{}2,3,4,6B =,则下图中阴影部分表示的集合为___________.24.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.25.设{}|11A x x =-<<,{}|0B x x a =->若A B ⊆,则a 的取值范围是_____.三、解答题26.集合22,Z 33A x k x k k ππππ⎧⎫=-<<+∈⎨⎬⎩⎭,222,Z 3B x k x k k πππ⎧⎫=<<+∈⎨⎬⎩⎭,,Z 62C x k x k k ππππ⎧⎫=+<<+∈⎨⎬⎩⎭,[]10,10D =-,分别求A B ,A C ,A D .27.已知函数()()4log 526f x x x =-+-()g x x α=(α为常数),且()g x 的图象经过点(8,22P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .28.已知命题“{}11x x x ∃∈-≤≤,使等式220x x m --=成立”是真命题.(1)求实数m 的取值集合A ;(2)设关于x 的不等式()2242360x a x a a -+++<的解集为B ,若B A ,求实数a 的取值范围.29.设M 为100个连续正整数的集合,已知其中2的倍数有50个,3的倍数有33个,6的倍数有16个,如何利用这些数据求出M 中不能被3整除的奇数的个数?30.已知集合{}A x x =是平行四边形,{}B x x =是矩形,{}C x x =是正方形,{}D x x =是菱形,求集合A ,B ,C ,D 之间的关系.【参考答案】一、单选题1.C【解析】【分析】利用交集的定义,直接计算即可.【详解】根据题意,A B ={}1,0,1-.故选:C .2.B【解析】【分析】先化简集合M ,再利用集合的交集运算求解.【详解】解:因为已知集合(){}{}2|14,|13M x x x R x x =-<∈=-<<,{}1,0,1N =-,所以MN ={}0,1,故选:B3.C【解析】【分析】用列举法表示集合M 、P ,即可判断两集合的关系;解:因为335,,2,,,,0,,,,2,,222222k M x x k Z ππππππππππ⎧⎫⎧⎫==∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 5335,,,,,,,,2222222P x x k k Z ππππππππ⎧⎫⎧⎫==+∈=---⎨⎬⎨⎬⎩⎭⎩⎭, 所以P M ⊆,故选:C4.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .5.D【解析】【分析】 直接根据集合交集运算求解即可.【详解】解:因为{|1},{|12}P x x Q x x ==-<≤≤,所以{|11}Q x x P -≤≤=.故选:D6.C 【解析】【分析】先求A B ,再求()A B C ⋂⋃.【详解】{}1,3A B =,(){}1,3,7,8A B C ⋂⋃=. 故选:C7.B【解析】【分析】解一元二次不等号求集合A ,再由集合的交运算求A B .【详解】由题设,{|11}A x x =-<<,又{|02}B x x =<<所以{|01}A B x x =<<.故选:B8.D【分析】先求出集合B 的元素,进行并集运算即可.【详解】因为{}()(){}2|60|320B x N x x x N x x =∈--≤=∈-+≤ {}{}|230,1,2,3x N x =∈-≤≤=,所以{}3,0,1,2,3A B ⋃=-.故选:D.9.C【解析】【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确;故选:C.10.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C11.B【解析】【分析】先求得{|03}A x x =≤≤,再根据交集的运算可求解.【详解】由已知{|03}A x x =≤≤,所以{}1,2,3A B =.故选:B .12.A【解析】【分析】由对数函数性质,二次根式定义确定集合,M N ,然后确定Venn 图中阴影部分表示的集合并计算.【详解】由题意{|10}{|1}M x x x x =->=>,2{|4}{|2N x x x x =≥=≤-或2}x ≥,{|22}U N x x =-<<,Venn 图中阴影部分为(){|12}U MN x x =<<. 故选:A .13.C【解析】【分析】利用交集的运算求解.【详解】解:因为集合{1,5,},{2,}A a B b ==,且{2,5}A B ⋂=,所以a =2,b =5,所以a b +=7,故选:C14.D【解析】【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.15.B【解析】【分析】先求出集合A 的解集,然后进行交集运算即可.【详解】 因为{}23A x x =-≤≤,{}15B x x =≤<,所以{}13A B x x ⋂=≤≤.故选:B.二、填空题16.4a >【分析】结合数轴图与集合包含关系,观察即可得到参数的范围.【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >.17.[1-,6)【解析】【分析】直接利用并集运算得答案.【详解】[2A =,6),[1B =-,4),[2A B ∴=,6)[1-,4)[1=-,6).故答案为:[1-,6).18.{}3x x >-【解析】【分析】直接利用补集的定义求解【详解】因为全集U =R ,集合{}3A x x =≤-,所以 U A ={}3x x >-, 故答案为:{}3x x >-19.①③⑥【解析】【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解.【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确;对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确;对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确.故答案为:①③⑥.20.1【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:121. ⊆ = ⊇ ⊆【解析】【分析】根据集合子集的定义及集合相等的概念求解.【详解】由集合的子集、集合的相等可知(1)⊆,(2)=,(3)⊇,(4)⊆ 故答案为:⊆,=,⊇,⊆22.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃23.{}1,5,8【解析】【分析】 分析可知,阴影部分所表示的集合为{x x A ∈且}x B ∉,即可得解.【详解】 由图可知,阴影部分所表示的集合为{x x A ∈且}{}1,5,8x B ∉=. 故答案为:{}1,5,8.24.2a ≤【解析】【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围.【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤. 因此,实数a 的取值范围是:2a ≤.故答案为:2a ≤.25.(],1-∞-【解析】【分析】由数轴法可得到A B ⊆,则只要1a ≤-即可.【详解】根据题意作图:由图可知,A B ⊆,则只要1a ≤-即可,即a 的取值范围是(],1-∞-. 故答案为:(],1-∞-.三、解答题26.2,2,3k k k πππ⎛⎫+∈ ⎪⎝⎭Z ;2,2,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ;7557,,,333333ππππππ⎛⎫⎛⎫⎛⎫--⋃-⋃ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【解析】【分析】根据任意角的弧度表示及交集的概念即可计算.【详解】22,22,22,2,3333A B k k k k k k k ππππππππππ⎛⎫⎛⎫⎛⎫⋂=-+⋂+=+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Z ; 2,2,2,2,336263A C k k k k k k k ππππππππππππ⎛⎫⎛⎫⎛⎫⋂=-+⋂++=++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Z ; 分别令k =-1,0,1,即可得:[]75572,210,10,,,33333333A D k k ππππππππππ⎛⎫⎛⎫⎛⎫⎛⎫⋂=-+⋂-=--⋃-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 27.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】 (1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式;(2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R. 28.(1){}13A m m =-≤≤ (2)113a -≤≤ 【解析】【分析】(1)分析可得()211m x =--,求出当11x -≤≤时,()211x --的取值范围,即可得解; (2)对3a 与2a +的大小进行分类讨论,求出集合B ,根据B A 可得出关于实数a 的不等式(组),综合可求得实数a 的取值范围.(1)解:由220x x m --=可得()22211m x x x =-=--,当11x -≤≤时,则210x -≤-≤,所以,()[]2111,3m x =--∈-,故{}13A m m =-≤≤. (2)解:()()()2242360320x a x a a x a x a -+++<⇔---<.当32a a >+,即1a >时,{}23B x a x a =+<<,因为B A ,则21331a a a +≥-⎧⎪≤⎨⎪>⎩,此时a 不存在; 当32a a =+,即1a =时,B =∅,满足题设条件;当32a a <+,即1a <时,{}32B x a x a =<<+,因为B A ,则31131a a a ≥-⎧⎪+≤⎨⎪<⎩,解得113a -≤<.综上可得,实数a 的取值范围为113a -≤≤. 29.33【解析】【分析】分析集合之间的关系,由()()()()card A B card A card B card A B ⋃=+-⋂可得.【详解】记{|2,,}A x x n x M n N ==∈∈,{|3,,}B x x n x M n N ==∈∈,则{|21,,}M A x x n x M n N ==-∈∈,{|3,,}M B x x n x M n N =≠∈∈, {|A B x x ⋂=是能被3整除的偶数,}x M ∈, ()(){|M M A B x x =是不能被3整除的奇数,}x M ∈由题知()50,()33,()16card A card B card A B ===,因为()()()M M M A B A B =,()()()()50331667card A B card A card B card A B =+-=+-=所以M 中不能被3整除的奇数有100-67=33个.30.答案见解析【解析】【分析】直接利用四边形的关系,判断即可.【详解】解:因为矩形、正方形、菱形都是特殊的平行四边形,所以B A ,C A ,D A ; 又正方形是特殊的矩形、特殊的菱形,所以C B ,C D ;。

