高考数学第二轮复习的技巧
高考数学满分技巧与二轮复习提分攻略

高考数学满分技巧与二轮复习提分攻略高考数学得满分,这套学习方法建议收藏1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键。
答题策略选择:先易后难、选择题解答1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答。
2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。
多写不会扣分,写了就可能得分。
答题思想方法:每个知识点具体策略1.函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;19.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
2023届高考数学二轮复习导数经典技巧与方法:代数变形

第11讲代数变形知识与方法代数变形是利用代数知识实施形变而质不变的一种手段,将一个问题等价地变为另一个问题,由一种复杂的形式转变为一种简单的形式,将整个数学问题转变为一个较为容易处理或熟悉的问题.在处理含对数或指数式时,有如下两个技巧:1.对数处理技巧——对数靠边走设f(x)是可导函数,不难得到(f(x)lnx)′=f′(x)lnx+f(x)1x,若f(x)不是常函数,则所得的导数式中含有lnx,往往需要再次甚至多次求导.对于这类含有对数式lnx的不等式问题时,通常要让对数型的函数分离出来,把对数型函数前面所乘的代数式或分母中的代数式处理掉,让对数型函数形成单独的一项,这样再对新函数求导,只需要求导一次即可求出函数的极值点,从而避免了多次求导的麻繁.这种让对数函数“孤军奋战”的代数变形过程,我们称其为对数处理技巧,即“对数靠边走”.相关的转化如下:情形1设f(x)>0,f(x)lnx+g(x)>0⇔lnx+g(x)f(x)>0;情形2设f(x)≠0,f(x)lnx+g(x)=0⇔lnx+g(x)f(x)=0.点睛意到:(f(x)lnx+g(x))′=f′(x)lnx+f(x)x+g′(x)(lnx+g(x)f(x))′=1x+(g(x)f(x))比较(1)(2)两式中等号右边的部分,可知(1)式含有对数lnx,但(2)式中不含对数lnx,这将为后续的解题带来方便.2.指数处理技巧——指数找朋友在证明或处理含指数型函数的不等式时,通常要让指数型函数乘以或除以一个多项式函数(让多项式除以指数也一样),这样就很容易求出新函数的极值点,从而可以避免多次求导.这种相当于给指数函数寻找了一个合作伙伴的变形过程,我们称之为指数处理技巧,即“指数找朋友”.相关的转化如下:情形1设f(x)>0,则f(x)+g(x)e x>0⇔g(x)f(x)e x+1>0;情形2设g(x)>0,则f(x)+g(x)e x>0⇔f(x)g(x)e−x+1>0;情形3设f(x)≠0,则f(x)+g(x)e x=0⇔g(x)f(x)e x+1=0;情形4设g(x)≠0,则f(x)+g(x)e x=0⇔f(x)g(x)e−x+1=0.因为(f(x)e x)′=(f(x)+f′(x))e x,(f(x)e−x)′=(f′(x)−f(x))e−x.所以(f(x)e x)′>0⇔(f(x)+f′(x))e x>0⇔f(x)+f′(x)>0, (f(x)e−x)′>0⇔(f′(x)−f(x))e−x>0⇔f′(x)−f(x)>0.使用上述变形,可以减少求导次数,优化解题过程.典型例题对数靠边走【例1】当x>1时,求证:(x+1)lnx>2(x−1).【解析】因为x>1,所以(x+1)lnx>2(x−1)⇔lnx>2(x−1)x.令f(x)=lnx−2(x−1)x (x>1),f′(x)=1x−4(x+1)2=(x−1)2x(x+1)2>0,所以f(x)在(1,+∞)上为增函数.所以f(x)>f(1)=0,所以x>1时,lnx>2(x−1)x+1,即(x+1)lnx>2(x−1).【例2】若不等式xlnx⩾a(x−1)对所有x⩾1成立,求实数a的取值范围.【解析】原问题等价于lnx−a(x−1)x ⩾0对所有的x⩾1都成立.令f(x)=lnx−a(x−1)x(x⩾1),则f′(x)=x−ax2.(1)当a⩽1时,f′(x)=x−ax2⩾0恒成立,即f(x)在[1,+∞)上单调递增,因而f(x)⩾f(1)=0恒成立;(2)当a >1时,令f ′(x)=0,得x =a,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,所以f(x)min =f(a)=lna −a +1<0,不符合题意. 综上所述,实数a 的取值范围是(−∞,1].【例3】设二次函数g(x)对任意实数x 都满足g(x −1)+g(1−x)=x 2−2x −1,且g(1)=−1,令f(x)=g (x +12)+mlnx +98(m ∈R,x >0). (1)求g(x)的表达式;(2)设1<m ⩽e,H(x)=f(x)−(m +1)x .证明:对任意x 1,x 2∈[1,m],恒有|H (x 1)−H (x 2)|<1【解析】(1)设g(x)=ax 2+bx +c ,所以g(x −1)+g(1−x)=a(x −1)2+b(x −1)+c +a(1−x)2+b(1−x)+c =2a (x 2−2x +1)+2c =2ax 2−4ax +2a +2c =x 2−2x −1. 比较两边的系数得{2a =1,−4a =−2,2a +2c =−1,所以{a =12,c =−1,所以g(x)=12x 2+bx −1. 又因为g(1)=−1,所以12+b −1=−1,所以b =−12,所以g(x)=12x 2−12x −1.(2)H(x)=12(x +12)2−12(x +12)−1+mlnx +98−(m +1)x =12(x 2+x +14)−12x −14−1+mlnx +98−mx −x =12x 2−(m +1)x +mlnx .H ′(x)=x −(m +1)+m x=x 2−(m+1)x+mx=(x−1)(x−m)x<0.所以H(x)在[1,m]上单调递减,所以H(x)min =H(m)=12m 2−(m +1)m +mlnm =−12m 2−m +mlnm ,H(x)max =H(1)=12−m −1=−12−m .所以|H (x 1)−H (x 2)|⩽H(x)max −H(x)min =12m 2−mlnm −12.下面只需证12m 2−mlnm −32<0.(可采用对数靠边走,将对数lnm 独立出来)即证明12m −lnm −32m<0.令g(m)=12m −lnm −32m,g ′(m)=12−1m+32m2=m 2−2m+32m 2>0.所以g(m)在(1,e]上单调递增,所以g(m)⩽g(e)=12e −1−32e =e 2−2e−32e.而e 2−2e −3<2.82−2×2.8−3=2.24−3<0, 所以g(e)<0,所以g(m)<0,即|H (x 1)−H (x 2)|<1.【点睛】上面解法的优势在于,将lnx 的系数化为“1”后,就可以有效避免求导后再出现对数函数,避免了隐零点出现,这是解决对数型函数的精华所在.指数找朋友【例4】已知函数f(x)=lnx +x −1(a ∈R).求证:e −x +xf(x)⩾0. 【解析】解法1:以指数处理技巧为主线 要证e −x +xf(x)⩾0,只需证1+xe x f(x)⩾0. 令g(x)=1+e x (xlnx +x 2−x )(x >0),g ′(x)=e x (xlnx +x 2−x +lnx +1+2x −1)=e x (x +1)(lnx +x). 令ℎ(x)=lnx +x ,在(0,+∞)上单调递增, 又因为ℎ(1)=1>0,ℎ(1e )=−1+1e<0,所以存在t ∈(1e ,1),使得ℎ(t)=lnt +t =0,即lnt =−t ,即e t =1t . 当x ∈(0,t)时,ℎ(x)<0,g ′(x)<0,g(x)单调递减; 当x ∈(t,+∞)时,ℎ(x)>0,g ′(x)>0,g(x)单调递增.所以g(x)⩾g(t)=1+e t (tlnt +t 2−t )=1+lnt +t −1=0, 所以1+xe x f(x)⩾0,即e −x +xf(x)⩾0. 解法2:以对数的处理技巧为主线要证e −x +xf(x)⩾0成立,只需证e −x x+f(x)⩾0即可.令g(x)=e −x x+lnx +x −1(x >0),则g ′(x)=−(x+1)x 2e x+1x +1=(x+1)(xe x −1)x 2e x,令ℎ(x)=xe x −1,ℎ′(x)=(x +1)e x >0,所以ℎ(x)单调递增; 又因为ℎ(1)=e −1>0,ℎ(12)=√e 2−1<0,所以存在t ∈(12,1),使得ℎ(t)=te t −1=0,即e t =1t ,即t =ln1t =−lnt , 当x ∈(0,t)时,ℎ(x)<0,g ′(x)<0,g(x)单调递减; 当x ∈(t,+∞)时,ℎ(x)>0,g ′(x)>0,g(x)单调递增. 所以,g(x)⩾g(t)=e −t t+lnt +t −1=lnt +t =0,所以e −x x+f(x)⩾0,即e −x +xf(x)⩾0.解法3:虚设零点+同构令g(x)=e −x +x(lnx +x −1)=e −x +xlnx +x 2−x(x >0), g ′(x)=−e −x +lnx +2x 在(0,+∞)上单调递增,且g ′(1e )=−e−1e+ln1e +2e =−e−1e−1+2e <0,g ′(1)=−e −1+ln1+2=2−1e >0.所以存在t ∈(1e ,1),使得g ′(t)=−e −t +lnt +2t =0,所以e −t =lnt +2t,lnt +t =e −t −t ,即lnt +e lnt =e −t +(−t). 令G(x)=e x +x 在(0,+∞)单调递增,且G(lnt)=G(−t),所以lnt =−t . 当x ∈(0,t)时,g ′(x)<0,g(x)单调递减; 当x ∈(t,+∞)时,g ′(x)>0,g(x)单调递增.g(x)⩾g(t)=e −t +tlnt +t 2−t =lnt +2t +tlnt +t 2−t =(1+t)(lnt +t)=0, 所以e −x +xf(x)⩾0.【点睛】解法3看似行云流水,思维直接,但是仔细品味,暗流汹涌,思维含量非常大,主要表现在以下三个方面:1.没有明显的零点,需要利用函数的单调性以及零点存在性定理,虚设零点;2.虚设零点后,出现了指数、对数以及多项式同时存在的情况,这样难以利用零点的关系式一次把指数以及对数全部消除;3.本题目需要较强的技巧性构造同构式,借助于单调性,找出对数与多项式的关系,万一想不到这一点,这道题目就不容易处理.实际上,本题之所以难,是因为指数、对数以及多项式的同时出现,将题目提升了一个难度.对于这种指、对混合形式出现的试题,利用指数或对数的处理技巧,可以帮助我们提高“求导效率”,将指数与多项式结合起来,或者将对数分离出来.【例5】已知函数f(x)=ax 21+lnx (a ≠0),e 是自然对数的底数.若f(x)的极大值为−2,求不等式f(x)+e x <0的解集.【解析】解法1:巧用对数、指数处理技巧对方程变形 f(x)的定义域为(0,e −1)∪(e −1,+∞), 由f ′(x)=2ax(1+lnx)−ax 2⋅1x(1+lnx)2=2ax(12+lnx)(1+lnx)2.当a >0时,f(x)在(0,e −1)上单调递减;在(e −1,e −12)单调递减;在(e −12,+∞)上单调递增;显然f(x)有极小值,无极大值.显然,当a <0时,f(x)有极大值,此时f (e −12)=−2,所以a =−e ,此时f(x)=−ex 21+lnx ,−ex 21+lnx +e x <0. 显然,当x ∈(0,1e ),−ex 21+lnx +e x >0,矛盾.故当x ∈(1e ,+∞)时,e x <ex 21+lnx ,即1+lnx −ex 2e x <0(对数靠边走)令F(x)=1+lnx −ex 2e x,F ′(x)=1x −2x−x 2e x−1.下证F ′′(x)>0,ex−1⩾2x2−x 3,2x 2−x 3e x−1⩽1(指数找朋友) 令G(x)=2x 2−x 3e x−1,G ′(x)=x (x 2−5x+4)e x−1=x(x−1)(x−4)e x−1.令G ′(x)=0,解得x =1,或x =4,所以G(x)权大值=G(1)=1,G(x)权小鹪=G(4)=−32e 3<0.当x >4时,G(x)<0,所以G(x)⩽1,所以F ′(x)⩾0,F(x)在(1e ,+∞)上单调递增. 因为F(1)=0,所以当1e <x <1时,F(x)<0,当x >1时,F(x)>0. 所以f(x)+e x <0的解集为(1e ,1).解法2:构造同构式当x ∈(0,1e )时,−ex 21+lnx +e x >0,矛盾;当x ∈(1e,+∞)时,−x 21+lnx+e x−1<0,所以x1+lnx >e x−1x=e x−11+lne x−1(构造同构式) 令ेF(x)=x 1+lnx,F ′(x)=1+lnx−1(1+lnx)2=lnx (1+lnx)2.当1e <x <1时,F ′(x)<0,F(x)单调递减;由于x <e x−1<1,所以F(x)>F (e x−1),即x1+lnx >e x−11+lne x−1,满足题意;当x ⩾1时,F ′(x)⩾0,F(x)单调递增,而e x−1⩾x ⩾1,所以F(x)⩽F (e x−1),矛盾. 综上可知,不等式f(x)+e x <0的解集为(1e ,1).【例6】求证:e x −2x >x 2lnx . 【解析】解法1:要证e x−2x>x2lnx,只需证e x−2xx2−lnx>0(对数靠边走)设f(x)=e x−2xx2−lnx(x>0),f′(x)=(x−2)(e x−x)x3,令f′(x)=0,得x=2.当x∈(0,2)时,f′(x)<0,f(x)单调递减;当x∈(2,+∞)时,f′(x)>0,f(x)单调递增.所以f(x)min=f(2)=e2−44−ln2=e2−(4+4ln2)4.由于e2>2.72=7.29,4+4ln2=4+ln16<4+lne3=7,所以e2−(4+4ln2)>0,从而不等式得证.解法2:要证e x−2x>x2lnx,只需证x2lnx+2xe x<1.设g(x)=x 2lnx+2xe x,则g′(x)=(2−x)(xlnx+1)e x,又因为xlnx+1>0(证明略),从而当x∈(0,2)时,g(x)单调递增,x∈(2,+∞)时,g(x)单调递增.从而g(x)max=g(2)=4ln2+4e2<3+4e2<1,从而原不等式得证.指对处理技巧的综合运用【例7】已知函数f(x)=e x−a(x−1)(a∈R,e为自然对数的底数).(1)若存在x0∈(1,+∞),使得f(x0)<0,求实数a的取值范围;(2)若f(x)有两个零点x1,x2.证明:x1+x2>x1x2.【解析】(1)解法1;指数变对数,方便求导令ेt=e x,g(t)=t−alnt+a,当x>1时,t>e.原题等价于g(t)=t−alnt+a,存在t0∈(e,+∞),使得g(t0)<0,求a的取值范围.g′(t)=1−at =t−at,令g′(t)=0,得t=a.当a⩽e时,g′(t)⩾0,g(t)单调递增,所以g(t)⩾g(e)=e−a+a=e>0,不符合题意;当a<e时,g(t)在(e,a)上单调递减,在(a,+∞)上单调递增,所以g(t)min=g(a)=a−alna+a=a(2−lna).因为存在t0∈(e,+∞),使得g(t0)<0,所以g(a)=a(2−lna)<0,解得a>e2.综上知a>e2.解法2:指数处理技巧e x−a(x−1)<0⇔g(x)=1−ae−x(x−1)<0,g′(x)=ae−x(x−1)−ae−x=ae−x(x−2),g′(2)=0.当a⩽0时,g(x)在(1,2)上单调递增,在(2,+∞)上单调递减,g(1)=1>0,当x→+∞时,g(x)=1−a x−1e x→1,所以g(x)⩾min{g(1),lim x→+∞g(x)}>0,不合题意.当a>0时,g(x)在(1,2)上单调递减,在(2,+∞)上单调递增,所以g(x)⩾g(2)=1−ae2.因为存在x0∈(1,+∞),使得f(x0)<0,所以g(2)=1−ae2<0,解得a>e2.综上知a>e2.解法3:直接法f′(x)=e x−a.(1)若a⩽0,因为e x>0,则f′(x)>0,此时f(x)在R上单调递增.当x∈(1,+∞)时,f(x)>f(1)=e>0,不合题意;(2)若a>0,由f′(x)>0,得e x>a,即x> lna,则f(x)在(lna,+∞)上单调递增,在(−∞,lna)上单调递减,所以f(x)min =f(lna)=e lna −a(lna −1)=a(2−lna),根据题意,有a(2−lna)<0,则lna >2,即a >e 2,且此时lna >ln 2>1, 所以a 的取值范围是(e 2,+∞). 解法4:分离变量法当x ∈(1,+∞)时,由f(x)<0,得e x <a(x −1),即a >e xx−1.设g(x)=e x x−1(x >1),根据题意,当x ∈(1,+∞)时,a >g(x)能成立,则a >g(x)min . 因为g ′(x)=(x−2)e x (x−1)2(x >1),则当x >2时,g ′(x)>0,g(x)单调递增; 当1<x <2时,g ′(x)<0,g(x)单调递减.所以,g(x)min =g(2)=e 2,所以a 的取值范围是(e 2,+∞). (2)由题设,f (x 1)=f (x 2)=0,即{e x 1=a (x 1−1),e x 2=a (x 2−1),则e x 1+x 2=a 2(x 1−1)(x 2−1),即e x 1+x 2=a 2(x 1x 2−x 1−x 2+1).要证x 1+x 2>x 1x 2,只需要证e x 1+x 2<a 2,即证x 1+x 2<2lna ,即证x 1<2lna −x 2. 不妨设x 1<x 2,由(1)可知a >e 2,且x 1<lna <x 2,从而2lna −x 2<lna . 因为f(x)在(−∞,lna)上单调递减,所以只要证f (x 1)>f (2lna −x 2),即证f (x 2)>f (2lna −x 2). 设ℎ(x)=f(x)−f(2lna −x),则ℎ′(x)=f ′(x)+f ′(2lna −x)=e x −2a +e 2lna−x =e x +a 2e x −2a ⩾2√e x ⋅a 2e x −2a =0, 所以ℎ(x)在R 上单调递增.因为x 2>lna ,则ℎ(x 2)>ℎ(lna)=f(lna)−f(lna)=0,即f (x 2)−f (2lna −x 2)>0,即f (x 2)>f (2lna −x 2),所以原不等式成立.【点睛】有些问题用直接法做,反而会更简单,比如本例第(1)小问,在使用“指数处理技巧”后,刧必须要使用洛必达法则才能解决问题.从另外一个层面上来讲,若指数、对数函数同时出现的能成立问题、恒成立问题常见的处理方法主要有:1.设而不求,隐零点法;2.一凸一凹,分离函数法;3.化直为曲,切线法或放缩法;4.必要性探路,缩小范围法.典型例题1.证明:当x>0时,e x>x2.【解析】要证e x>x2,只需证:x2e x<1令f(x)=x 2e x ,f′(x)=2xe x−e x⋅x2e2x=x(2−x)e x当0<x<2时,f′(x)>0,f(x)单调递增;当x>2时,f′(x)<0,f(x)单调递减所以f(x)max=f(2)=4e2<1,所以f(x)<1,即x2e x<1,所以e x>x2.2.已知函数f(x)=e x−sinx−cosx,g(x)=e x+sinx+cosx.(1)证明:当x>−5π4时,f(x)⩾0;(2)若g(x)⩾2+ax,求a.【解析】(1)f(x)⩾0⇔sinx+cosxe x⩽1,记ℎ(x)=sinx+cosxe x ,ℎ′(x)=−2sinxe x.(1)当x∈(−5π4,−π)时,ℎ′(x)<0;x∈(−π,0),ℎ′(x)>0;x∈(0,π),ℎ′(x)<0.又ℎ(−5π4)=0,ℎ(0)=1,所以在(−54π,π)上,ℎ(x)⩽ℎ(0)=1;(2)当x∈[π,+∞)时,e x⩾eπ,而sinx+cosx⩽√2,所以e x⩾sinx+cosx,则有f(x)⩾0.综合(1)(2)可知当x>−5π4时,不等式f(x)⩾0成立.(2)由题可知H(x)=g(x)−(ax+2)=e x+sinx+cosx−ax−2⩾0恒成立,且H(0)=0,所以H(x)⩾H(0),故x=0是H(x)的最小值点,也是极小值点.所以H′(0)=0,又H′(x)=e x+cosx−sinx−a,所以H′(0)=2−a=0,故a=2.下证当a=2时不等式成立.H(x)⩾0⇔sinx+cosx−2x−2e x+1⩾0记m(x)=sinx+cosx−2x−2e x +1,m′(x)=2(x−sinx)e x.易得当x>0时,x−sinx>0;当x<0时,x−sinx<0.所以当x<0时,m′(x)<0,m(x)单调递减;当x>0时,m′(x)>0,m(x)单调递增.所以m(x)⩾m(0)=0.故H(x)⩾0成立.。
2025高考数学二轮复习导数应用中的函数构造技巧