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,22.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -3.已知集合{0A x x =≤或}1≥x ,{}39xB x =<,则A B =( )A .{}12x x ≤<B .{0x x ≤或}12x ≤<C .{}2x x <D .{}02x x ≤<4.已知集合{}1,2,3A =,{}21,B y y x x A ==-∈,则A B =( ) A .{}1,2 B .{}1,2,3 C .{}1,3D .{}1,2,3,55.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >-D .{}3x x >-6.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,27.设R U =,1{|2}2xA x =<,{1}B x =,则()U B A ⋂=( )A .{|0}x x <B .{}|1x x >C .{}|01x x <<D .{}|01x x <≤8.集合{|13}A x x =-<<,集合{}24B xx =<∣,则A B =( ) A .(-2,2)B .(-1,2)C .(-2,3)D .(-1,3)9.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3-10.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个11.设集合{}40,2,1,1,21x A xB x +⎧⎫=>=--⎨⎬-⎩⎭,则()R A B =( ) A .{}1,1- B .{}2,1--C .{}2,1,1--D .{}2,1,1,2--12.已知集合{|1}A x y x ==+,集合{|1}B x x =<,则A B =( ) A .[)1,1-B .(1,1)-C .(,1)-∞D .(0,1)13.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( )A .[]1,3-B .[]2,4-C .{}1,2,3D .{}0,1,2,314.已知集合{}ln ,1A y y x x ==>,1,12xB y y x ⎧⎫⎪⎪⎛⎫==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .102y y ⎧⎫<<⎨⎬⎩⎭B .{}01y y <<C .112y y ⎧⎫<<⎨⎬⎩⎭D .∅15.已知集合{5,3,1,0,2,4},{1,2,4},{5,0,2}U A B =---=-=-,则()U A B ⋃=( ) A .{2}B .{3}-C .{3,1,2}-D .{5,3,1,0,4}---二、填空题16.若集合406x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 17.集合{}2,A x x k k ==∈Z ,{}25B x x =≤,那么A B =______.18.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________. 19.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},则a =_______;已知U 是全集,集合A ={0,2, 4},UA ={-1, 1},UB ={-1, 0, 2},则B =_____.20.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 21.1881年英国数学家约翰·维恩发明了Venn 图,用来直观表示集合之间的关系.全集U =R ,集合{}2220M x x ax =-+<,{}2log 1N x x =≤的关系如图所示,其中区域Ⅰ,Ⅱ构成M ,区域Ⅱ,Ⅲ构成N .若区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则实数a 的取值范围是______.22.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.23.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个 24.已知函数()5f x =-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________. 25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( ) (2){}1是集合{}1,2,3的元素;( ) (3)2是集合{}1,2,3的子集;( ) (4)满足{}{}00,1,2,3A的集合A 的个数是322-个.( )三、解答题26.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω. (2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃. (3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.27.记函数()()2lg 4f x x x =-的定义域为集合M ,函数()()213xg x x =<<的值域为N .求: (1)M ,N ; (2)M N ⋂,M N ⋃.28.已知全集U =R ,集合{}32A x x =-<<,{}|16B x x =≤≤,{}|121C x a x a =-≤≤+. (1)求()U A B ;(2)若()C A B ⊆⋃,求实数a 的取值范围.29.已知集合{}211A x m x m =-<<+,{}24B x x =<.(1)当2m =时,求,A B A B ⋃⋂;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.30.设Y 是由6的全体正约数组成的集合,写出Y 的所有子集.【参考答案】一、单选题 1.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N ,若N M ⊆,满足题意.故选:C. 2.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 3.B 【解析】 【分析】解出不等式39x <,然后根据集合的交集运算可得答案. 【详解】因为{0A x x =≤或}1≥x ,{}39xB x =< {}2x x =<,所以A B ={0x x ≤或}12x ≤<,故选:B 4.C 【解析】 【分析】根据题意求出集合B ,在和集合A 取交集即可. 【详解】因为集合{}1,2,3A =,{}21,B y y x x A ==-∈, 所以{}1,3,5B =,所以{}1,3A B =, 故选:C. 5.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 6.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B7.B 【解析】 【分析】解不等式求得集合A 、B ,由此求得()U B A ⋂. 【详解】 11222x -<=,由于2x y =在R 上递增,所以1x <-, 即{}|1A x x =<-,{}|1UA x x =≥-,11x >⇒>,所以{}|1B x x =>,所以(){}|1UB A x x =>.故选:B 8.B【解析】 【分析】先求集合B ,进一步求出答案. 【详解】集合{}24B xx =<∣{22}x x =-<<∣,{13}A x x =-<<∣, ∴{12}A B xx ⋂=-<<∣. 故选:B. 9.C 【解析】 【分析】先解指数不等式得集合B ,然后由交集定义可得. 【详解】由2139xx -=⎛⎪3⎫⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =.故选:C . 10.C 【解析】 【分析】根据题意,列举出符合题意的集合. 【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 11.C 【解析】【分析】解分式不等式化简集合A ,再利用补集、交集的定义计算作答. 【详解】 解不等式401x x +>-,则(4)(1)0x x +->,解得:4x <-或1x >,即{|4A x x =<-或1}x >, 于是得{|41}R A x x =-≤≤,而{}2,1,1,2B =--, 所以(){}2,1,1R A B ⋂=--. 故选:C 12.A 【解析】 【分析】求出集合A ,根据集合的交集运算即可求得答案. 【详解】由题意得:{|{|1}A x y x x ===≥-, 故{|11}A B x x ⋂=-≤<, 故选:A 13.D 【解析】 【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可. 【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=,因为{}14A x x =-≤≤ 所以A B ={}0,1,2,3 故选:D 14.A 【解析】 【分析】根据题意求出,A B 后运算 【详解】由题意,A B 为对应函数的值域,(0,)A =+∞,1(0,)2B =故1(0,)2A B =故选:A 15.B 【解析】 【分析】按照并集和补集计算即可. 【详解】由题意得,{5,1,0,2,4}A B =--,所以(){3}U A B =-.故选:B.二、填空题16.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】 【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可 【详解】依题意,{}40646x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭.故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭17.{}2,0,2-【解析】 【分析】根据集合A 的含义,直接求解A B ⋂即可. 【详解】因为集合A 表示元素为偶数的集合,又{}2|5{|B x x x x =≤=≤≤,故{}2,0,2A B ⋂=-. 故答案为:{}2,0,2-. 18.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:819. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】 【分析】利用补集的定义,依次分析即得解 【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8}; 若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},故{1,3,4}UU A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},UA ={-1, 1},故{1,0,1,2,4}UU A A =⋃=-,UB ={-1, 0, 2},故B ={1, 4}故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4} 20.5 【解析】 【分析】直接求出集合A 、B ,再求出A B ,即可得到答案. 【详解】因为集合{}{}352,1,0,1,2,3,4A x Z x =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =, 所以A B 的元素个数为5. 故答案为:5. 21.39,24⎛⎤⎥⎝⎦【解析】 【分析】由122N xx ⎧⎫=≤≤⎨⎬⎩⎭,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则22112202222220a a ⎧⎛⎫-⋅+≥⎪ ⎪⎨⎝⎭⎪-⋅+<⎩或22112202222220a a ⎧⎛⎫-⋅+<⎪ ⎪⎨⎝⎭⎪-⋅+≥⎩解不等式组即可. 【详解】由{}21log 122N x x x x ⎧⎫=≤=≤≤⎨⎬⎩⎭,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则22112202222220a a ⎧⎛⎫-⋅+≥⎪ ⎪⎨⎝⎭⎪-⋅+<⎩或22112202222220a a ⎧⎛⎫-⋅+<⎪ ⎪⎨⎝⎭⎪-⋅+≥⎩解得3924a <≤故答案为:39,24⎛⎤⎥⎝⎦22.1【解析】 【分析】利用交集的定义直接求解. 【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭,∴A B 中元素个数为1. 故答案为:1. 23.7 【解析】 【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可. 【详解】因为{}2320{1,2}A xx x =-+==∣, {06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素, 集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}, {1,2,3,4,5},共7个. 故答案为:724.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞ 25. 假 假 假 真 【解析】 【分析】(1)利用真子集的定义即可判断. (2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω.(2)证明见解析(3)14【解析】【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω. (2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1A B ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩; 当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾. 所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14},则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =, 则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=.当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457810111314{,,,,,,,,,}3333333333A B =. 集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数,因此,令123A A A A C =,123B B B B =,则A B =∅,且14P A B =. 综上,所求n 的最大值为14.27.(1)()0,4M =,()2,8N =(2)(2,4)M N ⋂=,(0,8)M N ⋃=【解析】【分析】(1)根据函数的解析式结合对数函数的性质,可求得集合 M ,利用指数函数的单调性,可求得集合N ;(2)根据集合的交集以及并集运算,可求得答案.(1)由函数()()2lg 4f x x x =-可得240x x -> , 即04x << ,故(0,4)M =,由函数()()213x g x x =<< 可得28y << ,即(2,8)N =;(2)由(1)可知:(0,4)(2,8)(2,4)M N ==,(0,4)(2,8)(0,8)M N ==.28.(1){})1(|3U x x A B ⋂=-<<; (2)5(,2)(2,]2-∞-⋃-. 【解析】【分析】(1)利用补集及交集的定义运算即得;(2)利用并集的定义可得{}36A B x x ⋃=-<≤,然后分C =∅和C ≠∅讨论即得.(1)∵全集U =R , {}|16B x x =≤≤, ∴{1U B x x =<或}6x >,又集合{}32A x x =-<<,∴{})1(|3U x x A B ⋂=-<<;(2)∵{}32A x x =-<<,{}|16B x x =≤≤,∴{}36A B x x ⋃=-<≤,又()C A B ⊆⋃,∴当C =∅时,121a a ->+,∴2a <-,当C ≠∅时,则12113216a a a a -≤+⎧⎪->-⎨⎪+≤⎩, 解得522a -<≤, 综上,实数a 的取值范围为5(,2)(2,]2-∞-⋃-. 29.(1){}{}25,12A B x x A B x x ⋃=-<<⋂=<<,(2){}11m m -<≤【解析】【分析】(1)根据交集和并集的定义即可求出;(2)由x A ∈是x B ∈成立的充分不必要条件,可得A B ,进而得出实数m 的取值范围.(1)(1)当m =2时,{}15A x x =<<,{}22b x x =-<< , ∴{}{}25,12A B x x A B x x ⋃=-<<⋂=<<;(2)由x A ∈是x B ∈成立的充分不必要条件,得A B ,当A =∅时,即211m m -≥+时,此时m 无解,∴A ≠∅,∴212,12m m -≥-⎧⎨+≤⎩解得11m -≤≤, 当1m =-时,()2,2A B ==-,不成立.故实数m 的取值范围为{}11m m -<≤.30.答案见解析【解析】【分析】首先写出6的正约数,即可得到集合Y ,再用列举法列出Y 的所有子集;【详解】解:因为6的正约数有1、2、3、6,所以{}1,2,3,6Y =,所以Y 的子集有:∅、{}1、{}2、{}3、{}6、{}1,2、{}1,3、{}1,6、{}2,3、{}2,6、{}3,6、{}1,2,3、{}1,2,6、{}1,3,6、{}2,3,6、{}1,2,3,6共16个;。

高一数学集合练习题含答案

高一数学集合练习题含答案

高一数学集合练习题含答案一、单选题1.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1} B .{0,1}C .{0,1,2}D .∅2.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}0,1,2 B .{}1,2 C .{}0,2 D .{}23.已知集合(){}ln 2M x y x ==-,{}e x N y y ==,则M N =( )A .()0,∞+B .()2,+∞C .()0,2D .[)2,+∞ 4.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3 B .{}0,2 C .{}0,2,3 D .{}1,0,2,3- 5.已知集合{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃=( )A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}05x x <≤6.已知集合{}{}2230,1A x x x B x x =--<=≤,则R ()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)-7.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1- 8.已知全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{2,3,4}B =,则()U A B =( ) A .{1} B .{4} C .{0,5} D .{0,1,4,5}9.已知集合{}220A x x x =-≤,{}0,1B =,则A B =( ) A .[]0,1 B .{}0,1 C .[]0,2 D .{}0,1,210.已知集合{}{}22540,7100A x x x B x x x =-+<=-+<,则A B ⋃=( ) A .()1,2 B .()1,5 C .()2,4 D .()4,5 11.设集合{}1,2,3M =,{|21,}.N y y x x M ==-∈下列表示正确是( ) A .{}1,2N ⊆, B .{}2M ⊇ C .M N ⋃ {}1,2,3,5 D .{}1,3M N ⋂= 12.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( )A .1B .15C .3D .1613.已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ( )A .2B .3C .4D .514.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞15.已知集合{}2230A x x x =--≤,{}22B x x =-≤<,则A B ⋃=( ) A .{}12x x -≤< B .{}12x x -≤≤ C .{}22x x -<< D .{}23x x -≤≤二、填空题16.集合A =[1,6],B ={x |y ,若A ⊆B ,则实数a 的范围是________________.17.将集合{220s t A t s =-≤<且,}s t Z ∈中所有的元素从小到大排列得到的数列记为{}n a ,则50a =___________(填数值).18.若对任意的x A ∈,有1A x ∈,则称A 是“伙伴关系集合”,则集合11,01,22M ⎧⎫=⎨⎬⎩⎭-,,的所有非空子集中,具有伙伴关系的集合的个数为________.19.已知集合{}{}0,1,2,1P Q xx ==∣,则P Q 的非空真子集的个数为__________. 20.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.21.已知函数()f x 满足()()2f x f x =-,当1≥x 时,()22f x x =-,若不等式()22f x a ->-的解集是集合{}13x x <<的子集,则a 的取值范围是______.22.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 23.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个24.若a ∈R ,集合A ={1,a ,a +2},B ={1,3,5},且A =B ,则a =___________.25.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1.(1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知{|S x x =是小于9的正整数},{}4,5,6,7A =,{}3,5,7,8B =,求(1)A B(2)A B(3)()S C A B28.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.29.已知集合{}|33A x a x a =-≤≤+,{}2|40B x x x =-≥. (1)当2a =时,求A B ,A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.30.已知集合{|211},{|01}A x a x a B x x =-<<+=≤≤.(1)在①1a =-,②0a =,③1a =这三个条件中选择一个条件,求A B ;(2)若R ()A B A ⋂=,求实数a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】首先列举表示集合A ,再求A B .【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=.故选:A2.C【解析】【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果.【详解】 因为集合{}24A x N x =∈≤化简可得{0,1,2}A = 又{}1,B a =,B A ⊆,所以0a =或2a =,故实数a 的取值集合为{0,2},故选:C.3.B【解析】【分析】首先根据指数函数、对数函数的性质求出集合N 、M ,再根据交集的定义计算可得;【详解】解:因为(){}{}ln 22M x y x x x ==-=>,{}{}e 0x N y y y y ===>, 所以{}|2M N x x ⋂=>;故选:B4.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】 由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .5.D【解析】【分析】理解集合的含义,由并集的概念运算【详解】{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃={}05x x <≤故选:D6.B【解析】【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R ()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤,所以1{|1}A B x x =-<≤,则R (){|1A B x x ⋂=≤-或1}x >. 故选:B7.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.8.B【解析】【分析】由补集、交集的概念运算【详解】{0,4,5}U A =,则(){4}U A B ⋂=.故选:B9.B【解析】【分析】先求出集合A ,再根据交集运算求出A B 即可.【详解】 由题意知:{}02A x x =≤≤,又{}0,1B =,故A B ={}0,1.故选:B.10.B【解析】【分析】先求出集合,A B ,再求A B 即可.【详解】{}{}14,25A x x B x x =<<=<<,故A B ⋃=()1,5.故选:B.11.D【解析】【分析】根据题意求得集合N ,结合集合的交运算和并运算,以及集合之间的包含关系,即可判断和选择.【详解】因为{}1,2,3M =,{}{}|21,1,3,5N y y x x M ==-∈=,则{}{}1,3,1,2,3,5M N M N ⋂=⋃=, 对A :因为{}1,2不是N 的子集,故A 错误;对B :因为{}1,2,3不是{}2的子集,故B 错误;对C :{}1,2,3,5M N ⋃=是{}1,2,3,5的非真子集,故C 错误;对D :{}1,3M N ⋂=.故D 正确.故选:D .12.B【解析】【分析】先根据虚数单位i 的性质确定集合M 的元素个数,再由n 元集合的真子集个数为21n -可得.【详解】当n ∈N 时,x =i n +1的值只有i ,-i ,1,-1,故M 中有4个元素,所以M 共有24-1=15个真子集.故选:B13.D【解析】【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.14.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围.【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭, 当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C15.D【解析】【分析】先解一元二次不等式求出集合A ,再按集合的并集运算即可.【详解】 由题意得{}13A x x =-≤≤,因为{}22B x x =-≤<,所以{}23A B x x ⋃=-≤≤. 故选:D.二、填空题16.(,1]-∞【解析】【分析】先求出集合B ,再由A ⊆B ,可求出实数a 的范围【详解】由0x a -≥,得x a ≥,所以[,)B a =+∞,因为A =[1,6],且A ⊆B ,所以1a ≤,所以实数a 的范围是(,1]-∞,故答案为:(,1]-∞17.992【解析】【分析】列举数列的前几项,观察特征,可得出50a .【详解】由题意得10212032313012345622,22,22,22,22,22,,a a a a a a =-=-=-=-=-=-观察规律可得22s t -中,以2s 为被减数的项共有s 个,因为123945++++=,所以50a 是1022t -中的第5项,所以1055022992a =-=.故答案为:992.18.7【解析】【分析】在集合M 的子集中列举出满足“伙伴关系集合”的集合,从而可得结果.【详解】因为x A ∈,则1A x ∈,就称A 是伙伴关系集合,集合11,0,,1,22M ⎧⎫=-⎨⎬⎩⎭,所以具有伙伴关系的集合有{}{}{}11111,1,,2,1,1,1,,2,1,,2,1,1,,22222⎧⎫⎧⎫⎧⎫⎧⎫----⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭共7个. 故答案为:719.2【解析】【分析】先求P Q 后再计算即可.【详解】{}1,2,P Q P Q ⋂=∴⋂的非空真子集的个数为2222-=.故答案为:220.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.21.24a ≤≤【解析】【分析】先由已知条件判断出函数()f x 的单调性,再把不等式()22f x a ->-转化为整式不等式,再利用子集的要求即可求得a 的取值范围.【详解】由()()2f x f x =-可知,()f x 关于1x =对称,又()22f =-,当1≥x 时,()22f x x =-单调递减,故不等式()22f x a ->-等价于211x a --<,即122a a x <<+, 因为不等式解集是集合{}13x x <<的子集, 所以12132a a ⎧≥⎪⎪⎨⎪+≤⎪⎩,解得24a ≤≤. 故答案为:24a ≤≤22.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=,故答案为:{}1.23.7【解析】【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可.【详解】因为{}2320{1,2}A x x x =-+==∣,{06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素,集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.故答案为:724.3【解析】【分析】根据集合相等的概念得到方程组,解之即可求出结果.【详解】∵A B =,∴325a a =⎧⎨+=⎩,解得3a =,或523a a =⎧⎨+=⎩,无解所以3a =.故答案为:3.25.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B , 综上,a 的取值范围为{a |1<a ≤2}.27.(1){}5,7A B =(2){}3,4,5,6,7,8A B =(3)(){}1,2,3,5,7,8S C A B =【解析】【分析】(1)根据交集概念求解即可.(2)根据并集概念求解即可.(3)根据补集和并集概念求解即可.(1){}4,5,6,7A =,{}3,5,7,8B =,{}5,7A B =.(2){}4,5,6,7A =,{}3,5,7,8B =,{}3,4,5,6,7,8A B =.(3){}1,2,3,4,5,6,7,8S =,{}1,2,3,8S C A =,{}3,5,7,8B =, (){}1,2,3,5,7,8S C A B =.28.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1) 因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆; 当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥, 综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-. 29.(1){|45}A B x x ⋂=,{|0A B x x ⋃=或1}x ;(2)(0,1).【解析】【分析】(1)当2a =时,求出集合A ,B ,由此能求出A B ,A B ; (2)推导出0a >,R A B 是的真子集,求出{|04}R B x x =<<,A ≠∅,列出不等式组,能求出实数a 的取值范围.(1)2{|40}{|0B x x x x x =-=或4}x , 当2a =时,{|15}A x x =,{|45}A B x x ∴⋂=,{|0A B x x ⋃=或1}x ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件, 0a ∴>,R A B 是的真子集,{|04}R B x x =<<,A ≠∅,∴3034a a ->⎧⎨+<⎩,解得01a <<. ∴实数a 的取值范围是(0,1).30.(1)答案见解析(2)11a a ≤-≥或【解析】【分析】(1)分别对a 赋值,利用集合的并集进行求解; (2)先根据题意得到R A B ⊆,再利用集合间的包含关系进行求解,要注意A =∅的情形.(1)解:若选择①:当1a =-时,(3,0)A =-, 因为[0,1]B =,所以(]3,1A B ⋃=-. 若选择②:当0a =时,(1,1)A =-, 因为[0,1]B =,所以(1,1]A B ⋃=-. 若选择③:当1a =时,(1,2)A =, 因为[0,1]B =,所以[)0,2A B ⋃=.(2)解:因为[0,1]B =,所以R (,0)(1,)B =-∞+∞.因为R ()A B A ⋂=,所以R A B ⊆, 当A =∅时,2112a a a -≥+≥,即;当A ≠∅时,2210211a a a a <<⎧⎧⎨⎨+≤-≥⎩⎩或, 即112a a ≤-≤<或;综上,11a a ≤-≥或.。