函数形式出现的是“-”法形式时,优先考虑构造 y=型函数.
(2)利用f(x)与ex(enx)构造
() ()
常用的构造形式有 e f(x),e f(x), e , e ,这类形式一方面是对 y=uv,y=型函
x
nx
数形式的考查,另外一方面也是对(ex)'=ex,(enx)'=nenx 的考查.所以对于
f'(x)cos x-f(x)sin x>0,所以 F'(x)>0,即函数
由于
f
π
6
f
π
6
π
0<6
<
π
4
π
π
cos6<f 4
<
3
π
3
3
<
π
3
<
π
,所以
2
π
π
cos4<f 3
π
F(x)在区间(0,2)
π
4
<F
π
cos3,因此可得
π
6
,故选 AD.
F
π
6
<F
f
π
x∈(0,2)时,
π
3
<
内单调递增.
,即
锐角三角形,则( D )
A.f(sin A)sin2B>f(sin B)sin2A
B.f(sin A)sin2B<f(sin B)sin2A
C.f(cos A)sin2B>f(sin B)cos2A
D.f(cos A)sin2B<f(sin B)cos2A
解析 因为
() '
2
高三数学第二轮备考方案

高三数学第二轮备考方案
二轮数学复习中,要注意六大策略:
一、注意基础知识的整合、巩固。
二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。
浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
二、查漏补缺,保强攻弱。
在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
三、提高运算能力,规范解答过程。
在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
四、强化数学思维,构建知识体系。
同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
五、解题快慢结合,改错反思。
审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
平时要注意积累错误,特别是易错点,寻找错误原因,及时总结。
六、重视和加强选择题的训练和研究。
对于选择题不但要答案正确,还要优化解题过程,提高速度。
灵活运用特值法、排除法、数形结合法、估算法等。
一轮看功夫,二轮学技巧,三轮振士气。
希望同学们惜时奋发,不负韶华,勇摘高考成绩桂冠!。
高考数学最佳复习方法(高三数学该怎么复习)

高考数学最佳复习方法(高三数学该怎么复习)高考数学最佳复习方法第一轮复习:熟悉考纲:详细了解数学高考的考试内容和要求,包括考试形式、考试范围、难度及基本要求。
泛读教材:学习教材,并逐步理解其中的基本概念和定义,尤其要注意重点难点概念的理解和记忆完成练习:完成基本的习题,巩固基础知识的理解,通过举一反三来加深掌握和记忆。
第二轮复习:查漏补缺:查漏补缺并巩固难点,强化重点知识,并进行有针对性的辅导和练习。
做和复习真题:做历年高考真题,结合自己的考试情况进行复习和总结,掌握考试趋势和重点难点。
定期做模拟题:进行模拟考试来检测自己复习情况,对弱项进行适量练习与强化,适当调整复习方法。
第三轮复习:总结知识点:逐个知识点进行统计和总结,并按照优先级进行安排,从基础开始巩固,逐步深入,强化重点。
模拟考试:逐步进行模拟考试,找到考试策略,加强考试心态调适。
针对性复习:重点关注易混点、考试重点和应变技巧,针对性进行复习,并强化解题技巧和策略。
局部突破:针对前两轮复习中整理出的薄弱环节和技能要求,进行精细化攻关,进行相应练习以突破局部难题。
如何高效复习高三数学要明确复习计划一般来说,数学学科要进行三轮复习,这是被实践证明了的十分有效的复习策略。
即一轮进行基础知识复习,目的是系统地回顾高中阶段的数学知识点和数学思想方法,扎扎实实地打好基础,全面系统地对知识进行梳理,加强对基础知识的理解和应用,加强对基本技能的训练,掌握知识之间的内在联系,理清知识结构,形成知识网络,在应用中理解其本质,形成能力,实现由知识到能力的跨越。
一轮复习的时间要长一些,要做到细致入微、面面俱到。
一轮复习的时间一般为9月初到次年的3月中旬。
二轮进行专题(即模块)复习,目的是加强对数学知识与方法的整合,也就是在一轮复习的基础上打破章节界限,以专题、板块的形式对重点内容和热点题型进行复习,提升分析问题和解决问题的综合能力。
二轮复习要针对高考的热点进行专题选择、专项训练。
2025届高考数学二轮复习导数经典技巧与方法第02讲分离参数法含解析

第2讲分别参数法学问与方法分别参数法解决恒成立求参问题,可以有两个角度:全分别和半分别.1.全分别参数法将含参表达式中的参数从表达式中完全分别出来,使所探讨的函数由动态变为定态,进而可得到新函数的图像、性质(最值),将求参数的范围问题转化为求函数的最值或值域问题.在分别参数时,需点睛意:(1)参数系数的正负是否确定;(2)分参后目标函数的最值是否易解,若不易解,极可能须要洛必达法则协助.2.半分别参数法其一般步骤为:将不等式变形为aa+a≥a(a)或aa+a≤a(a)的形式(其中a为参数,a为常数),然后画出图像,由图像的上下方关系得到不等式,从而求得参数的取值范围.不等号前后两个函数的图像特征为:直线a=aa+a与曲线a=a(a),而直线a=aa+a过定点(0,a).须要说明的是:半分别参数法一般只适用于客观题,解答题则不宜运用.典型例题全分别参数【例1】已知函数a(a)=e a+aa2−a.(1)当a=1时,探讨a(a)的单调性;(2)当a≥0时,a(a)≥12a3+1,求a的取值范围.【解析】(1)当a=1时,a(a)=e a+a2−a,a′(a)=e a+2a−1.当a<0时,a′(a)<0,a(a)单调递减;当a>0时,a′(a)>0,a(a)单调递增.所以,当a=1时,a(a)在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2)解法1:分别参数法当a=0时,a∈a.当a>0时,a(a)≥12a3+1⇔a≥12a3+a+1−e aa2.记a(a)=12a3+a+1−e aa2(a>0),则a ′(a )=12a 3−a −2+(2−a )e a a 3=(2−a )(e a −12a 2−a −1)a 3.记a (a )=e a −12a 2−a −1(a >0),a ′(a )=e a −a −1,a ′′(a )=e a −1. 因为a >0,所以a ′′(a )=e a −1>0,所以a ′(a )在(0,+∞)上单调递增, 从而a ′(a )>a ′(0)=0,所以a (a )在(0,+∞)单调递增,所以a (a )>a (0)=0. 令a ′(a )=0,解得a =2.当a ∈(0,2)时,a ′(a )>0,a (a )单调递增; 当a ∈(2,+∞)时,a ′(a )<0,a (a )单调递减. 所以a (a )在a =2处取得最大值a (2)=7−e 24,从而a ≥7−e 24. 综上,实数a 的取值范围是[7−e 24,+∞). 解法2:指数找挚友a (a )≥12a 3+1等价于12a 3−aa 2+a +1e a≤1.设a (a )=12a 3−aa 2+a +1e a(a ≥0),则a′(a )=−12a [a 2−(2a +3)a +(4a +2)e a=−12a [a −(2a +1)](a −2)e a.(1)当2a +1≤0,即a ≤−12时,则当a ∈(0,2)时,a ′(a )>0,所以a (a )在(0,2)单调递增,而a (0)=1, 故当a ∈(0,2)时,a (a )>1,不合题意; (2)当0<2a +1<2,即−12<a <12时, 则当a ∈(0,2a +1)∪(2,+∞)时,a ′(a )<0.所以a (a )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)上单调递增. 由于a (0)=1,所以a (a )≤1.当且仅当a (2)=7−4a e 2≤1,即a ≥7−e 24. 所以当7−e 24≤a <12时,a (a )≤1.(3)若2a +1≥2,即a ≥12时,则a (a )≤12a 3+a +1e a.由于0∈[7−e 24,12),故由(2)可得12a 3+a +1e a≤1.故当a ≥12时,a (a )≤1.综上所述,实数a 的取值范围是[7−e 24,+∞).【点睛】解决本题的关键在于求导数a′(a)=12a3−a−2+(2−a)e aa3后的处理.细致视察导数式中e a前面的系数为2−a,由此可大胆揣测2−a应当为12a3−a−2的一个因式,从而可设1 2a3−a−2=(2−a)(−12a2+aa+a),将右侧绽开,得12a3−a−2=12a3−(a+1)a2+(2a−a)a+2a,比较两侧的系数,可得a=a=−1,从而12a3−a−2=(2−a)(−12a2−a−1).【例2】设函数a(a)=e a−1−a−aa2.(1)若a=0,求a(a)的单调区间;(2)若当a≥0时a(a)≥0,求a的取值范围.【解析】(1)因为a=0时,所以a(a)=e a−1−a,a′(a)=e a−1.当a∈(−∞,0)时,a′(a)<0;当a∈(0,+∞)时,a′(a)>0.故a(a)在(−∞,0)上单调递减,在(0,+∞)上单调递增;(2)解法1:由(1)可得,当a=0时,a(a)≥a(0)=0,即e a≥a+1,当且仅当a=0时等号成立.依题意,当a≥0时a(a)≥0恒成立,当a=0时,a(a)≥0,此时a∈a;当a>0时,a(a)≥0等价于a≤e a−1−aa2,令a(a)=e a−1−aa2(a>0),则a′(a)=(a−2)e a+a+2a3,今a(a)=(a−2)e a+a+2(a>0),则a′(a)=(a−1)e a+1,因为a′′(a)=a e a>0,所以a′(a)在(0,+∞)上为增函数,所以a′(a)>a′(0)= 0,于是a(a)在(0,+∞)上为增函数,从而a(a)>a(0)=0,因此a′(a)>0,a(a)在(0,+∞)上为增函数,由洛必达法则知,lima→0+e a−1−aa2=lima→0+e a−12a=lima→0+e a2=12,所以a≤12.当a>12时,e−a>1−a得a′(a)<e a−1+2a(e−a−1)=e−a(e a−1)(e a−2a),故当a∈(0,ln2a)时,a′(a)<0,而a(0)=0,于是当a∈(0,ln2a)时,a(a)<0. 综上得a的取值范围是(−∞,12].解法2:a′(a)=e a−1−2aa,由(1)知e a≥1+a,当且仅当a=0时等号成立,故a′(a)≥a−2aa=(1−2a)a.当1−2a≥0,即a≤12时,a′(a)≥0(a≥0),所以a(a)在[0,+∞)上单调递增,故a(a)≥a(0)=0,即a≤12符合题意;当a>12时,由e a>1+a(a≠0)可得e−a>1−a(a≠0),所以e−a−1>−a(a≠0),所以a′(a)=e a−1−2aa<e a−1+2a(e−a−1)=e−a(e a−1)(e a−2a), 则当a∈(0,ln2a)时,a′(a)<0,a(a)在(0,ln2a)上单调递减,于是当a∈(0,ln2a)时,a(a)<a(0)=0,故a>12不合题意.综上所述,a的取值范围是(−∞,12].【例3】已知函数a(a)=a(e a+1−a)(a∈a).(1)若a=2,推断a(a)在(0,+∞)上的单调性;(2)若a(a)−ln a−1≥0恒成立,求实数a的取值范围.【解析】(1)若a=2,a(a)=a e a−a,a′(a)=e a+a e a−1=(a+1)e a−1. 当a>0时,a+1>1,e a>1,故(a+1)e a>1,a′(a)=(a+1)e a−1>0,故a(a)在(0,+∞)上单调递增.(2)解法1:分别参数+隐零点求最值由题意可知a e a+(1−a)a−ln a−1≥0在区间(0,+∞)上恒成立,整理得a−1≤e a−ln aa −1a.设a(a)=e a−ln aa −1a,a′(a)=a2e a+ln aa2,设a(a)=a2e a+ln a,则a′(a)=(a2+2a)e a+1a>0, 所以a(a)在(0,+∞)上单调递增,又a(1)=e>0,a(12)=√e4−ln2<0.所以函数a(a)有唯一的零点a0,且12<a0<1.当a∈(0,a0)时,a(a)<0,a′(a)<0,a(a)单调递减;当a∈(a0,+∞)时,a(a)>0,a′(a)>0,a(a)单调递增. 即a(a0)为a(a)在定义域内的最小值.所以a−1≤e a0−ln a0a0−1a0.因为a(a0)=0,得a0e a0=−ln a0a0,12<a0<1(∗)令a(a)=a e a(12<a<1),方程(∗)等价于a(a)=a(−ln a)(12<a<1).而a′(a)=(a+1)e a在(0,+∞)上恒大于零,所以a(a)在(0,+∞)单调递增. 故a(a)=a(−ln a)等价于a=−ln a(12<a<1).设函数a(a)=a+ln a(12<a<1),易知a(a)单调递增.又a(12)=12−ln2<0,a(1)=1>0,所以a0为a(a)的唯一零点.即ln a0=−a0,e a0=1a0.故a(a)的最小值为a(a0)=e a0−ln a0a0−1a0=1a0−−a0a0−1a0=1.所以a−1≤1,即a≤2.综上,实数a的取值范围是(−∞,2].解法2:分别参数+放缩法求最值由题意可知a e a+(1−a)a−ln a−1≥0在区间(0,+∞)上恒成立, 即a−1≤a e a−ln a−1a.利用不等式e a≥a+1(当且仅当a=0时,等号成立),可得a e a−ln a−1a =e a+ln a−ln a−1a≥(a+ln a+1)−ln a−1a=1,当且仅当a+ln a=0时,等号成立.所以a e a−ln a−1a的最小值为1.于是a−1≤1,得a≤2,实数a的取值范围是(−∞,2].【例4】已知函数a(a)=a3e aa−1.(1)探讨a(a)的单调性;(2)若a=2,不等式a(a)≥aa+3ln a对a∈(0,+∞)恒成立,求a的取值范围. 【解析】(1)a′(a)=3a2e aa+aa3e aa=a2e aa(aa+3).①当a=0时,a′(a)≥0恒成立,所以a(a)在R单调递增;②当时,今,得;令,得.所以a (a )的单调递减区间为(−3a ,+∞),单调递增区间为(−∞,−3a ]. ③当a >0时,今a ′(a )≥0,得a ≥−3a ;令a ′(a )<0,得a <−3a . 所以a (a )的单调递减区间为(−∞,−3a ),单调递增区间为[−3a ,+∞). (2)因为a =2,所以a ≤a 3e 2a −3ln a −1a恒成立. 设a (a )=a −1−ln a (a >0),a ′(a )=a −1a, 令a ′(a )<0,得0<a <1;令a ′(a )>0,得a >1. 所以a (a )min =a (1)=0,所以a −1−ln a ≥0.取a =a 3e 2a ,则a 3e 2a −1−ln (a 3e 2a )≥0,即a 3e 2a −3ln a −1≥2a ,所以a 3e 2a −3ln a −1a≥2aa=2.设a (a )=a 3e 2a ,因为a (0)=0<1,a (1)=e 2>1,所以方程a 3e 2a =1必有解, 所以当且仅当a 3e 2a =1时,函数a =a 3e 2a −3ln a −1a取得最小值2,所以a ≤2,即a 的取值范围为(−∞,2].【点睛】本题在进行分参后,首先证明白一个常用的不等式:当a >0时,有ln a ≤a −1,接下来利用该不等式干脆得到a 3e a −3ln a −1≥2a , 从而得出a =a 3e a −3ln a −1a的最小值2.最终证明能够取到最小值.从而得出实数a 的取值范围. 本题也可用同构法解决:a ≤a 3e 2a −3ln a −1a, a 3e 2a −3ln a −1a=e 3ln a +2a −3ln a −1a≥2a +3ln a +1−3ln a −1a=2,故a ≤2,即a 的取值范围为(−∞,2]. 换元后分别参数【例5】已知函数a (a )=a (e a a−2a −2)+a . (1)若a =−1,求a (a )的单调区间和极值点;(2)若a >0时,a (a )>−1(a >0)恒成立,求实数a 的取值范围.【解析】(1)a =−1时a (a )=a e −a −1,a ′(a )=e −a −a e −a =0,所以当a <1,a ′(a )>0,a >1,a ′(a )<0.所以a (a )的单调递减区间为(1,+∞),单调递增区间为(−∞,1),极大值点为a =1,无微小值点.(2)解法1:a (a )>−1⇔a (e aa −2a −2)+a >−1, 即a (e aa −2a −2)+a +1>0, 令aa =a ,则a =aa ,aa e a −(2a +2)a +a +1>0对于a >0恒成立, 即a (a e a −2a +1)>2a −1(∗)易证e a ≥a +1(过程略),则a e a −2a +1≥a (a +1)−2a +1>(a −1)2≥0, 即a e a −2a +1>0. 于是,由(∗)可得a >2a −1a e a −2a +1. 令a (a )=2a −1a e a −2a +1(a>0),则a ′(a )=−(2a +1)(a −1)(a e a −2a +1)2e a(a >0).当a ∈(0,1)时a ′(a )>0,当a ∈(1,+∞)时a ′(a )<0.所以a (a )在(0,1)上单调递增,在(1,+∞)上单调递减,[a (a )]max =a (1)=1e −1, 所以a >1e −1,实数a 的取值范围是(1e −1,+∞). 