高一数学集合练习题及答案

高一数学集合练习题及答案

高一数学集合练习题及答案高一数学集合练题及答案1.设全集 $U=\{1,2,3,4\}$,$A=\{1,3\}$,$B=\{4\}$,则$(U-A) \cap B=$ ()A。

$\{2,4\}$ B。

$\{4\}$ C。

$\varnothing$ D。

$\{1,3,4\}$2.已知集合 $A=\{x|y=x-1\}$,$B=\{x|x<2\}$,则 $A \cap B=$ ()A。

$\varnothing$ B。

$\{1\}$ C。

$[1,2)$ D。

$(1,2)$3.已知集合 $M=\{(x,y)|y=x^2-x,x\in R\}$,$N=\{y|x^2-x,y\in R\}$,则 $M \cap N=$ ()___{(0,0),(2,2)\}$ C。

$(0,2]$ D。

$[-1,+\infty)$4.已知全集 $U=\{1,2,3,4,5\}$,集合 $A=\{1,2\}$,$B=\{2,3\}$,则 $(A \cup B)=$ ()A。

$\{4,5\}$ B。

$\{1,2\}$ C。

$\{2,3\}$ D。

$\{1,2,3,4\}$5.设 $U=R$,$A=\{x|2x1\}$,则 $B \cap (U-A)=$ ()A。

$\{x|x1\}$ C。

$\{x|0<x<1\}$ D。

$\{x|0\leq x\leq 1\}$6.已知集合 $A=\{-1,0,1\}$,$B=\{x|x(x-2)\leq 0\}$,则 $A \cap B=$ ()A。

$\{-1\}$ B。

$\{0,1\}$ C。

$\{0,1,2\}$ D。

$\{x|-1\leqx\leq 1\}$7.已知集合 $A=\{x|1\leq x\leq 5,x\in N\}$,$B=\{x|x<5,x\in N\}$,则 $A \cup B=$ ()A。

$\{2,3,4\}$ B。

$\{1,2,3,4,5\}$ C。

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案高一数学必修一集合练习试题及答案一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=87,∴22∉{x|x7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N_},用列举法表示C=________.【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N_,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--1=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.学好数学的几条建议1、要有学习数学的兴趣。

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典一、单选题1.已知集合ππ,42k M x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,ππ,24k N x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,则( ) A .N M ⊆B .M N ⊆C .M ND .M N ⋂=∅ 2.设集合{}230A x x x =->,则A =R ( )A .()0,3B .()(),03,-∞+∞C .[]0,3D .(][),03,-∞+∞ 3.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂B .()U M NC .()U N M ⋂D .()()U U M N4.已知集合{}{}2,,,,M y y x x x N y y x x y ==-∈==∈∈R R R ,则M N =( )A .∅B .{(0,0),(2,2)}C .}{0,2D .1[,)4-+∞ 5.已知集合{}220A x x x =+-<,{}1e ,R x B y y x -==∈,则A B =( ) A .()2,0- B .()2,1- C .()0,1 D .()1,+∞6.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<7.已知集合(){}2log 21M x y x ==-,103x N x x ⎧⎫+=≤⎨⎬-⎩⎭,则M N =( )A .1,2⎛⎫+∞ ⎪⎝⎭B .[)1,-+∞C .1,32⎛⎫ ⎪⎝⎭D .1,32⎛⎤ ⎥⎝⎦ 8.已知集合{|1}A x x =≥-,1{|28}4x B x =≤<,则A B =( ) A .[-2,3)B .[-1,3)C .[-2,3]D .[-1,3] 9.已知集合{}{01}A x x a B x x =<=<≤∣,∣,若A B =∅,则实数a 的取值范围是( )A .01a <≤B .0a >C .0a ≤D .0a ≤或1a ≥ 10.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2}11.已知集合{3,1,2}A =-,{}2|60B x N x x =∈--≤,则A B ⋃=( ) A .{}1,2B .{}3,0,1,2-C .{}3,1,2,3-D .{}3,0,1,2,3-12.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( ) A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<13.已知全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =,则()U A B =( ) A .{}0B .{}2,4C .{}0,1,3,5D .{}0,1,2,414.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( )A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,115.已知集合{}2450A x x x =--≤,{}5B y y =>,则A B ⋃=( ) A .∅ B .[)1,-+∞ C .[)1,5- D .()5,+∞二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.如图,用集合符号表述下列点、直线与平面之间的关系.(1)点C 与平面β:___________;(2)点A 与平面α:___________;(3)直线AB 与平面α:___________;(4)直线CD 与平面α:___________.18.某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这两项运动都不喜欢,则只喜欢其中一项运动的人数为________19.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)20.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.21.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.22.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______.23.若{}231,13a a ∈--,则=a ______.24.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______. 25.设集合{}|2A x x =>,{}|B x x a =≤,若A B =R ,则实数a 的取值范围是______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1.(1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.设集合{}2230A x x x =--<,集合{}22B x a x a =-<<+. (1)若2a =,求()R A B ⋃; (2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.28.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.29.已知集合{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,U =R .(1)当3a =时,求A B ,()U A B ⋃;(2)若A B =∅,求实数a 的取值范围.30.已知集合2{20}A x x x =+-<,{213}B x m x m =+≤≤+(m )R ∈.(1)当1m =-时,求A B ,A B ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.【参考答案】一、单选题1.A【解析】【分析】利用集合的基本关系求解【详解】 解:因为()2πππ,,424k k M x x k x x k ⎧⎫+⎧⎫⎪⎪==+∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭Z Z ,()21π,4k N x x k ⎧⎫+⎪⎪==∈⎨⎬⎪⎪⎩⎭Z , 当k ∈Z 时,21k +是奇数,2k +是整数,所以N M ⊆.故选:A .2.C【解析】【分析】利用集合的补集运算求解.【详解】 因为{}230A x x x =->, 所以{}[]2300,3R A x x x =-≤=. 故选:C3.B【解析】【分析】化简集合N ,然后由集合的运算可得.【详解】{}sin ,cos0}0,1 {N π==,{}2,1,2,U N ∴=--{}()1U MN ∴=- 故选:B.4.D【解析】【分析】根据二次函数、一次函数的性质求出其值域,然后由交集定义可得.【详解】 因为22111()244y x x x =-=--≥-,所以1{|}4M y y =≥- 易知N =R ,所以1{|}4My N y ≥=-,即1[,)4-+∞ 故选:D5.C【解析】【分析】化简集合,A B 即得解.【详解】 解: {}{}22021A x x x x x =+-<=-<<,{}{}1e ,R 0x B y y x y y -==∈=>,所以()0,1A B =.故选:C6.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】 因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D7.C【解析】【分析】根据对数型函数定义域解法求出集合M ,根据分式不等式解法求出集合N ,再根据集合交集概念即可求得结果.【详解】由题意知(){}21log 21,2M x y x ∞⎛⎫==-=+ ⎪⎝⎭,[)101,33x N x x ⎧⎫+=≤=-⎨⎬-⎩⎭, 所以1,32M N ⎛⎫⋂= ⎪⎝⎭. 故选:C .8.B【解析】【分析】先化简集合B ,再利用交集运算求解.【详解】解:因为集合{|1}A x x =≥-,41|28{|23}x B x x x ⎧⎫=≤<=-≤<⎨⎬⎩⎭, 所以{}|13A B x x ⋂=-≤<,故选:B9.C【解析】【分析】利用交集的定义即得.【详解】∵集合{}{01}A xx a B x x =<=<≤∣,∣, A B =∅, ∴0a ≤.故选:C.10.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B11.D【解析】【分析】先求出集合B 的元素,进行并集运算即可.【详解】因为{}()(){}2|60|320B x N x x x N x x =∈--≤=∈-+≤ {}{}|230,1,2,3x N x =∈-≤≤=,所以{}3,0,1,2,3A B ⋃=-.故选:D.12.D【解析】【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果.【详解】 {}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<. 故选:D.13.A【解析】【分析】根据集合的补集与交集的运算求解即可.【详解】解:因为全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =,所以{}0,2,4U A =,所以(){}{}{}0,2,40,10U A B ==.故选:A14.B【解析】【分析】求出定义域得到集合B ,从而求出补集和交集.【详解】 {}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,R A =-∞-⋃+∞,所以()[)1,R A B ∞⋂=+. 故选:B. 15.B【解析】【分析】先解一元二次不等式,在根据并集定义计算.【详解】∵{}{}[]2450151,5A x x x x x =--≤=-≤≤=-,{}()55,B y y ∞=>=+, ∴[)1,A B =-+∞.故选:B.二、填空题16.A B C ##C B A【解析】【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系.【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=, 集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=, 集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17. C β∉ A α AB B α⋂= CD α⊂【解析】【分析】根据元素与集合,集合与集合之间的关系,由图可写出答案【详解】(1)C 为元素,平面β为集合,所以,由图可得C β∉.(2)A 为元素,平面α为集合,所以,由图可得A α.(3)直线AB 为集合,平面α为集合,所以,由图可得AB B α⋂=.(4)直线CD 为集合,平面α为集合,所以,CD α⊂.故答案为:①C β∉;②A α;③AB B α⋂=;④CD α⊂;18.28【解析】【分析】首先确定喜欢两项运动的人数,进而得到喜欢一项运动的人数.【详解】 6人这两项运动都不喜欢,∴喜欢一项或两项运动的人数为40634-=人;∴喜欢两项运动的人数为:2416346+-=人,∴喜欢篮球的人数为24618-=人;喜欢乒乓球的人数为16610-=人;∴只喜欢其中一项运动的人数为181028+=人.故答案为:28.19.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃20.4【解析】【分析】由题意列举出集合M ,可得集合的个数.【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:421.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.22.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.23.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-.故答案为:4-.24.{}1【解析】【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果.【详解】 因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =, 则{}1M =,故答案为:{}1.25.[)2,+∞【解析】【分析】根据并集求解参数的范围即可.【详解】根据题意,{|2}R A x x =≤R A B ⋃=R A B ∴⊆2a ∴≥.故答案为[)2,+∞.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1){1x x ≤-或}4x ≥(2)01a <≤【解析】【分析】(1)当2a =时,求出集合A 、B ,利用并集和补集的定义可求得集合()R A B ⋃; (2)根据已知条件可得出B A 且B ≠∅,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.(1) 解:{}{}223013A x x x x x =--<=-<<, 当2a =时,{}04B x x =<<,故{}14A B x x ⋃=-<<,因此,(){R 1A B x x ⋃=≤-或}4x ≥.(2)解:因为p 是q 成立的必要不充分条件,则B A 且B ≠∅, 所以,212223a a a a -≥-⎧⎪-<+⎨⎪+≤⎩,解得01a <≤, 当1a =时,{}13B x x =<< A ,合乎题意.因此,01a <≤.28.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1)因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆;当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥,综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-.29.(1){11A B x x ⋂=-≤≤或}45x ≤≤,(){}15U A B x x ⋃=-≤≤(2)(),1-∞【解析】【分析】(1)将3a =代入集合A 中确定出A ,求出A 与B 的交集,求出B 的补集,求出A 与B 补集的并集即可;(2)由A 与B 以及两集合的交集为空集,对a 进行分类讨论,把分类结果求并集,即可求出结果.(1) 将3a =代入集合A 中的不等式得:{}15A x x =-≤≤,∵{|1B x x =≤或4}x ≥,∴{11A B x x ⋂=-≤≤或}45x ≤≤,{}14U B x x =<<,则(){}15U A B x x ⋃=-≤≤;(2)∵{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,当0a <时,A =∅;此时满足A B =∅,当0a =时,{}2A =,此时也满足A B =∅, 当0a >时,A ≠∅,若A B =∅,则2124a a ->⎧⎨+<⎩,解得:01a <<; 综上所述,实数a 的取值范围为(),1-∞30.(1){}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤(2)32,2⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)求出集合B ,进而求出交集和并集;(2)根据x A ∈是x B ∈的充分不必要条件得到A 是B 的真子集,进而得到不等式组,求出实数m 的取值范围.(1){}21A x x =-<<.当1m =-时,{}12B x x =-≤≤所以{}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤;(2)x A ∈是x B ∈的充分不必要条件∴A是B的真子集,故21231 mm+≤-⎧⎨+≥⎩即3 22m-≤≤-所以实数m的取值范围是3 2,2⎡⎤--⎢⎥⎣⎦.。

高一数学集合练习题附答案

高一数学集合练习题附答案

高一数学集合练习题附答案一、单选题1.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -2.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N3.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}4.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π5.若集合{A y y ==,{}3log 2B x x =≤,则A B =( ) A .(]0,9B .[)4,9C .[]4,6D .[]0,96.已知集合{}i ,N nM m m n ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()1i 1i -+ B .1i1i-+ C .i 1i- D .()21i -7.设集合{}|14A x x =<<,集合2{|230}B x x x =≤一一,则A B =( ) A .[一1,4)B .(一1,4)C .(1,3]D .(1,3)8.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( )A .{}0,1,2B .{}1,2C .{}0,2D .{}29.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >- D .{}3x x >-10.已知集合02A x x,{}0,1B =,则A B ⋃=( )A .{}01x x <<B .{}01x x ≤≤C .{}02x x <≤D .{}02x x ≤≤11.已知集合{123}M =,,,{134}N =,,,则M N ⋂等于( ) A .{13},B .{1234},,, C .{24},D .{134},,12.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6B .5C .4D .313.设全集{}U 0|x x =≥,集合2{|}0M x x x =-<,{}|1N x x =≥,则()UM N =( ) A .()0,1B .[)0,1C .()1,+∞D .[)0,∞+14.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,515.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5二、填空题16.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________.17.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.18.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.21.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.22.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______. 23.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________. 24.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.立德中学高一年级共有200名学生,报名参加学校团委与学生会组织的社团组织,据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有有多少人?27.函数()f x 满足(21)41f x x +=-. (1)求()f x 的解析式;(2)集合{}2|()30A x x f x =++=,写出集合A 的所有子集.28.已知集合{12}S n =,,,(3n ≥且*n N ∈),12{}m A a a a =,,,,且A S ⊆.若对任意i j a A a A ∈∈,(1i j m ≤≤≤),当i j a a n +≤时,存在k a A ∈(1km ≤≤),使得i j k a a a +=,则称A 是S 的m 元完美子集.(1)判断下列集合是否是{12345}S =,,,,的3元完美子集,并说明理由; ①1{124}A =,,; ②2{245}A =,,.(2)若123{}A a a a =,,是{127}S =,,,的3元完美子集,求123a a a ++的最小值; (3)若12{}m A a a a =,,,是{12}S n =,,,(3n ≥且*n N ∈)的m 元完美子集,求证:12(+1)2m m n a a a +++≥,并指出等号成立的条件.29.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .30.已知集合{}2,560|U R A x x x ==-+≤,112B xx ⎧⎫=≤⎨⎬-⎩⎭. (1)求,A B ;(2)判断Ux A ∈是x B ∈的什么条件.【参考答案】一、单选题 1.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩. 【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 2.D 【解析】 【分析】利用()()()U U uM N M N ⋂=⋃,判断相互之间的关系.【详解】()()()UU uM N M N ⋂=⋃,M N N ⋃=,()u uM N N ⋃=.故选D. 3.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 4.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 5.A 【解析】 【分析】先解出集合A 、B,再求A B . 【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A . 6.B 【解析】 【分析】计算出集合M ,在利用复数的四则运算化简各选项中的复数,即可得出合适的选项. 【详解】当N k ∈时,4i 1k =,41i i k +=,422i i 1k +==-,433i i i k +==-,则{}i,1,i,1M =--, ()()1i 1i 112M -+=+=∉,()()()21i1i 2i i 1i 1i 1i 2M ---===-∈++-,()()()i 1i i 11i 1i 1i 1i 22M +==-+∉--+,()2i 1i 2M =-∉-, 故选:B. 7.A 【解析】 【分析】解二次不等式求得集合B 然后根据并集的定义即得. 【详解】由2230x x --≤,解得13x -≤≤,[]1,3B ∴=-,又()1,4A =,[1,4)A B ∴⋃=-.故选:A. 8.C 【解析】 【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果. 【详解】因为集合{}24A x N x =∈≤化简可得{0,1,2}A =又{}1,B a =,B A ⊆, 所以0a =或2a =,故实数a 的取值集合为{0,2}, 故选:C. 9.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 10.D 【解析】 【分析】根据集合的并集的定义即可求解. 【详解】 {}{}{}200,102A B x x x x ==<≤≤≤.故选: D. 11.A 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,2,3M =,{}1,3,4N =,所以{}1,3M N ⋂=; 故选:A 12.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安}, {德化,永安,漳平},共4个,故选:C. 13.B 【解析】 【分析】首先解一元二次不等式求出集合M ,再根据补集、并集的定义计算可得; 【详解】解:由20x x -<,即()10x x -<,解得01x <<,所以{}{}210||0M x x x x x -=<=<<,因为{}|1N x x =≥,{}U 0|x x =≥,所以{}U|01N x x =≤<,所以(){}U|01MN x x =≤<;故选:B 14.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 15.B 【解析】 【分析】求出集合{}2230A x x x =--<,再根据集合的交集运算求得答案.【详解】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B二、填空题16.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.17.10,1,2⎧⎫-⎨⎬⎩⎭【解析】 【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭18.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥ 19.5,66ππ⎛⎫⎪⎝⎭【解析】 【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫⎪⎝⎭.20.12 【解析】 【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可. 【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12. 21.5 【解析】 【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果 【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =. 故答案为:522.{}0,1,4【解析】 【分析】根据集合的运算法则计算. 【详解】由已知{4}A =,{0,1}B =,所以{0,1,4}A B =. 故答案为:{0,1,4}. 23.{x |2<x <3} 【解析】 【分析】解二次不等式可得集合B ,再求交集即可. 【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}. 故答案为:{x |2<x <3} 24.4 【解析】 【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可 【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素, ∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去). 故答案为:425.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+三、解答题26.103;23. 【解析】 【分析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少. 【详解】由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有10312020023+-=人,所以同时参加这2个社团的最多有103名学生,最少有23名学生. 27.(1)()23f x x =-(2){}0,{}2-,{}0,2-和∅【解析】【分析】(1)利用换元法:21t x =+,求出()f t ,即可求出()f x 的解析式;(2)根据()230x f x ++=求出集合A 的元素,根据元素即可写出集合A 的所有子集.(1)令21x t +=,所以12t x -=, 所以()141232t f t t -=⋅-=-,即()23f x x =-; (2)因为()23f x x =-, {}{}22|()30|20A x x f x x x x =++==+=,因为220x x +=,解得0x =或2x =-,所以{}0,2A =-,所以集合A 的所有子集为:{}0,{}2-,{}0,2-和∅.28.(1)1A 不是S 的3元完美子集;2A 是S 的3元完美子集;理由见解析(2)12(3)证明见解析;等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤ 【解析】【分析】(1)根据m 元完美子集的定义判断可得结论;(2)不妨设123a a a <<.由11a =,12a =,13a ≥分别由定义可求得123a a a ++的最小值; (3)不妨设12m a a a <<<,有121i i i i m i a a a a a a a n +-<+<+<<+≤.121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,,此时该集合恰有m i -个不同的元素,显然矛盾.因此对任意1i m ≤≤,都有11i m i a a n +-++≥,由此可得证.(1)解:(1)①因为1235+=≤,又13A ∉,所以1A 不是S 的3元完美子集. ②因为2245+=≤,且24A ∈,而55454425245+>+>+>+>+>, 所以2A 是S 的3元完美子集.(2)解:不妨设123a a a <<.若11a =,则112a a A +=∈,123A +=∈,134A +=∈,与3元完美子集矛盾; 若12a =,则114a a A +=∈,246A +=∈,而267+>,符合题意,此时12312a a a ++=. 若13a ≥,则116a a +≥,于是24a ≥,36a ≥,所以123+13a a a +≥. 综上,123a a a ++的最小值是12.(3)证明:不妨设12m a a a <<<.对任意1i m ≤≤,都有11i m i a a n +-++≥,否则,存在某个(1)i i m ≤≤,使得1i m i a a n +-+≤. 由12m a a a <<<,得121i i i i m i a a a a a a a n +-<+<+<<+≤. 所以121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,, 该集合恰有m i -个不同的元素,显然矛盾.所以对任意1i m ≤≤,都有11i m i a a n +-++≥. 于是1211211212()()()()()(1)m m m m m m a a a a a a a a a a a a m n ---++++=+++++++++≥. 即12(1)2m m n a a a ++++≥. 等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤. 29.(1){23A B x x ⋂=-<≤或}9x =,A B R =(2)(){2R B A x x ⋂=≤-或}9x >【解析】【分析】(1)根据集合的交集和并集的定义即可求解; (2)先根据补集的定义求出B R ,然后再由交集的定义即可求解. (1) 解:因为{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{23A B x x ⋂=-<≤或}9x =,A B R =;(2)解:因为全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{2R B x x =≤-或}9x >,所以(){2R B A x x ⋂=≤-或}9x >.30.(1){}|23A x x =≤≤;{2B x x =<或}3x ≥.(2)充分不必要条件【解析】【分析】(1)分别解一元二次不等式和分式不等式即可得答案; (2)由题知{2U A x x =<或}3x >,进而根据充分不必要条件判断即可.(1)解:解不等式2560x x -+≤得23x ≤≤,故{}|23A x x =≤≤; 解不等式()()320113110022220x x x x x x x ⎧--≤-≤⇔-≤⇔≤⇔⎨----≠⎩, 解得2x <或3x ≥,故{2B x x =<或}3x ≥.(2)解:因为{}|23A x x =≤≤, 所以{2U A x x =<或}3x >, 因为{2B x x =<或}3x ≥, 所以U x A ∈是x B ∈的充分不必要条件.。