解法2:a (a )>−1⇔a (e aa −2a−2)+a >−1, 即a (e aa −2a−2)+a +1>0,令aa=a ,则a =aa ,aa e a −(2a +2)a +a +1>0对于a >0恒成立, 即aa +1>2a −1a e a对于a >0恒成立,设a (a )=2a −1a ea ,a ′(a )=−(2a +1)(a −1)a 2e a当a ∈(0,1)时a ′(a )>0,当a ∈(1,+∞)时a ′(a )<0 可得a (a )在(0,1)上递增,在(1,+∞)上递减, 所以a (a )max =a (1)=1e ,则aa +1>1e ,解得a >1e −1. 故实数a 的取值范围是(1e −1,+∞).【点睛】本题第(2)问明显不能干脆分别参数,假如利用a ′(a )处理也是非常困难,于是着眼于简化指数进行换元:令a a =a ,则aa e a −(2a +2)a +a +1>0对于a >0恒成立.换元之后就可以轻松分别参数了,特殊是解法2的处理手法值得回味.半分别参数【例6】已知函数a(a)=e a−aa−1(a∈R,其中e为自然对数的底数).(1)若a(a)在定义域内有唯一零点,求a的取值范围;(2)若a(a)≤a2e a在[0,+∞)上恒成立,求a的取值范围.【解析】(1)a′(a)=e a−a,①当a≤0时,a′(a)>0,所以a(a)在R上单调递增;−1+a<0,a(1)=e−a−1>0,又a(−1)=1e由零点存在定理可知,函数a(a)在R上有唯一零点.故a≤0符合题意;②当a>0时,令a′(a)=0得a=ln a,当a∈(−∞,ln a)时,a′(a)<0,a(a)单调递减;a∈(ln a,+∞),a′(a)>0,a(a)单调递增.所以a(a)min=a(ln a)=e ln a−a ln a−1=a−a ln a−1,设a(a)=a−a ln a−1(a>0),则a′(a)=1−(ln a+1)=−ln a,当0<a<1时,a′(a)>0,a(a)单调递增;当a>1时,a′(a)<0,a(a)单调递减,所以a(a)max=a(1)=0,故a=1.综上:实数a的取值范围为{a∣a≤0或a=1}.(2)解法1:a(a)≤a2e a对a∈[0,+∞)恒成立,即(1−a2)e a≤aa+1对a∈[0,+∞)恒成立,即函数a(a)=(1−a2)e a的图像恒在直线a=aa+1的下方.而a′(a)=(1−a2−2a)e a,a′′(a)=(−a2−4a−1)e a<0(a≥0),所以函数a(a)是上凸函数,且在a=0处的切线斜率a=a′(0)=1;直线a=aa+1过定点(0,1),鈄率为a,故a≥1,即a的取值范围为[1,+∞).解法2:a(a)≤a2e a对a∈[0,+∞)恒成立,即(1−a2)e a≤aa+1对a∈[0,+∞)恒成立, 记a(a)=(1−a2)e a=(1+a)(1−a)e a,①当a≥1时,设函数a(a)=(1−a)e a,则a′(a)=−a e a≤0,因此a(a)在[0,+∞)单调递减,又a(0)=1,故a(a)≤1,所以a(a)=(1+a)a(a)≤1+a≤aa+1,故a(a)≤a2e a对a∈[0,+∞)恒成立;②当0<a<1时,设函数a(a)=e a−a−1,则a′(a)=e a−1≥0,所以a(a)在[0,+∞)单调递减,且a(0)=0,故e a≥a+1.当0<a<1时,a(a)>(1−a)(1+a)2,(1−a)(1+a)2−aa−1=a(1−a−a−a2),取a0=−1+√5−4a2,则a0∈(0,1),(1−a0)(1+a0)2−aa0−1=0,所以a(a0)>aa0+1;故0<a<1不合题意.③当a≤0时,取a0=√5−12,则a0∈(0,1),a(a0)>(1−a0)(1+a0)2=1≥aa0+1.故a≤0不合题意.综上,a的取值范围为[1,+∞).【点睛】解法1将不等式进行变形为aa+a≤a(a)(其中a为参数,a为常数),不等号前后两个函数的图像特征为:“始终一曲”,而直线a=aa+a过定点(0,a).半分别参数的方法,通过变形将不等式两边化为始终线与一曲线的形式,再结合图像利用函数凹凸性解决问题,过程简洁快捷.须要指出的是,这种解法只适用于选择题与填空题,不适用于解答题.解法2是不分别参数,干脆构造差函数对参数进行探讨,过程更加严谨,理由更加充分,是解答题的一般做法.其中探讨的临界点,可以结合解法1的过程而得到.【例7】已知函数a(a)=a ln a+aa−1,a∈a.(1)求函数a(a)的单调区间;(2)当a=2时,对随意a>1,a(a)>a(a−1)恒成立,求正整数a的最大值.【解析】(1)a(a)的单调递增区间为(e−a−1,+∞),单调递减区间为(0,e−a−1).(2)解法1:全分别a(a)>a(a−1)变形为a<a(a)a−1=a ln a+2a−1a−1,令a(a)=a ln a+2a−1a−1,a′(a)=−ln a+a−2(a−1)2,令a(a)=−ln a+a−2,则a′(a)=−1a +1=a−1a>0,所以a(a)在(1,+∞)单调递增,又a(3)=1−ln3<0,a(4)=2−2ln2>0,所以存在唯一a0∈(3,4),使得a(a0)=0,即ln a0=a0−2.故当a∈(1,a0)时,a(a)<0,a′(a)<0,a(a)单调递减;当a∈(a0,+∞)时,a(a)>0,a′(a)>0,a(a)单调递增.所以a(a)min=a(a0)=a0ln a0+2a0−1a0−1=a02−1a0−1=a0+1,即a<a0+1,又a0∈(3,4),所以a0+1∈(4,5),因为a∈a∗,所以a max=4.解法2:半分别a(a)>a(a−1)恒成立,即a(a)=a ln a+2a−1图像恒在直线a=a(a−1)的上方.因为a′(a)=3+ln a>0,a′′(a)=1a>0,所以a(a)在(1,+∞)单调递增,且下凸; 直线a=a(a−1)过定点(1,0).设过(1,0)的直线与a(a)相切于点(a0,a(a0)),即(a0,a0ln a0+2a0−1).切线斜率为a′(a0),所以a<a′(a0).由a(a0)−0a0−1=a′(a0),得a0ln a0+2a0−1a0−1=3+ln a0,化简整理得ln a0=a0−2,所以a′(a0)=3+ln a0=3+(a0−2)=a0+1.故a<a0+1. 下面估计a0的范围.令a(a)=a−ln a−2,则a′(a)=1−1a =a−1a>0,所以a(a)在(1,+∞)单调递增;又a(3)=1−ln3<0,a(4)=2−2ln2>0,所以a(a)的唯一零点a0∈(3,4).于是a0+1∈(4,5),因为a∈a∗,所以a max=4.【点睛】须要点睛意的是,利用半分别参数求解含参问题,须要结合二阶导数探讨函数的凹凸性,在解答题中有“以图代证”的嫌疑,因而这个解法一般只适用于选择题或填空题. 【例8】设函数a(a)=e a(2a−1)−aa+a,其中a<1.若存在在唯一的整数a0使得a(a0)<0.则a的取值范围是()A.[−32e ,1) B.[−32e,34) C.[32e,34) D.[32e,1)【解析】解法1:全分别参数a (a )<0⇔(a −1)a >e a (2a −1)当a >1时,有a >e a (2a −1)a −1>1,这与题设冲突,舍去; 当a <1时,有a <e a (2a −1)a −1,记a (a )=e a (2a −1)a −1, 则a ′(a )=e a (2a +1)(a −1)−e a (2a −1)(a −1)2=a e a (2a −3)(a −1)2(a <1), 当a <0时,a ′(a )>0;当0<a <1时,a ′(a )<0,故a (a )在(−∞,0)上单调递增,在(0,1)上单调递减,作出其大致图象如图所示.由题意知,存在唯一的整数a 0使得a (a 0)<0,即a <a (a 0),由图易知a 的取值范围是32e =a (−1)≤a <1,选a .解法2:半分别参数设a (a )=e a (2a −1),a (a )=aa −a ,由题意知,存在唯一的整数a 0,使得a (a 0)<a (a 0),a ′(a )=e a (2a +1),当a <−12时,a ′(a )<0,当a >−12时,a ′(a )>0,则a (a )在(−∞,−12)上单调递减,在(−12,+∞)上单调递增.作出a (a )与a (a )的大致图象如图所示.因为a (0)=−1<−a =a (0),故只需a (−1)≥a (−1)即可,解得a ≥32e ,则a 的取值范围是32e ≤a <1,故选a .强化训练1.设函数a (a )=a 2+aa +a ,a (a )=e a (aa +a ).若曲线a =a (a )和曲线a =a (a )都过点a (0,2),且在点a 处有相同的切线a =4a +2.(1)求a ,a ,a ,a 的值;(2)若a ≥−2时,a (a )≤aa (a ),求a 的取值范围.【解析】(1)a =4,a =2,a =2,a =2(过程略).(2)由(1)知,a (a )=a 2+4a +2,a (a )=2e a (a +1),①当a =−1时,a (a )=−1,a (a )=0,此时a (a )≤aa (a )恒成立,则a ∈a ; ②当a ∈[−2,−1)时,a (a )=2e a (a +1)<0,a (a )≤aa (a )可化为:a ≤a 2+4a +22e a (a +1),令a (a )=a 2+4a +22e a (a +1),则a ′(a )=−a (a +2)22e a (a +1)2≥0恒成立,故a (a )在区间[−2,−1)上单调递增,当a =−2时,a (a )取最小值e 2,故a ≤e 2; ③当a ∈(−1,+∞)时,a (a )=2e a (a +1)>0,a (a )≤aa (a )可化为:a ≥a 2+4a +22e a (a +1), 令a (a )=a 2+4a +22e a (a +1),则a ′(a )=−a (a +2)22e a (a +1)2,当a ∈(−1,0)时,a ′(a )>0,当a ∈(0,+∞)时,a ′(a )<0,故当a =0时,a (a )取极大值1,故a ≥1.综上所述:a ∈[1,e 2],即a 的取值范围是[1,e 2].2.设函数a (a )=e a −aa −2.(1)求a (a )的单调区间;(2)若a =1,a 为整数,且当a >0时,(a −a )a ′(a )+a +1>0,求a 的最大值.【解析】(1)当a ≤0时,a (a )在(−∞,+∞)上单调递增,无减区间;当a >0时,a (a )的单调递减区间是(−∞,ln a ),单调递增区间是(ln a ,+∞).(2)(a −a )a ′(a )+a +1>0等价于a <a +1e a −1+a (a >0)(1),令a (a )=a +1e a −1+a ,则a ′(a )=e a (e a −a −2)(e a −1)2, 而函数a (a )=e a −a −2在(0,+∞)上单调递增,a (1)<0,a (2)>0,所以a (a )在(0,+∞)存在唯一的零点.故a ′(a )在(0,+∞)存在唯一的零点.设此零点为a ,则a ∈(1,2).当a∈(0,a)时,a′(a)<0;当a∈(a,+∞)时,a′(a)>0.所以a(a)在(0,+∞)的最小值为a(a).又由a′(a)=0,可得e a=a+2,所以a(a)=a+1∈(2,3).由于(1)式等价于a<a(a),故整数a的最大值为2.3已知函数a(a)=ln2(1+a)−a21+a.(1)求函数a(a)的单调区间;(2)若不等式(1+1a)a+a≤e对随意的a∈N∗都成立(其中e是自然对数的底数).求a的最大值.【解析】(1)函数a(a)的定义域为(−1,+∞),a′(a)=2ln(1+a)1+a−a2+2a(1+a)2=2(1+a)ln(1+a)−a2−2a(1+a)2.设a(a)=2(1+a)ln(1+a)−a2−2a,则a′(a)=2ln(1+a)−2a.令a(a)=2ln(1+a)−2a,则a′(a)=21+a −2=−2a1+a.当−1<a<0时,a′(a)>0,a(a)在(−1,0)上为增函数,当a>0时,a′(a)<0,a(a)在(0,+∞)上为减函数.所以a(a)在a=0处取得极大值,而a(0)=0,所以a′(a)<0(a≠0), 函数a(a)在(−1,+∞)上为减函数.于是当−1<a<0时,a(a)>a(0)=0,当a>0时,a(a)<a(0)=0.所以,当−1<a<0时,a′(a)>0,a(a)在(−1,0)上为增函数.当a>0时,a′(a)<0,a(a)在(0,+∞)上为减函数.故函数a(a)的单调递增区间为(−1,0),单调递减区间为(0,+∞).(2)不等式(1+1a )a+a≤e等价于不等式(a+a)ln(1+1a)≤1.由1+1a >1知,a≤1ln(1+1a)−a.设a(a)=1ln(1+a)−1a,a∈(0,1],则a′(a)=−1(1+a)ln2(1+a)+1a2=(1+a)ln2(1+a)−a2a2(1+a)ln2(1+a).由(1)知,ln2(1+a)−a21+a≤0,即(1+a)ln2(1+a)−a2≤0.所以a′(a)<0,a∈(0,1],于是a(a)在(0,1]上为减函数.−1.故函数a(a)在(0,1]上的最小值为a(1)=1ln2−1.所以a的最大值为1ln2。
高考数学第二轮复习计划