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典一、单选题1.设集合{|04}A x x =<<,{2,3,4,5,6}B =,则A B =( ) A .{2}B .{2,3}C .{3,4}D .{2,3,4}2.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,23.设集合104x A xx ⎧⎫+=≤⎨⎬-⎩⎭,{}1e ,R x B y y x ==-∈,R 为实数集,则()RA B ⋃=( )A .{1x x <-或}1x ≥B .{1x x ≤-或}1x >C .{}4x x ≥D .{}4x x >4.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂ B .()UMNC .()U N M ⋂D .()()U U M N5.设全集U =R ,集合{}0,1,2A =,{}2B x x =≥,则()UA B =( )A .{}0,1,2B .{}0,1C .{}2D .{}2x x <6.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x << B .{}32x x -<<C .{}35x x -<<D .{}3x x <- 7.已知集合2{|4120}A x x x =+-<,{|13}B x x =<≤,则A B =( )A .()1,2-B .()1,2C .(]1,3-D .(]1,38.已知集合{|1}A x x =≥-,1{|28}4x B x =≤<,则A B =( ) A .[-2,3) B .[-1,3)C .[-2,3]D .[-1,3]9.设集合{}0,1S =,{}0,3T =,则S T ⋃=( )A .{}0B .{}1,3C .{}0,1,3D .{}0,1,0,310.设集合{}A x y x ==,(){}2,B x y y x ==,则AB =( )A .{}0B .(){}1,1C .{}0,1D .∅11.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3B .[]3,3-C .(]1,3D .[]3,1-12.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,213.已知集合{}0A x x =≥,{}11,B x x x Z =-≤≤∈,则A B =( ) A .{}0,1 B .{}1,2 C .[]0,2 D .[]1,214.已知集合{|03}A x x =<<,集合2{|0log 1}B x x =<<,则A ∩B =( )A .{|13}x x <<B .{|12}x x <<C .{|23}x x <<D .{|02}x x <<15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.17.若{}31,3,a a ∈-,则实数a 的取值集合为______.18.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________. 19.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则A B =___________.20.已知T 是方程()22040xpx q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.21.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______. 22.已知集合{0,1,2,3,4,5}A =,集合{1,3,5,7,9}B =,则Venn 图中阴影部分表示的集合中元素的个数为________.23.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.24.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________.25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E b ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω. (2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃. (3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.27.设全集U R =,已知集合{}1,2A =,{|03}B x x =≤≤,集合C 为不等式组10240x x +≥⎧⎨-≤⎩的解集.(1)写出集合A 的所有子集; (2)求UB 和BC ⋃.28.已知集合{}3A x x =≤,{}31B x a x a =-<<+. (1)当4a =时,求()A B R ; (2)若A B A =,求实数a 的取值范围.29.已知集合{}24120A x x x =--<,集合{}239B x m x m =-<<-.现有三个条件:条件①A B B =;条件②R ()B A ⊆;条件③A B B ⋃=.请从上述三个条件中任选一个,补充在下面横线上,并求解下列问题: (1)若4m =,求R ()B A ⋂; (2)若______,求m 的取值范围.注:如果选择多个条件分别解答,按第一个选择的解答计分.30.已知集合A ={x |2≤|x |≤m },B ={3|x x -26x +8x >0},C ={2|x x -2x -15=0}. (1)若A C =A ,求实数m 的最小值; (2)若A B =∅,求实数m 的取值范围.【参考答案】一、单选题 1.B 【解析】 【分析】根据交集的概念可得答案. 【详解】A B ={2,3}.故选:B 2.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N ,若N M ⊆,满足题意.故选:C. 3.C 【解析】 【分析】先求出集合A ,B ,再求两集合的并集,然后再求其补集 【详解】由104x x +≤-,得(1)(4)040x x x +-≤⎧⎨-≠⎩,解得14x -≤<, 所以{}14A x x =-≤<,因为当R x ∈时,e 0x >,所以1e 1x -<, 所以{}1B y y =<, 所以{}4A B x x ⋃=<, 所以(){}R4A B x x ⋃=≥,故选:C 4.B 【解析】 【分析】化简集合N ,然后由集合的运算可得. 【详解】{}sin ,cos0}0,1 {N π==, {}2,1,2,U N ∴=-- {}()1U MN ∴=-故选:B.5.B 【解析】 【分析】根据补集、交集的定义计算可得; 【详解】解:因为{}2B x x =≥,所以{}U 2B x x =<,又{}0,1,2A =; 所以(){}0,1UA B =;故选:B6.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<. 故选:A 7.B 【解析】 【分析】求出集合A 的解集,即可求出A B 的结果.因为{}()()2|4120{|620}{|62}A x x x x x x x x =+-<=+-<=-<<,{|13}B x x =<≤,所以{|12}A B x x =<<,故选:B. 8.B 【解析】 【分析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{|1}A x x =≥-,41|28{|23}xB x x x ⎧⎫=≤<=-≤<⎨⎬⎩⎭,所以{}|13A B x x ⋂=-≤<, 故选:B 9.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 10.D 【解析】 【分析】通过集合中点集与数集的概念,再运用集合的交集运算即可得解. 【详解】由题设可得A 为数集,B 为点集,故A B ⋂=∅. 故选:D 11.A 【解析】 【分析】利用集合交集定义计算即可 【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A 12.A 【解析】 【分析】根据集合的交集概念即可计算.∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 13.A 【解析】 【分析】先化简集合B ,然后由交集运算可得答案. 【详解】由集合{}{}|111,0,1B x x x Z =-≤≤∈=-,, {}0A x x =≥ 所以{}0,1A B = 故选:A 14.B 【解析】 【分析】化简集合B ,再求集合A,B 的交集即可. 【详解】∵集合{|03}A x x =<<,集合2{|0lo {|}g 121}B x x x x =<<<<=, ∴A B ={|12}x x <<. 故选:B. 15.A 【解析】 【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. 【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误; 空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确; a 是{},,b c a 的元素,所以⑤正确. 故选:A.二、填空题 16.4a >【解析】 【分析】结合数轴图与集合包含关系,观察即可得到参数的范围. 【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >.17.{}0,1,3【解析】 【分析】根据元素的确定性和互异性可求实数a 的取值. 【详解】因为{}31,3,a a ∈-,故1a =-或3a =或3a a =,当1a =-时,31a =-,与元素的互异性矛盾,舍; 当3a =时,327a =,符合;当3a a =时,0a =或1a =±,根据元素的互异性,0,1a =符合, 故a 的取值集合为{}0,1,3. 故答案为:{}0,1,318.(,3][6,)-∞-⋃+∞【解析】 【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可. 【详解】因为()22()4321f x x x x =-+=--, 所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-. 由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数, 所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+ 由题意知,BA所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥.当0m <时,()52g x mx m =+-在[]1,4上是减函数, 所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-, 由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-.综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞. 故答案为: (,3][6,)-∞-⋃+∞ 【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.19.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭20.26【解析】 【分析】由题知{}4,10T =,再结合韦达定理求解即可. 【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根,因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q = 所以26p q += 故答案为:2621.0a ≤【解析】 【分析】根据并集的运算结果列出不等式,即可得解. 【详解】解:因为A B R =, 所以0a ≤. 故答案为:0a ≤.22.3 【解析】 【分析】由集合定义,及交集补集定义即可求得. 【详解】由Venn 图及集合的运算可知,阴影部分表示的集合为()AAB .又{0,1,2,3,4,5}A =,{1,3,5,7,9}B =,{1,3,5}A B ∴⋂=,(){}0,2,4AA B ∴⋂=即Venn 图中阴影部分表示的集合中元素的个数为3 故答案为:3.23.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >.24.{}2,4【解析】 【分析】根据题意依次按“势”从小到大顺序排列,得到答案. 【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4. 故答案为:{}2,4 25.{}12x x -<<## ()1,2- 【解析】 【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可. 【详解】因为{}2A x x =<{|22}x x =-<<,101B xx ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω.(2)证明见解析(3)14【解析】【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω. (2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1A B ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩; 当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾.所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14},则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =, 则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=. 当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457810111314{,,,,,,,,,}3333333333A B =. 集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数,因此,令123A A A A C =,123B B B B =,则A B =∅,且14P A B =.综上,所求n 的最大值为14.27.(1)∅,{1},{2},{1,2};(2)U B {|0x x =<或3}x >,{|13}B C x x ⋃=-≤≤.【解析】【分析】(1)直接写出集合A 的所有子集即可;(2)直接写出U B ,求得C ,再求B C ⋃即可. (1)因为{}1,2A =,故A 的所有子集为∅,{}{}{}1,2,1,2.(2)因为{}|12C x x =-≤≤,U B ={|0,x x <或3}x >,{|13}B C x x ⋃=-≤≤. 28.(1){}35x x <<(2)(6,)+∞【解析】【分析】(1)求出集合A ,进而求出A 的补集,根据集合的交集运算求得答案;(2)根据A B A =,可得A B ⊆,由此列出相应的不等式组,解得答案.(1){}{}333A x x x x =≤=-≤≤,则R {|3A x x =<-或3}x > ,当4a =时,{}15B x x =-<<,(){}R =35A B x x ∴⋂<< ;(2)若A B A =,则A B ⊆,3313a a -<-⎧∴⎨+>⎩, ∴实数a 的取值范围为6a >,即(6,)a ∈+∞ .29.(1){|67}x x ≤<;(2)选择条件,答案见解析.【解析】【分析】(1)解一元二次不等式化简集合A ,再求出其补集,再利用交集的定义计算作答.(2)选择条件①,③,利用交集、并集的结果转化为集合的包含关系,再讨论求解作答;选择条件②,利用集合的包含关系,讨论求解作答.(1)集合()(){}{}26026A x x x x x =+-<=-<<,R {|2A x x =≤-或6}x ≥,当4m =时,{}17B x x =<<,则()R {|67}A B x x ⋂=≤<.(2)选择条件①:A B B =,则B A ⊆,若B =∅,则239m m -≥-,解得23m -≤≤,若B ≠∅,则22393296m m m m ⎧-<-⎪-≥-⎨⎪-≤⎩,解得3m <≤综上得:2m -≤≤所以m的取值范围是2m -≤≤选择条件②:R ()B A ⊆,由(1)知,R {|2A x x =≤-或6}x ≥,若B =∅,则239m m -≥-,解得 23m -≤≤,若B ≠∅,则223992m m m ⎧-<-⎨-≤-⎩或23936m m m ⎧-<-⎨-≥⎩,解得2m ≤<-或9m ≥,综上得:3m ≤或9m ≥,所以m的取值范围是3m ≤或9m ≥.选择条件③:A B B ⋃=,则A B ⊆,于是得:22393296m m m m ⎧-<-⎪-≤-⎨⎪-≥⎩,解得m ≤ 所以m的取值范围是m ≤30.(1)5(2)(],4∞-【解析】【分析】(1)由并集结果得到{3,5}A -⊆,从而得到不等式组,求出m 的取值范围,得到m 的最小值;(2)由交集结果分A =∅与A ≠∅进行分类讨论,求出m 的取值范围.(1)由题有{3,5}C =-,若A C A ⋃=,则{3,5}A -⊆,则 可知2325m m ⎧≤-≤⎪⎨≤≤⎪⎩,解得:5m ≥,所以m 的最小值为5. (2)()()()(){|240}0,24,B x x x x =-->=⋃+∞,由A B =∅,则①当A =∅时,2m <;②当A ≠∅时,2m ≥,有{|22}A x m x x m =-≤≤-≤≤或,从而有24m ≤≤综上:数m 的取值范围是(],4∞-.。

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典一、单选题1.已知集合{}0,1,2,3A =,集合{}11B x x =-≤,则A B 等于( ) A .{}3B .{}0,1,2C .{}1,2D .{}0,1,2,32.已知集合{}{}0,11,A xx B x x x =≥=-≤≤∈Z ∣∣,则A B =( ) A .[]0,1B .{}1,2C .{}0,1D .[]1,23.设集合{}{lg 1},2A xx B x x =<=≤∣∣,则A B ⋃=( ) A .{02}xx <≤∣ B .{}2xx ≤∣ C .{10}x x <∣ D .R4.已知集合{}260A x R x x =∈+-<,集合1133x B x R -⎧⎫=∈≥⎨⎬⎩⎭,则A B =( )A .{}32x x -<<B .{}02x x <≤C .{}02x x ≤<D .{}3x x >-5.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .M B .NC .u MD .u N6.已知集合2,1,0,1,2U ,{}1,2A =,{}1,1B =-,则()U A B ⋂=( ) A .{}1B .{}2C .{}1,2D .{}1,1,2-7.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤8.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}9.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()UA B =( ) A .{}1B .{}3C .{}2,4D .{}1,2,4,510.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( ) A .{}0,1,2,3 B .{}0,1,2 C .{}1,2,3D .{}1,211.设全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,则下图中的阴影部分表示的集合为( )A .{}4B .{}5C .{}1,2D .{}3,512.已知集合[)2,4A =,[]3,5B =,则()R A B =( ) A .(]4,5B .[]4,5C .()[),23,-∞⋃+∞D .(][),23,-∞⋃+∞13.已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( )A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,114.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}315.已知集合{}2280,Z A x x x x =--<∈,则A 的非空子集的个数为( )A .32B .31C .16D .15二、填空题16.从集合{}123,,,,n U a a a a =⋅⋅⋅的子集中选出4个不同的子集,需同时满足以下两个条件:①∅、U 都要选出;②对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇.则选法有___________种.17.如图,设集合,A B 为全集U 的两个子集,则A B =____________.18.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.19.等差数列{}n a 中15141024a a a a ++=+,513a a =. 若集合{}*122nn n N a a a λ∈<+++∣中仅有2个元素,则实数λ的取值范围是______.20.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.21.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 22.满足{}1,2A ⊆的集合A 的个数是______________23.若非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,则M P =________.24.从集合M={}1,2,3,4,,2021中去掉所有3的倍数和5的倍数,则剩下的元素个数为______25.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________.三、解答题26.设集合{|16}A x x =-≤≤,{|121}B x m x m =-≤≤+,且B A ⊆. (1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.27.已知函数()()4log 5f x x =-+()g x x α=(α为常数),且()g x 的图象经过点(P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .28.已知集合{}22A x a x a =-≤≤,{}31B x x =-<<. (1)若2a =-,求()R A B ⋃; (2)若A B A =,求a 的取值范围.29.已知集合{}2560A xx x =--≤∣,集合{}26510B x x x =-+>∣,集合09x m C x x m -⎧⎫=≤⎨⎬--⎩⎭∣.(1)求A B ;(2)若A C C =,求实数m 的值取范围.30.用描述法写出下面这些区间的含义:[]2,7-;[),a b ;()123,+∞;(],9-∞-.【参考答案】一、单选题 1.B 【解析】 【分析】由交集运算求解即可. 【详解】{}{}{}1102,0,1,2B x x x x A B =-=≤≤∴⋂=∣故选:B 2.C 【解析】 【分析】根据交集的定义和运算直接得出结果. 【详解】 由题意得,{1,0,1}B =-,又{}0A x x =≥,所以{0,1}A B =. 故选:C. 3.C 【解析】【分析】先化简集合A ,再求A B 【详解】lg 1lg lg10010x x x <⇔<⇔<<,即{}010|A x x =<<,所以{}|10A B x x =< 故选:C 4.C 【解析】 【分析】本题首先通过解不等式260x x +-<得出{}32A x x =-<<,然后通过解不等式1133x -≥得出{}0B x x =≥,最后通过交集的相关性质即可得出结果.【详解】260x x +-<,()()320x x +-<,32x -<<,{}32A x x =-<<,1133x -≥,11x -≥-,0x ≥,{}0B x x =≥, 则{}02A B x x ⋂=≤<, 故选:C. 5.D 【解析】 【分析】利用()()()U U uM N M N ⋂=⋃,判断相互之间的关系.【详解】()()()UU uM N M N ⋂=⋃,M N N ⋃=,()u uM N N ⋃=.故选D. 6.B 【解析】 【分析】根据集合补集和交集的定义进行求解即可. 【详解】 因为2,1,0,1,2U ,{}1,1B =-,所以{}2,0,2UB =-,又因为{}1,2A =,所以()U A B ⋂={}2, 故选:B 7.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 8.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 9.D 【解析】 【分析】利用交集和补集的定义可求得结果. 【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5UA B ⋂=.故选:D. 10.D 【解析】 【分析】先化简集合A ,继而求出A B . 【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D. 11.D 【解析】 【分析】图中阴影部分表示()U A B ⋂,再根据交集和补集的定义即可得出答案. 【详解】解:图中阴影部分表示()U A B ⋂,因为{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =, 所以{}3,5,6UA =,所以(){}3,5U A B =. 故选:D. 12.B 【解析】 【分析】先求出集合A 的补集,再由交集运算可得答案. 【详解】集合[)2,4A =,[]3,5B =,则()()[),24,R A =-∞⋃+∞ 所以()[]4,5R A B ⋂=, 故选:B. 13.C 【解析】 【分析】求出集合M ,N ,然后进行并集的运算即可. 【详解】∵{}02M x x =<<,{}11N x x =-≤≤, ∴[1,2)M N ⋃=-. 故选:C . 14.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 15.B 【解析】 【分析】求出集合A ,利用集合的非空子集个数公式可求得结果. 【详解】{}{}{}2280,Z 24,Z 1,0,1,2,3A x x x x x x x =--<∈=-<<∈=-,即集合A 含有5个元素,则A 的非空子集有52131-=(个). 故选:B.二、填空题16.3323n n -⋅+【解析】 【分析】分析出当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;再进行求和即可. 【详解】因为∅、U 都要选出;故再选出两个不同的子集,即为M ,N , 因为选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇,故各个子集所包含的元素个数必须依次增加,且元素个数多的子集包含元素个数少的子集,当一个子集只含有1个元素时,另外一个子集可以包含2,3,4()1n -个元素,所以共有()()111221111C C C C C 22n n n n n n n -----⨯+++=⨯-种选法; 当一个子集只含有2个元素时,另外一个子集可以包含3,4,()1n -个元素,所以共有()()221232222C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;当一个子集只含有3个元素时,另外一个子集包含4,5,()1n -个元素,所以共有()()331243333C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;……当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;……当一个子集有()2n -个元素时,另外一个子集包含()1n -个元素,所以共有()22C 22n n -⨯-种选法;当一个子集有()1n -个元素时,另外一个子集包含有n 个元素,即为U ,不合题意,舍去;故共有()()()()122122C 22C 22C 22C 22n n n mm n n n n n ----⨯-+⨯-++⨯-++⨯-()1122122C 2C 22C C C n n n n n n n n ---=⋅++⋅-+++()()122212223323nn n n n n n =+------=-⋅+. 故答案为:3323n n -⋅+ 【点睛】对于集合与排列组合相结合的题目,要能通过分析,求出通项公式,再结合排列或组合的常用公式进行化简求解.17.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可. 【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==, 所以{}1,2,3,4,5A B =. 故答案为:{}1,2,3,4,518.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==.由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z , ∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒19.924⎡⎫⎪⎢⎣⎭,【解析】 【分析】设等差数列{}n a 的公差为d ,由题设列出d 与1a 的方程组,解出d 与1a ,从而可得到212322n n n a a a n n ++⋯++=,令23()2n n n f n +=,得出()f n 的单调性,即可求出λ的取值范围. 【详解】解:设等差数列{}n a 的公差为d ,由题设可知:11111141392443a a d a d a d a d a ++++=++⎧⎨+=⎩,解得:14a =,2d =,212(1)4232n n n a a a n n n -+++=+⨯=+, ∴212322n n na a a n n++⋯++=,令23()2n n n f n +=,则22211(1)3(1)34(1)()222n n n n n n n n n f n f n +++++++-+-=-=-, 当2n <时,()()10f n f n +->, 当2n ≥时,()()10f n f n +-<,f ∴(1)f <(2)f >(3)f >(4)>,又f (1)2=,f (2)52=,f (3)94=,f (4)74=, 集合{}*12N |2n n n a a a λ∈<++⋯+中有2个元素,即集合*12N |2n n a a a n λ++⋯+⎧⎫∈<⎨⎬⎩⎭中有2个元素, [2λ∴∈,9)4.故答案为:924⎡⎫⎪⎢⎣⎭,.20.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-, 故答案为:[1,1]-21.5【解析】【分析】直接求出集合A 、B ,再求出A B ,即可得到答案.【详解】因为集合{}{}352,1,0,1,2,3,4A x Zx =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =,所以A B 的元素个数为5.故答案为:5.22.4【解析】【分析】利用集合的子集个数公式求解即可.【详解】∵{}1,2A ⊆,∴集合A 是集合{}1,2的子集,∴集合A 的个数为22=4,故答案为:4.23.P【解析】【分析】推导出M N ⊆,N P ⊆,由此能求出MP P =. 【详解】 解:非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P , M N ∴⊆,N P ⊆,M P P ∴=.故答案为:P .24.1078【解析】【分析】剔除集合中是3的倍数,5的倍数的元素,即可得出结果.【详解】集合M 中,3的倍数有20216733⎡⎤=⎢⎥⎣⎦个,5的倍数有20214045⎡⎤=⎢⎥⎣⎦个,15的倍数有202113415⎡⎤=⎢⎥⎣⎦个, 则剩下的元素个数为2021(673404134)1078-+-=个.故答案为:1078.25.{1,2,3,4,6,8}【解析】【分析】先化简集合B ,再求两集合的并集.【详解】因为B ={x x 是6的正因数}{1,2,3,6}=,所以{1,2,3,4,6,8}A B =.故答案为:{1,2,3,4,6,8}.三、解答题26.(1){|2m m <-或502m ≤≤} (2)128【解析】【分析】(1)按照集合B 是空集和不是空集分类讨论求解;(2)确定集合A 中元素(个数),然后可得子集个数.(1)当121m m ->+即2m <-时,B =∅,符合题意; 当B ≠∅时,有12111216m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得502m ≤≤. 综上实数m 的取值范围是{|2m m <-或50}2m ≤≤;(2)当x ∈N 时,{0,1,2,3,4,5,6}A =,所以集合A 的子集个数为72128=个. 27.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】(1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式; (2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R. 28.(1)()R A B ⋃{|2x x =≤-或1}x ≥ (2)()1,12,2⎛⎫-+∞ ⎪⎝⎭【解析】【分析】(1)首先得到集合A ,再根据补集、并集的定义计算可得;(2)依题意可得A B ⊆,分A =∅与A ≠∅两种情况讨论,分别得到不等式,解得即可;(1)解:由题意当2a =-时得{}62A x x =-≤≤-,因为{}31B x x =-<<,所以{|3R B x x =≤-或1}x ≥,所以()R A B ⋃{|2x x =≤-或1}x ≥.(2)解:因为A B A =,所以A B ⊆,①当A =∅时,22a a ->,解得2a >,符合题意;.②当A ≠∅时,221223a a a a -≤⎧⎪<⎨⎪->-⎩,解得112a -<<. 故a 的取值范围为()1,12,2⎛⎫-+∞ ⎪⎝⎭.29.(1)1|13x x ⎧-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)(]3,1--.【解析】【分析】(1)根据一元二次不等式的解法求出集合A 、B ,即可求出A B ; (2)由A C C =,可知A C ⊆,得到不等式组,即得.(1)∵{}2560A xx x =--≤∣,{}26510B x x x =-+>∣, {|16}A x x ∴=-≤≤,1|3B x x ⎧=<⎨⎩或12x ⎫>⎬⎭, ∴1|13A B x x ⎧⋂=-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)∵{|16}A x x =-≤≤,0{|9}9x m C x x m x m x m -⎧⎫=≤=≤<+⎨⎬--⎩⎭∣, 由A C C =,得A C ⊆,961m m +>⎧∴⎨≤-⎩,解得31m -<≤-, ∴实数m 的值取范围为(]3,1--.30.{}27x x -≤≤;{}x a x b ≤<;{}123x x >;{}9x x ≤-.【解析】【分析】将区间转化为集合,用描述法写出答案.【详解】[]2,7-用描述法表示为:{}27x x -≤≤;[),a b 用描述法表示为:{}x a x b ≤<;()123,+∞用描述法表示为:{}123x x >;(],9-∞-用描述法表示为:{}9x x ≤-.。

(完整版)高一数学必修一集合练习题及单元测试(含答案及解析)

(完整版)高一数学必修一集合练习题及单元测试(含答案及解析)

集合练习题1.设集合 A= {x|2 ≤<x4},B={x|3x -7≥8-2x} ,则 A∪B等于 ( )A.{x|x ≥ 3} B. {x|x ≥ 2} C.{x|2 ≤<x3} D .{x|x ≥ 4}2 .已知集合 A={1,3,5,7,9} ,B={0,3,6,9,12} ,则 A∩B=( )A.{3,5} B. {3,6} C. {3,7} D . {3,9}3.已知集合 A={x|x>0} , B={x| -1≤ x≤ 2,}则 A∪B=( )A.{x|x ≥-1} B.{x|x ≤ 2 } C. {x|0<x ≤ 2} D.{x|-1≤ x≤ 2} 4. 满足 M?{ ,,, },且 M∩{ ,, }= { , }的集合 M 的个数是 ( ) A.1 B.2 C.3 D. 45.集合 A={0,2 ,a},B={1,}.若 A∪B={0,1,2,4,16} ,则 a 的值为 ( ) A.0 B.1 C.2 D .46.设 S={x|2x +1>0} ,T ={x|3x -5<0} ,则 S∩T=( )A.? B.{x|x< -1/2} C. {x|x>5/3} D.{x| - 1/2<x<5/3}7.50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30 名,参加乙项的学生有 25 名,则仅参加了一项活动的学生人数为__ .8.满足{1,3} ∪=A{1,3,5} 的所有集合 A的个数是.9.已知集合 A={x|x ≤ ,1} B={x|x ≥,a}且 A∪B=R,则实数 a 的取值范围是____________________________________________________________________ .10. 已知集合 A={-4,2a -1, },B={a-5,1 -a,9} ,若 A∩B= {9} ,求 a 的值.11 .已知集合 A={1,3,5} , B={1,2 ,-1},若A∪B={1,2,3,5} ,求 x 及A∩ B.12 .已知 A ={x|2a ≤ x ≤+a3} , B= {x|x< -1 或 x>5} ,若 A∩B=? ,求 a 的取值范围.13 .(10 分)某班有 36 名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为 26,15,13 ,同时参加数学和物理小组的有 6 人,同时参加物理和化学小组的有 4 人,则同时参加数学和化学小组的有多少人?11 .已知集合 A={1,3,5} , B={1,2 ,-1},若A∪B={1,2,3,5} ,求 x 及A∩ B.集合测试、选择题:本大题共 10小题,每小题 5 分,共 50分。