高考数学第二轮复习计划范例
1、章节复习
不管是那门学科都分为大的章节和小的课时,一般当讲完一个章节的所有
课时就会把整个章节串起来在系统的讲一遍,作为复习,我们同样可以这么做,因为既然是一个章节的知识,所有的课时之前一定有联系,因此我们可以找出
它们的共同之处,采用联系记忆法把这些零碎的知识通过线串起来,更方便我
们记忆。
2、考前突击
俗话说的好,临阵磨枪,不快也光,很多学生平时不下功夫,总是在考试
前做突击,虽然这种方法不可取,但是不得不说考前突击的记忆还是非常深刻,尤其是当你看到一个知识点而考试中有考到这个知识点的时候,你对它的记忆
便会更深,虽然不是行之有效的复习方法,但是也有其一定的效果。
3、轮番复习
虽然我们学习的科目不止一项,但是有些学生就喜欢单一的复习,例如语
文不好,就一直在复习语文上下功夫,其他科目一概不问,其实这是个不好的`习惯,当人在长时间重复的做某一件事的时候,难免会出现疲劳,进而产生倦怠,达不到预期的效果,因此我们做复习的时候不要单一复习某一门科目,应
该使它们轮番上阵,看语文看烦了,就换换数学,在烦了就换换英语,这样可
以把单调的复习变为一件有趣的事情,从而提高复习效果。
4、纠错整理法
考试的过程中难免会做错题目,不管你是粗心或者就是不会,都要习惯性
的把这些错题收集起来,每个科目都建立一个独立的错题集,当我们进行考前
复习的时候,它们是重点复习对象,因此你既然错过一次,保不准会错第二次,只有这样你才不会在同样的问题上再次失分。
2024年高考数学第二轮复习备考建议及策略

2024年高考数学第二轮复习备考建议及策略2024年高考数学第二轮复习备考建议及策略随着高考的临近,数学第二轮复习也进入了关键阶段。
在这一轮复习中,我们需要把握复习的重点和难点,制定有效的复习策略,提高复习效率。
本文将结合多年高考数学复习经验,为同学们提供一些实用的备考建议和策略。
一、明确复习目标,把握重点难点在第二轮复习阶段,我们需要明确复习目标,了解考试大纲和命题趋势,把握重点和难点。
通过对历年高考数学试题的分析,我们可以总结出以下重点知识点和难点:函数与导数、数列与极限、向量与空间几何、概率与统计、解析几何等。
针对这些重点和难点,我们需要制定有针对性的复习计划。
二、制定复习计划,提高复习效率制定复习计划是提高复习效率的关键。
我们可以按照以下步骤制定复习计划:1、梳理知识点:将重点知识点和难点进行梳理,形成知识框架。
2、制定计划:根据知识框架和复习进度,制定每周的复习计划,包括每天的复习内容和时间安排。
3、分配时间:根据知识点的重要性和难度,合理分配复习时间,确保每个知识点都能得到充分复习。
4、制定个性化复习方案:根据自身情况,制定个性化的复习方案,突破自己的薄弱环节。
三、强化基础训练,巩固基础知识高考数学考试注重基础知识的考查,因此,在第二轮复习中,我们需要强化基础训练,巩固基础知识。
具体方法包括:1、复习课本:回归课本,加强对基本概念、公式、公理、定理等基础知识的理解和记忆。
2、做题训练:选择基础题目进行做题训练,加深对知识点的理解和应用。
3、总结归纳:将做题过程中遇到的问题和难点进行总结归纳,找出自己的知识盲点和薄弱环节,及时进行弥补。
四、注重解题方法,提高解题能力高考数学考试不仅考查基础知识,还注重考查学生的解题能力和数学思维。
因此,在第二轮复习中,我们需要注重解题方法的学习和提高。
具体方法包括:1、学习解题方法:掌握常见的解题方法和技巧,如分类讨论、数形结合、归纳法、反证法等。
2、做题实践:选择中等难度的题目进行做题实践,锻炼自己的解题能力和数学思维。
2024年高考数学二轮复习建议和计划