高一数学集合练习题一及答案3篇

高一数学集合练习题一及答案3篇

高一数学集合练习题一及答案第一篇:集合初步概念及运算1. 下列说法中正确的是:()A.空集是任何集合的子集B.空集是任何集合的真子集C.单集是有限集D.全集的子集个数是1答案:A2. 若集合A={1,2,4},B={1,2,3},C={2,3},则A∩B∪C的结果为()A. {1,3}B. {1,2}C. {2,3,4}D. {1,2,3,4}答案:D3. 若A∪B={-2,-1,0,3,4},则A∩B的结果为()A. {-2,-1}B. {0,3,4}C. {-2,-1,0,3,4}D. 无法确定答案:D4. 已知A={x|0≤x<5},B={x|x²-4x+3<0},则A∪B 的结果为()A. {1,2,3,4,5}B. {x|x²-4x+3≥0}C. [3,5)D. [1,5)答案:A5. 下列说法中正确的是:()A. A={0,1,2},|A|=2B. A={0,x,2},x为实数,|A|=2C. A={0,1,2},P(A)的元素个数是3D. A={0},P(A)的元素个数是2答案:D6. 下列说法中正确的是:()A. A∩B=∅,则A=BB. A∩B=A,则A包含于BC. A∪B=B,则A包含于BD. 若A=B,则A∩B=A答案:B7. 下列说法中正确的是:()A. A×B的元素个数是|A||B|B. A×∅=∅C. |P(A)|=2^|A|D. A∩B=A∪B答案:C8. 下列说法中正确的是:()A. 不交集的交集是空集B. 空集和任何集合的并集是空集C. 任何集合和全集的交集是原集合D. 全集和空集的交集是全集9. 集合A、B的笛卡尔积为{(x,y)|x∈A,y∈B},则A×B 的结果为()A. {AB}B. A+BC. {(x,y)|x∈A,y∈B}D. AB答案:C10. 下列说法中正确的是:()A. A⊂B,B⊂C,则A⊂CB. A⊂B,B∩C=∅,则A⊂CC. A∩B=A,A⊂C,则B⊂CD. A∩B=A,A⊂C,则B包含于C答案:D第二篇:复合函数与反函数1. 函数f(x)=x²,g(x)=3-x,则复合函数(f∘g)(x)的结果为()A. x²-3x+9B. 3x²-x+9C. 9-6x+x²D. x²-6x+9答案:D2. 已知函数f(x)=x³,则函数f的反函数为()A. f⁻¹(x)=x³B. f⁻¹(x)=∛xC. f⁻¹(x)=x²D. f⁻¹(x)=x³/33. 函数y=2x-1,它的反函数为()A. y=2x+1B. y=(x+1)/2C. y=(x-1)/2D. y=2(x+1)答案:C4. 函数f(x)=log₃(x+2),则它的反函数为()A. f⁻¹(x)=3ⁿ-2B. f⁻¹(x)=log₃(x)-2C. f⁻¹(x)=3ⁿ+2D. f⁻¹(x)=log₃(x+2)-2答案:B5. 已知函数f(x)=2x+1,g(x)是f(x)的反函数,则g(-2)的值为()A. -1/2B. -3/2C. 0D. 3答案:B6. 设函数f(x)=x³,g(x)是函数f(x)在[0,+∞)上的反函数,则g(8)的值为()A. 0B. 2C. 3D. 4答案:B7. 函数f(x)=(x-1)/(x+2),则f(f(x))的分母为()A. x²B. (x-1)²C. (x+2)²D. (x²+1)答案:C8. 函数f(x)=log₃x,则它的反函数f⁻¹(x)为()A. f⁻¹(x)=3ⁿB. f⁻¹(x)=3/xC. f⁻¹(x)=3log(x)D. f⁻¹(x)=log₃(x)答案:D9. 函数f(x)=log₃x,g(x)=x-2,则(f∘g)(x)的结果为()A. log₃(x-2)B. log₃(x-2)/3C. log₃x-2D. log₃(x+2)答案:C10. 已知函数f(x)=3x²-4,函数g(x)为f(x)的反函数,则g(5)的值为()A. 1B. 2C. 3D. 4答案:C第三篇:不等式和函数的性质1. 若a>b,则a²≤3a+b+2的条件是()A. b≤a-2B. b≥a-2C. b≤-a-2D. b≥-a-2答案:B2. 若x>0,x+1/x≥2,则x的取值范围为()A. [0,1)B. [1,∞)C. (0,1)D. (1,∞)答案:B3. 已知函数f(x)的值域为[1,2],则方程f(x)=1/2的解集为()A. {1}B. (0,1)C. ∅D. (1,2)答案:C4. 已知函数f(x)=3x-1,g(x)=2x-3,则fg(x)和gf(x)的符号相反,x的取值范围是()A. (-∞,1)B. (1,∞)C. [1,3/5]D. (3/5,1)答案:A5. 若函数f(x)在区间[a,b]上单调递减,则f(x)在区间[a,b]上的最大值出现在()A. x=aB. x=bC. x=(a+b)/2D. x未知答案:A6. 若函数f(x)=3x+c的解析式是f(x)的导函数,则常数c为()A. -2B. -1C. 0D. 1答案:B7. 函数f(x)=x/(5-x),则函数f(x)在[0,5)上的值域是()A. (-∞,1/5)B. (-∞,-1/5)C. (1/5,∞)D. (-∞,∞)答案:C8. 若函数f(x)的值域为[1,2),则函数g(x)为f(x)的反函数的值域为()A. [1,2)B. (-∞,2)C. (1,∞)D. ∅答案:B9. 函数f(x)=2x(1-x)的最大值为()A. 1B. 1/4C. 1/2D. 1/8答案:B10. 若函数f(x)满足f(x)+f(1-x)=x,则f(1/2)的值为()A. 1/2B. 1/4C. -1/4D. -1/2答案:B。