2024年高考数学二轮复习建议和计划一、制定复习计划在开始二轮复习之前,建议考生先为自己制定一个详细的复习计划。
根据自身情况,合理安排每天的学习时间和内容,做到有的放矢。
复习计划要注重全面性,兼顾各章节内容,不要遗漏重点知识点。
同时,要根据考试时间合理安排模拟考试和解题训练。
二、巩固基础知识数学二轮复习的重点之一是巩固基础知识。
考生应再次梳理高中数学的所有知识点,特别是数学概念、公式和定理等。
要确保对这些基础知识的理解和记忆准确无误。
在复习过程中,可以采用多种方法,如制作知识卡片、归纳总结等,加深对基础知识的掌握。
三、突破重点难点数学二轮复习中,考生还需要针对自己的薄弱环节进行重点突破。
对于一些难以理解的知识点或题型,要深入剖析,多做练习。
可以借助一些教辅书籍或参加辅导班,寻求老师和同学的帮助,共同解决问题。
只有突破了这些难点,才能在考试中取得更好的成绩。
四、提高解题技巧数学考试不仅考查基础知识的掌握程度,还要求考生具备一定的解题技巧。
在二轮复习中,考生应注重提高自己的解题能力。
通过大量练习,熟练掌握各种题型的解题方法和技巧。
同时,要注重解题速度和准确率的平衡,提高应试能力。
五、强化模拟考试模拟考试是检验考生复习效果的有效手段。
在数学二轮复习中,考生应参加一些模拟考试,如学校组织的模拟考试、辅导班的模拟考试等。
通过模拟考试,可以发现自己的不足之处,及时调整复习策略。
同时,也能熟悉考试流程和时间限制,提高应试心理素质。
六、注重错题解析错题是考生复习过程中的一大宝贵资源。
通过错题解析,可以深入剖析自己的知识盲点和思维误区。
在二轮复习中,建议考生建立错题本,将每次练习和模拟考试中的错题记录下来,并认真分析原因。
错题本不仅能帮助考生查漏补缺,还能为最后冲刺复习提供方向。
七、拓展数学思维高考数学不仅考查考生的知识储备和解题能力,还要求考生具备一定的数学思维能力。
在二轮复习中,考生应注重拓展自己的数学思维。
高三数学第二轮复习策略

高三数学第二轮复习策略1.抓住重点知识和薄弱环节,全面复基础知识,是高三数学第二轮复的关键。
备考指南与知识点总结中,重点知识包括集合、函数与导数、三角函数、平面向量和解三角形、数列、立体几何、解析几何、概率与统计、算法初步、复数等。
在复时,应深入理解数学概念,掌握数学公式、法则、定理、定律的推导过程和使用方法,形成纵向、横向知识链,构造知识网络。
2.对于数学思想和方法的考查,必须结合数学知识的考查进行。
在平时的做题中,要提炼出其中的数学思想和方法,并以之指导自己的解题。
3.高考中涉及的数学思想有四种:抽象思维、逻辑思维、直观思维和空间思维。
在复时,应认真领悟数学思想,熟练掌握数学方法,正确应用它们分析问题和解决问题。
4.在复时,应注意交汇问题的训练。
例如,在集合、函数与导数中,应注重函数和导数、应用导数知识解决函数问题;在三角函数、平面向量和解三角形中,应注重平面向量和三角函数的图像与性质、恒等变换;在立体几何中,应注重点线面的关系,用空间向量解决点线面的问题。
5.在复时,应注重不等式与其他知识的整合。
在不等式、推理与证明中,不等式是重点,应掌握不等式与其他知识的联系。
在概率与统计、算法初步、复数中,概率统计是重点,应以摸球、射击问题为背景理解概率问题。
6.在复时,应正确揭示数学概念的本质、属性和相互间的内在联系,发挥数学概念在分析问题和解决问题中的作用。
同时,应熟练运用数学公式、法则、定理、定律进行推理、证明和运算。
要加强客观题的解题速度和正确率的训练,首先要掌握一些解题技巧。
比如,多做题,熟悉题型和解题方法;注意审题,把握题目的重点和难点;运用公式和定理,避免无谓的计算;注意排版,避免计算错误和漏算;及时检查答案,避免粗心错误。
我们还可以通过模拟考试来加强训练,提高解题速度和正确率。
在考试中,要冷静思考,不要被时间压力和紧张情绪影响,保持良好的心态和自信心,才能取得好成绩。
选择题和填空题是客观试题,其特点是概念性强、量化突出、充满思辨性、形数皆备、解法多样、题量大、分值高,可以对“三基”进行考查。
高考数学第二轮备考策略

高考数学第二轮备考策略高考数学第二轮备考策略主要应围绕强化基础、专项突破、模拟演练和查漏补缺四个方面进行:1. 强化基础知识与基本技能- 对于第一轮复习中已经学习过的知识点进行全面梳理,确保对每一个概念、公式、定理的透彻理解和熟练掌握。
- 尤其要重视基础知识的应用能力,如函数性质、数列求和、解析几何的基本方法、立体几何的证明技巧等。
2. 专项训练与难点突破- 根据历年高考试题和大纲要求,针对各模块进行专项训练,例如选择填空题的速度和准确度提升、解答题的逻辑思维及解题步骤规范训练等。
- 针对自身的薄弱环节进行深度攻克,比如导数与积分的应用问题、概率统计的大题分析等。
3. 模拟实战与应试技巧- 定期进行全真或模拟试题的演练,培养良好的答题节奏感和时间管理能力。
- 分析模拟考试中的错误,总结出个人易犯错误的类型,并针对性地进行改正和提高。
- 学习并掌握各类题型的解题策略和技巧,比如如何快速排除干扰项、怎样合理分配不同题目间的答题时间等。
4. 查漏补缺与错题整理- 制作错题本,将平时练习和模拟考试中做错的题目收集起来,定期回顾并重新解答,深入理解错误原因,避免同类错误重复发生。
- 对每一章的知识点进行自我检测,找出知识盲点和理解误区,及时请教老师或同学,做到不留知识死角。
5. 保持良好心态与作息规律- 保持积极乐观的心态,对待成绩起伏要有平常心,以平稳的情绪应对备考压力。
- 保证充足的休息和合理的饮食,养成良好的作息习惯,保持旺盛的学习精力。
高考数学第二轮备考策略需要注重巩固基础知识、强化重点难点、提高解题能力、注重归纳总结、做好模拟考试以及调整心态等方面。
只有全面、系统地展开复习,才能在高考中取得优异的成绩。
通过以上策略,逐步提高解题能力和心理素质,为高考数学做好充分准备。
高考数学二轮复习答题技巧与规范答题方法

高考数学二轮复习答题技巧与规范答题方法为了关心考生更好的进行复习,查字典数学网整理了高考数学二轮复习答题技巧,请考生及时查看学习。
一、调整好状态,操纵好自我。
(1)保持清醒。
数学的考试时刻在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)提早进入角色,考前做好预备.按清单带齐一切用具,提早半小时到达考区,一方面能够排除紧张、稳固情绪、镇定进场,另一方面也留有时刻提早进入角色让大脑开始简单的数学活动,进入单一的数学情境。
如:1.清点一下用具是否带齐(笔、橡皮、作图工具、身份证、准考证等)。
2.把一些差不多数据、常用公式、重要定理在脑子里过过电影。
3.最后看一眼难记易忘的知识点。
4.互问互答一些不太复杂的问题。
5.注意上厕所。
(3)按时到位。
今年的答题卡不再单独发放,要求答在答题卷上,但发卷时刻应在开考前5分钟内。
建议同学们提早15~20分钟到达考场。
二、扫瞄试卷,确定考试策略一样提早5分钟发卷,涂卡、填密封线内部分和座号后扫瞄试卷:试卷发下后,先利用23分钟时刻迅速把试卷扫瞄一遍,检查试卷有无遗漏或差错,了解考题的难易程度、分值等概况以及试题的数目、类型、结构、占分比例、哪些是难题,同时依照考试时刻分配做题时刻,做到心中有数,把握全局,做题时心绪平定,得心应手。
三、巧妙制定答题顺序在扫瞄完试卷后,对答题顺序差不多上做到心中有数,然后尽快做出答题顺序,排序要注意以下几点:1.依照自己对考试内容所把握的程度和试题分值来确定答题顺序。
2.依照自己认为的难易程度,按先易后难先小后大先熟后生的原则排序。
四、提高解选择题的速度、填空题的准确度。
数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的专门性,由此提出解选择题要求快、准、巧,忌讳小题大做。
高考数学的第二轮复习方案

高考数学的第二轮复习方案高考数学作为高中阶段重要科目之一,对于学生们的大学生涯产生着关键性的影响。
因此,在备战高考的这段时间里,数学复习变得尤为重要。
这篇文档旨在为广大学子提供一份高考数学的第二轮复习方案,希望能够对你们有所帮助。
一、回顾知识点在复习时,首先要做的是回顾各个知识点,检查自己的基础是否牢固。
高考数学主要包括三个模块:数与式、函数与方程、几何与应用。
要针对性地检查每个模块下的知识点,全面系统地复习。
二、查缺补漏在回顾完各个知识点后,需要对自己的掌握程度进行评估。
检查自己能否灵活运用公式,是否能熟练解决各种数学题型。
如果发现答案有误或者不确定,一定要及时地查找错误。
对于不熟悉的知识点,应该针对具体情况进行查缺补漏。
三、强化巩固复习数学最重要的一个环节就是强化巩固。
通过多做题、多练手,找到解决问题的方法,巩固自己的数学基础知识。
复习时可适当地整理出典型题型,重点做题巩固。
四、验收成果在复习时,及时地总结已掌握的知识点,检查进度,看是否达到预期的效果。
同时,也要保持一颗平常心,认真调整自己的心态,避免过度焦虑或骄傲自满。
五、复习方法在制定复习方案时,不同的人可根据自己的特点来选择合适的复习方法。
例如,可以通过做题与背诵的方式进行复习,加强记忆,或者通过阅读相关辅导书来深入了解知识点,拓宽视野。
六、时间安排制定完一个可行的复习方案以后,还要注意时间的安排。
得益于复习开始的较早,高三学生们有更多的时间可以分配到选修课上,同时可以更好的调整自己的学习状态。
安排好复习时间,保持好作息状态,不仅能提高自控能力,也能使复习更加高效。
总之,高考数学的第二轮复习是复习制定最为重要的一个阶段。
制定合理的复习计划,严格地按照计划执行,找出适合自己的复习方法,不断地加强巩固,做好复习验收,都是必不可少的要素,能够有效提高高考的成绩。
愿每一个学生在这个阶段都能够取得令人满意的结果。
高考数学六大专题二轮复习攻略!附各分数段考生提分建议