高一数学集合练习题含答案

高一数学集合练习题含答案

高一数学集合练习题含答案一、单选题1.设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( ) A .2B .3C .4D .无数个2.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅3.设I 为全集,1S 、2S 、3S 是I 的三个非空子集且123S S S I ⋃⋃=.则下面论断正确的是( )A .()123I S S S ⋂⋃=∅B .()123I I S S S ⊆⋂C .123I I I S S S ⋂⋂=∅D .()123I I S S S ⊆⋃4.已知集合{}42A x x =-<<,{}29B x x =≤,则A B ⋃=( )A .(]4,3-B .[)3,2-C .()4,2-D .[]3,3-5.设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是( )A .3B .6C .7D .86.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,27.设集合{}2,1,0,1,2,3A =--,{|B x y ==,则AB =( )A .{}2B .{}0,1C .{}2,3D .{}2,1,0,1,2--8.设全集U =R ,集合{}{}13,0,1,2,3,4,5A x x B =≤≤=,则()U A B =( ) A .{0,4,5}B .{0,1,3,4,5}C .{4,5}D .{0}9.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,210.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,611.已知集合{}{}|1|Z 3,0A x x B x x =∈-≤≤=≥,则A B =( ) A .[]1,2B .{}1,2,3C .[]0,3D .{}0,1,2,312.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2 B .{}2,3C .{}0,3D .{}313.已知集合{|03}A x x =<<,集合2{|0log 1}B x x =<<,则A ∩B =( )A .{|13}x x <<B .{|12}x x <<C .{|23}x x <<D .{|02}x x <<14.已知集合{}{}21,,3A x x n n Z B ==+∈=,则A B =( ) A .{1,3}B .{1,3,5,7,9}C .{3,5,7}D .{1,3,5,7}15.等可能地从集合{}1,2,3的所有子集中任选一个,选到非空真子集的概率为( ) A .78B .34C .1516 D .14二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________. 18.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.19.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________.20.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 21.已知集合{}2280A x x x =--<,非空集合{}23B x x m =-<<+,若x B ∈是x A ∈成立的一个充分而不必要条件,则实数m 的取值范围是___________.22.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个. 23.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.24.若{}231,13a a ∈--,则=a ______.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.设A 为非空集合,令(){},,A A x y x y A ⨯=∈,则A A ⨯的任意子集R 都叫做从A 到A 的一个关系(Relation ),简称A 上的关系.例如{}0,1,2A =时,(){}10,2R =,2R A A =⨯,3R =∅,()(){}40,0,2,1R =等都是A 上的关系.设R 为非空集合A 上的关系.如果R 满足:①(自反性)若x A ∀∈,有(),x x R ∈,则称R 在A 上是自反的; ②(对称性)若(),x y R ∀∈,有(),y x R ∈,则称R 在A 上是对称的; ③(传递性)若(),x y ∀,(),y z R ∈,有(),x z R ∈,则称R 在A 上是传递的;称R 为A 上的等价关系.(1)已知{}0,1,2A =.用列举法写出A A ⨯,然后写出A 上的关系有多少个,最后写出A 上的所有等价关系.(只需写出结果)(2)设1R 和2R 是某个非空集合A 上的关系,证明: (ⅰ)若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的;(ⅱ)若1R ,2R 是传递的,则12R R 也是传递的.(3)若给定的集合A 有n 个元素()4n ≥,()12,,,2m A A A m n ⋅⋅⋅≤≤为A 的非空子集,满足12m A A A A ⋅⋅⋅=且两两交集为空集.求证:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A上的等价关系.27.已知集合{|28}x a A x -=>,2{|20}B x x x =+-<,再从条件① ,条件② ,条件③这三个条件中选择一个作为已知,求实数a 的取值范围. 条件①:A B =∅;条件②:A B A =;条件③:RA B ⊆.28.已知M 由0,2,4,6,8组成的集合,{|33}Z N x x =∈-≤. (1)用列举法表示集合N ,用描述法表示集合M (书写格式要规范)(2)若∃x ∈B 而x ∉ A ,则称B 不是A 的子集.结合集合M ,N 写出5个含M 中3个元素但不是M 的子集的集合.29.已知集合{}|33A x a x a =-≤≤+,{}2|40B x x x =-≥.(1)当2a =时,求A B ,A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.30.已知集合(){}2log 31A x x =->,22112y y B y -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭. (1)分别求出集合A 、B ; (2)设全集为R ,求()RA B ⋂.【参考答案】一、单选题 1.B 【解析】 【分析】先解出集合A ,再按照对数的运算求出集合B ,即可求解. 【详解】由260x x --<,解得23x -<<,故{}1,0,1,2A =-,()2222ln (1)1ln(11)ln 2,ln 010,ln(21)ln5⎡⎤-+=+=+=+=⎣⎦,故{}ln 2,0,ln5B =,集合B 中元素个数为3. 故选:B. 2.A 【解析】 【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 3.C 【解析】 【分析】画出关于123S S S I ⋃⋃=且含7个不同区域的韦恩图,根据韦恩图结合集合的交并补运算确定各选项中对应集合所包含的区域,并判断包含关系. 【详解】将123S S S I ⋃⋃=分为7个部分(各部分可能为空或非空),如下图示:所以1A B D E S =⋃⋃⋃、2A B C F S =⋃⋃⋃、3S A C D G =⋃⋃⋃, 则1I S C F G =⋃⋃,2I S D E G =⋃⋃,3I S B E F =⋃⋃,所以23S S A B C D F G ⋃=⋃⋃⋃⋃⋃,故()123I S S S F G ⋂⋃=⋃,A 错误;23I I S S E ⋂=,故231I I S S S ⋂⊆,B 错误; 123I I I S S S ⋂⋂=∅,C 正确;23II S S B D E F G ⋃=⋃⋃⋃⋃,显然1S 与23I I S S ⋃没有包含关系,D 错误.故选:C 4.A 【解析】 【分析】先求B ,再求并集即可 【详解】易得{}3|3B x x =-≤≤,故(]4,3A B ⋃=- 故选:A 5.D 【解析】 【分析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案. 【详解】2222x x ≤⇒-≤,所以2,2A ⎡=-⎣,所以{}1,0,1A ⋂=-Z , 所以A ⋂Z 子集的个数是328=. 故选:D 6.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 7.C 【解析】 【分析】根据偶次根式有意义及一元二次不等式的解法,再结合集合的交集的定义即可求解. 【详解】由y =()()250x x --≥,解得25x ≤≤,所以{}|25B x x =≤≤,A B ={}{}{}2,1,0,1,2,3|252,3x x --≤≤=,故选:C. 8.A 【解析】 【分析】由集合的补集和交集的运算可得. 【详解】 由题可得{1UA x x =<或3}x >,所以(){0,4,5}=UA B .故选:A .9.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 10.B 【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =,根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 11.D 【解析】 【分析】直接利用集合的交集运算求解. 【详解】∵集合{}{}{}Z 131,0,1,2|,0|3,A x x B x x =∈-≤≤-=≥=, 所以{}0,1,2,3A B =. 故选:D. 12.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 13.B 【解析】 【分析】化简集合B ,再求集合A,B 的交集即可. 【详解】∵集合{|03}A x x =<<,集合2{|0lo {|}g 121}B x x x x =<<<<=, ∴A B ={|12}x x <<. 故选:B. 14.B 【解析】 【分析】先求出集合[)1,10B =,再根据集合的交集运算求得答案. 【详解】由题意得[){3}1,10B x =<=,其中奇数有1,3,5,7,9 又{}21,Z A x x n n ==+∈,则{}1,3,5,7,9A B ⋂=, 故选:B . 15.B 【解析】 【分析】写出集合{}1,2,3的所有子集,再利用古典概率公式计算作答.【详解】集合{}1,2,3的所有子集有:{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅,共8个,它们等可能,选到非空真子集的事件A 有:{}{}{}{}{}{}1,2,3,1,2,1,3,2,3,共6个, 所以选到非空真子集的概率为63()84P A ==. 故选:B二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x <18.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-, 故答案为:[1,1]-19.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:8 20.5 【解析】 【分析】直接求出集合A 、B ,再求出A B ,即可得到答案. 【详解】因为集合{}{}352,1,0,1,2,3,4A x Z x =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =, 所以A B 的元素个数为5. 故答案为:5.21.()5,1-【解析】 【分析】根据逻辑条件关系与集合间的关系、一元二次不等式的解法即可求解. 【详解】由题意得,{}{}228024A x x x x x =--<=-<<,由x B ∈是x A ∈成立的一个充分而不必要条件,得B A ,即2334m m -<+⎧⎨+<⎩解得,51m -<<, 故答案为:()5,1-. 22.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:7 23.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】因为()()294sin32311644x x x f x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦24.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-.25.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+三、解答题26.(1)答案见解析(2)(ⅰ)证明见解析;(ⅱ)证明见解析 (3)证明见解析 【解析】 【分析】(1)由A A ⨯的定义可直接得到结果;根据A A ⨯中元素个数可得其子集个数,即为A 上的关系个数;根据等价关系定义列举出所有满足的R 即可;(2)(ⅰ)由()1,x x R ∈,()2,y y R ∈可知()(){}()12,,,x x y y R R ⊆,自反性得证;由()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,根据并集定义可知()()()(){}()12,,,,,,,x y y x s t t s RR ⊆,对称性得证;(ⅱ)采用反证法,可知1R 或2R 不是传递的,假设错误,传递性得证;(3)采用假设的方式,分别假设s s a A ∈,可知(){}(),s s s s a a A A R ⊆⨯⊆,自反性得证;假设,s t t a a A ∈,可知()(){}(),,,s t t s t t a a a a A A R ⊆⨯⊆,对称性得证;假设(),,1s t q q a a a A q m n ∈≤≤≤,可知()()(){}(),,,,,s t t s s q q q a a a a a a A A R ⊆⨯⊆,传递性得证;由此可得结论. (1)由题意得:()()()()()()()()(){}0,0,0,1,0,2,1,0,1,1,1,2,2,0,2,1,2,2A A ⨯=;A A ⨯共有9个元素,A A ∴⨯共有92个子集,即A 上的关系有72512=个;所有等价关系有:()()(){}10,0,1,1,2,2R =,()()()()(){}20,0,1,1,2,2,0,1,1,0R =,()()()()(){}30,0,1,1,2,2,0,2,2,0R =,()()()()(){}40,0,1,1,2,2,1,2,2,1R =, ()()()()()()()()(){}50,0,1,1,2,2,1,2,2,1,0,2,2,0,0,1,1,0R =. (2)(ⅰ)若任意,x y A ∈,12,R R 在A 上是自反的,令()1,x x R ∈,()2,y y R ∈,()(){}()12,,,x x y y R R ∴⊆,则12R R 是自反的;若12,R R 在A 上是对称的,则()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,()()()(){}()12,,,,,,,x y y x s t t s R R ∴⊆,则12R R 是对称的;综上所述:若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的.(ⅱ)假设12R R 不是传递的,则()()12,x y R R ∃∈,()()12,y z R R ∈,()()12,x z R R ∉,即()1,x z R ∉或()2,x z R ∉,此时1R 或2R 不是传递的,与已知矛盾, ∴若1R ,2R 是传递的,则12R R 也是传递的.(3)令{}123,,,,n A a a a a =⋅⋅⋅, 12m A A A A ⋅⋅⋅=且两两交集为空集,设s s a A ∈()1s m n ≤≤≤,则除s A 外,其余集合不包含元素s a ; 则(){}(),s s s s a a A A ⊆⨯,又()()()()1122s s m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s s a a R ∴∈,则R 在A 上是自反的;设,s t t a a A ∈()1t m n ≤≤≤,则除t A 外,其余集合不包含元素,s t a a ; 则()(){}(),,,s t t s t t a a a a A A ⊆⨯, 又()()()()1122t t m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,则R 在A 上是对称的;设(),,1s t q q a a a A q m n ∈≤≤≤,则除q A 外,其余集合不包含元素,,s t q a a a ; 则()()(){}(),,,,,s t t s s q q q a a a a a a A A ⊆⨯, 又()()()()1122q q m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,(),s q a a R ∈,则R 在A 上是传递的; 综上所述:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A 上的等价关系.【点睛】关键点点睛:本题考查集合的自反性、对称性和传递性的证明,解决此问题的关键是能够充分理解已知中所说的性质的含义;解题基本思路是采用假设的方式和反证的方式,通过说明元素与集合、集合与集合之间关系证得结论. 27.若选① ,[2-,)∞+. 若选② ,(-∞,5]-. 若选③ ,[2-,)∞+. 【解析】 【分析】先将集合A,B 中的不等式求解,根据集合运算的最后结果分析参数a 需要满足的范围即可求解. 【详解】{|28}{|3}{|3}x a A x x x a x x a -=>=->=>+,2{|20}{|(2)(1)0}{|21}B x x x x x x x x =+-<=+-<=-<<,若选择条件①:A B =∅,则需31a +,即2a -, 所求实数a 的取值范围为[2-,)∞+.若选择条件②:A B A =,即B A ⊆,则需32a +-,即5a -, 所求实数a 的取值范围为(-∞,5]-. 若选择条件③:RA B ⊆,因为{|2R B x x =-或1}x ,所以要使RA B ⊆,则需31a +,即2a -,所求实数a 的取值范围为[2-,)∞+.28.(1){}0,1,2,3,4,5,6N =;{2,4M x x k k ==≤且}N k ∈(答案不唯一); (2){}0,1,2,3,4,{}{}{}{}0,1,2,4,5,0,1,3,4,6,1,2,3,4,6,1,2,4,5,6(答案不唯一). 【解析】 【分析】(1)利用集合的列举法,描述法即得; (2)结合条件及子集的概念即得. (1)∵{|33}Z N x x =∈-≤,∴{}0,1,2,3,4,5,6N =,∵M 由0,2,4,6,8组成的集合,∴{2,4M x x k k ==≤且}N k ∈(答案不唯一); (2)由题可得含M 中3个元素但不是M 的子集的集合为:{}0,1,2,3,4,{}{}{}{}0,1,2,4,5,0,1,3,4,6,1,2,3,4,6,1,2,4,5,629.(1){|45}A B x x ⋂=,{|0A B x x ⋃=或1}x ; (2)(0,1). 【解析】 【分析】(1)当2a =时,求出集合A ,B ,由此能求出A B ,A B ;(2)推导出0a >,R A B 是的真子集,求出{|04}R B x x =<<,A ≠∅,列出不等式组,能求出实数a 的取值范围. (1)2{|40}{|0B x x x x x =-=或4}x ,当2a =时,{|15}A x x =,{|45}A B x x ∴⋂=, {|0A B x x ⋃=或1}x ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,0a ∴>,R A B 是的真子集,{|04}RB x x =<<,A ≠∅,∴3034a a ->⎧⎨+<⎩,解得01a <<. ∴实数a 的取值范围是(0,1).30.(1){}5A x x =>,{0B y y =<或}2y > (2)(){}R5A B x x ⋂=≤【解析】 【分析】(1)利用对数函数和指数函数的单调性可分别求得集合A 、B ; (2)求出A B ,利用补集的定义可求得集合()RA B ⋂.(1)解:(){}{}{}2log 31325A x x x x x x =->=->=>,{}{222112002y y B y y y y y y -⎧⎫⎪⎪⎛⎫=<=->=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭或}2y >.(2)解:由(1)可得{}5A B x x ⋂=>,因此,(){}R5A B x x ⋂=≤.。

(完整版)高一数学集合练习题及答案(人教版)

(完整版)高一数学集合练习题及答案(人教版)

一、选择题(每题 4 分,共 40 分)1、以下四组对象,能组成会合的是()A 某班全部高个子的学生B有名的艺术家C全部很大的书D倒数等于它自己的实数2、会合 {a , b,c } 的真子集共有个()A 7B 8C9D103、若 {1 , 2}A{1 , 2, 3,4, 5} 则知足条件的会合 A 的个数是()A. 6B. 7C.8D. 94、若 U={1, 2, 3, 4} ,M={1, 2} , N={2,3} ,则 C U( M∪ N) =()A. {1,2, 3}B. {2}C. {1, 3, 4}D. {4}x y15、方程组x y 1 的解集是( )A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1}6、以下六个关系式:0 0 ,0,0.3Q ,0 N ,a, b b, a,x | x2 2 0, x Z 是空集中,错误的个数是()A4 B 3 C 2 D 17、点的会合M={ (x,y)|xy≥0}是指( )A. 第一象限内的点集B.第三象限内的点集C. 第一、第三象限内的点集D.不在第二、第四象限内的点集8、设会合 A=B= x x a A B1 x 2,则 a 的取值范围是,,若()A a a 2B a a 1C a a 1D a a29、知足条件 M1 = 1,2,3的会合 M的个数是()UA 1B 2C 3D 410、会合P x | x2k, k Z, Q x | x 2k 1, k Z ,R x | x4k1, k Z ,且a P, b Q ,则有()A a b PB a b QC a b RD a b 不属于P、Q、R中的随意一个二、填空题(每题 3 分,共 18 分)11、若A { 2,2,3,4},B {x|x t2,t}BA ,用列举法表示12、会合 A={x| x 2+x-6=0}, B={x| ax+1=0},若 B A,则 a=__________13、设全集 U= 2,3, a22a3, A= 2,b, C U A= 5,则a =, b =。

完整版)高一数学集合练习题及答案-经典

完整版)高一数学集合练习题及答案-经典

完整版)高一数学集合练习题及答案-经典升腾教育高一数学满分150分姓名一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数答案:D解析:只有倒数等于它自身的实数可以构成集合。

2、集合{a,b,c }的真子集共有个()A。

7.B。

8.C。

9.D。

10答案:D解析:真子集不包含原集合,所以共有2^3-1=7个真子集。

3、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是()A。

6.B。

7.C。

8.D。

9答案:A解析:集合A中的元素可以是1,2,也可以是1,2,3,或者1,2,3,4,或者1,2,3,4,5,共有6种情况。

4、若U={1,2,3,4},M={1,2},N={2,3},则CUM∪N)=()A。

{1,2,3}。

B。

{2}。

C。

{1,3,4}。

D。

{4}答案:A解析:M∪N={1,2,3},所以CUM∪N)={1,2,3}∪{4}={1,2,3,4}。

5、方程组x y1的解集是(。

)A。

{x=0,y=1}。

B。

{0,1}。

C。

{(0,1)}。

D。

{(x,y)|x=0或y=1}答案:C解析:将方程组化简得到y=x+1,所以解集为{(x,y)|y=x+1}={(x,x+1)}。

6、以下六个关系式:3Q,N。

a,b b,ax|x220,x Z是空集中,错误的个数是()A。

4.B。

3.C。

2.D。

1答案:B解析:第一个关系式中,应该是∈而不是;第二个关系式中,应该是∉而不是。

第三个关系式中,应该是={a,b}而不是;第四个关系式中,应该是x∈Z而不是x Z,所以错误的个数为3个。

8、设集合A=x1x2,B=xx a,若A B,则a的取值范围是()Aaa2Baa1Caa1Daa 2答案:D解析:由题意可得x1<a<x2,即1<a<2,所以a的取值范围是a<2.9、满足条件M11,2,3的集合M的个数是()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档