高考数学六大专题二轮复习攻略!附各分数段考生提分建议高考数学是很多高三考生的一道坎。
数学得高分,一步迈进名校门,数学失分多,则名次总分一落千丈。
在一轮复习中,老师带领考生们以大纲为指导,以教材为基础对知识点进行了全面复习。
二轮复习的重点则侧重于提升解题技能,同时不断完善考生的数学知识体系,双轨并行,切实提分。
所以说,二轮数学的复习更是至关重要。
数学二轮复习的目标想要获得二轮复习的胜利,考生们应该在这两个多月的时间里达成以下两点目标。
目标1:进一步加强对知识点的巩固、强化。
尤其要重点巩固常考知识点、重难知识点,注重对已经复习掌握过的知识的融会、贯通、透析、运用,把握每个知识点背后的潜在出题规律。
目标2:如何将打磨过的知识点运用到做题中去。
近期完整的大考机会将增多,考生要抓住实战演习的每一次机会,掌握做题技巧,规范答题语言,以不变的知识点应万变的考试题。
充分利用二轮复习的两个多月,把知识点和答题技巧完美掌握结合,助力高考得高分。
数学二轮复习六大建议01 函数与导数近几年高考中,函数类试题一般会出现2道选择题、2道填空题、1道解答题。
其中,选择题和填空题经常考的知识点更偏向反函数,函数的定义域和值域,函数的单调性、奇偶性、周期性,函数的图象、导数的概念和应用等,这些知识点要着重复习。
而在分值颇高的解答题中,通常会考查考生对于函数与导数、不等式运用等考点的掌握运用情况。
掌握题目背后的知识点,建立自己的答题思路是非常重要的。
值得考生们注意的是,函数和导数的考查,经常会与其他类型的题目交叉出现,所以需要重视交叉考点问题的训练。
02 三角函数、平面向量和解三角形三角函数是每年必考题,虽是重点但难度较小。
哪怕是基础一般的同学,经过二轮复习的千锤百炼,都可以掌握这部分内容。
所以,三角函数类题目争取一分都不要丢!从题型来看,会覆盖选择题、填空题、解答题三大类型。
大题会出现在二卷解答题的第一个,也证明此类型题目的难度比较小。
高三数学第二轮复习知识点归纳

高三数学第二轮复习知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高三数学第二轮复习知识点归纳高考没有足够的时间让你反复验算,更不容你一再地变换解题方法,下面是本店铺为大家整理的高三数学第二轮复习知识点归纳,仅供参考,喜欢可以收藏与分享哟!高三数学第二轮复习知识点归纳1、混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p 的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
2024年高考数学二轮复习备考建议和策略

2024年高考数学二轮复习备考建议和策略一、基础知识巩固在高考数学的二轮复习中,首先要做的就是巩固基础知识。
数学是一门对基础要求极高的学科,因此,必须确保对所有基础知识有深入的理解和准确的记忆。
对于数学概念、公式和定理,需要反复练习和记忆,避免在解题过程中出现理解和记忆的错误。
二、解题技巧提升掌握一定的解题技巧是提高数学成绩的关键。
在二轮复习中,考生应有意识地提升自己的解题技巧。
这包括掌握各类题型的解题方法,理解不同题型的解题思路,以及提高解题速度和准确率。
可以通过大量的练习和总结,逐步提升自己的解题技巧。
三、模拟试题演练模拟试题的演练是二轮复习的重要环节。
通过模拟试题的练习,可以了解自己对知识点的掌握程度,找出自己的薄弱环节,并根据实际情况调整复习策略。
建议考生在练习模拟试题时,注重时间管理和答题技巧的训练,提高自己的应试能力。
四、错题集整理与回顾整理和回顾错题是提高数学成绩的有效方法。
建议考生建立错题集,将练习和模拟考试中的错题记录下来,并定期回顾。
这样可以深入剖析自己的知识盲点和思维误区,避免在同一个问题上反复出错。
同时,也能为最后的冲刺复习提供方向和重点。
五、真题研究与总结研究高考数学真题,可以帮助考生了解命题趋势和考试要求。
通过对历年真题的练习和研究,可以发现自己的不足之处,找出自己的薄弱环节,并根据实际情况调整复习策略。
同时,也能熟悉考试难度和出题方式,提高应试心理素质。
六、心理辅导与调整高考是一场持久战,不仅考验考生的知识储备和应试能力,还考验考生的心理素质。
在二轮复习期间,考生应注重心理辅导与调整。
可以通过心理咨询、放松训练等方法,缓解压力和焦虑情绪,保持积极乐观的心态。
同时,也要注意休息和锻炼,保持良好的身体状态。
七、时间管理规划在二轮复习期间,考生应注重时间管理规划。
要根据自己的实际情况,合理安排每天的学习时间和任务量,做到高效复习。
建议制定详细的复习计划,并按照计划执行。
同时,也要注意劳逸结合,避免过度疲劳影响复习效果。
高三数学第二轮复习策略

高三数学第二轮复习策略(一)1.继续强化对基础知识的理解,掌握抓住重点知识抓住薄弱的环节和知识的缺陷,全面搞好基础知识全面搞好基础知识的复习。
(备考指南与知识点总结)中学数学的重点知识包括:(1)集合、函数与导数。
此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
(2)三角函数、平面向量和解三角形。
此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
(3)数列。
此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
(4)立体几何。
此专题注重点线面的关系,用空间向量解决点线面的问题是重点。
(5)解析几何。
此专题中解析几何是重点,以基本性质、基本运算为目标。
突出直线和圆、圆锥曲线的交点、弦长、轨迹等。
(6)概率与统计、算法初步、复数。
此专题中概率统计是重点,以摸球、射击问题为背景理解概率问题。
(7)不等式、推理与证明。
此专题中不等式是重点,注重不等式与其他知识的整合。
2、对基础知识的复习应突出抓好两点:(1)深入理解数学概念,正确揭示数学概念的本质,属性和相互间的内在联系,发挥数学概念在分析问题和解决问题中的作用。
(2)对数学公式、法则、定理、定律务必弄清其来龙去脉,掌握它们的推导过程,使用范围,使用方法(正用逆用、变用)熟练运用它们进行推理,证明和运算。
3、系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,构造知识网络,从知识的联系和整体上把握基础知识。
例如以函数为主线的知识链。
又如直线与平面的位置关系中“平行”与“垂直”的知识链。
4、认真领悟数学思想,熟练掌握数学方法,正确应用它们分析问题和解决问题。
数学思想和方法的考查必然要与数学知识的考查结合进行,在平时的做题中必须提炼出其中的数学思想方法,并以之指导自己的解题。
数学思想数学在高考中涉及的数学思想有以下四种:(1)分类讨论思想:分类讨论思想是以概念的划分,集合的分类为基础的解题思想,是一种逻辑划分的思想方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学第二轮复习的技巧
1.选择题
(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强。
试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。
在高考的数学选择题中,定量型的试题所占的比重很大。
而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。
绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它辨证统一起来。
这个特色在高中数学中已经
得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。
因此,数形结合与形数分离的解题方法是高考数学选择题的一种
重要且有效的思想方法与解题方法。
(5)解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。
尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
2.填空题
填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。
不过填空题和选择题也有质的区别。
首先,表现为填空题没有备选项。
因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。
其次,填空题的结构,往往是在一个正确的命题或断言中,抽去其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考
查方法比较灵活。
在对题目的阅读理解上,较之选择题,有时会显得较为费劲。
当然并非常常如此,这将取决于命题者对试题的设计意图。
填空题的考点少,目标集中,否则,试题的区分度差,其考试信度和效度都难以得到保证。
这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因。
有的可能是一窍不通,入手就错了,有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管它们的水平存在很大的差异。
3.解答题
解答题与填空题比较,同属提供型的试题,但也有本质的区别。
首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。
填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。
其次,试题内涵,解答题比起填空题要丰富得多。
解答题的考点相对较多,综合性强,难度较高。
解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况评定分数,用以反映其差别,因而解答题命题的自由度,较之填空题大得多。
高考数学如何突破120分
由于,基础
中考能力,所以要注重解题的快法和巧法,能在30分钟左右,完成全部的选择填空题,这是夺取高分的关键。
第二段是解答题的前三题,分值不到40分。
这样前两个阶段的总分在110分左右。
第三段是最后“三难”题,分值不到40分。
“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。
首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。
这是根据试卷的深层结构做出的最佳解题策略。
所以,只做选择,填空和前三道大题是不够全面的。
因为,后“三难”题中的容易部分比前面的基础部分还要容易,所以我们应该志在必得。
在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。
然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分。
这样,你的总分就可以超过130分,向145分冲刺。
高考数学的抢分技巧
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代
国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
在平时当中一定要求自己选择填空一分钟一道题。
用数学思想方法高速解答选择填空题。
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
注意不要傻算傻解,要学会巧算和巧解。
选择填空和前3道解答题都是数学基础分。
后3题不是只做第一问的问题,而应该猜想评分标准,按步骤由前向后争取高分。
应该用猪八戒拱地的精神对付难题。
由前边向后边拱,往往能先拱到4分,再往前拱能拱到8分一直到10分,最后剩下2分、4分得不到就算了。
因为后边属于难点的分值,需要天才。