微积分上册部分课后习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《微积分》上册部分课后习题答案
习题五(A)1.求函数 f x ,使 f ′ x x 23 x ,且 f 1 0 .解:
f ′ x x 2 5x 6 1 5 f x x3 x 2 6 x C 3 2 1 5 23 f 1 0 6 C 0 C 3 2 6 1
5 23 f x x3 x 2
6 x 3 2 6 12.一曲线y f x 过点(0,2),且其上任意点的斜率为x 3e x ,求 f x . 2 1解:f x x 3e x 2 1 2 f x x 3e x C 4 f 0 2 3 C 2 C 1 1 2 f x x 3e x 1 4 ∫ 23.已知f x 的一个原函数为 e x ,求 f ′ xdx . 2 2解:f x e x ′ 2 xe x∫ f ′ xdx 2 f x C 2 xe x C dx4.一质点作直线运动,如果已知其速度为3t 2 sin t ,初始位移为s0 2 ,求s 和t 的函dt数关系.解:S t 3t 2 sin t S t t 3 cos t CS 0 2 1 C 2 C 1 S t t 3 cos t 15.设ln f x′ 1 ,求f x . 1 x2解:ln f x′ 1 ln f x arctan x C1
1 x
2 f x earctan x C1 Cearctan x C gt 0 1 16.求函数f x ,使
f ′ x e 2 x 5 且f 0 0 . 1 x 1 x 2 1 1 1解:f x e x 5 f x ln x 1 arcsin x e 2 x 5 x C 1 x 1 x 2 2 1 1 f 0 0 0 0C 0 C 2 2 1 2x 1 f x ln x 1 arcsin x e 5x 2 27.求下列函数的不定积分x x2 ∫ ∫ dt(1)dx (2)x a t 1 x2 1 ∫ ∫x m n(3)x dx (4)dx 2 1 x4 1 1 sin 2 x(5)∫x 2 1 dx (6)∫ sin x cos x dx 1 cos 2 x ∫ ∫ cos 2 x (7)dx (8)dx sin x cos x 1 cos 2 x ∫ sin (10)cos 2 sin 2 x dx ∫ cos 2 x x(9)2 2 dx x cos x 2 cos 2 x 1 2x 1 ∫ sin ∫e e (11)dx (12)dx 2 x cos x 2 x 1 2 × 8x 3 × 5x 2 x 1 5 x 1(13)∫ 8x dx (14)∫ 10 x dx e x x e-x (15)∫ x dx ∫ (16)e x 2 x 1 3x dx 1 x 1 x x 2 1 1 x 2 5 x(17)∫ dx 1 x 1 x (18)∫ x 1 x2 dx 1 x2 1 cos 2 x(19)∫ 1 x4 dx (20)∫ 1 cos 2 x sin
2 x dx x
3 x 1 x
4 x2(21)∫ x 1 x 2 2 dx (22)∫ 1 x 2 dx 1 3 3
5 ∫ 2 2解:(1)x 2 x 2 dx x 2 x 2 C 3 5 1 d t 1 ∫ 1 2(2). 1 t 1 2 C a a t 1 2 n nm ∫ x m dx m x m C m ≠ n m ≠ 0 nm n ∫(3)x m dx In x C m n dx x C ∫ m0 2(4)1 ∫ x2 1 dx x 2 arctan x C x 2 x 2 1 x 2 1 x3(5)∫ x 1 2 dx 3 x 2 arctan x C sin 2 x cos 2 x 2 sin x cos x sin x cos x 2(6)∫ sin x cos x dx ∫ sin x cos x dx ∫ sin x cos xdx sin x cos x C cos 2 x sin 2 x(7)∫ sin x cos x dx cos x sin xdx ∫ sin x cos x C 1 cos 2 x ∫ 2 cos ∫ cos 1 1 1 x(8)2 dx 2 1 dx tan x C x 2 x 2 2 cos 2 x sin 2 x 1 1(9)∫ sin 2 x cos 2 x dx 2 ∫ sin x cos 2 x dx cot x tan x C cos x 1 1 cos 2 x cos x cos 2 x(10)∫ 2 2 dx 2 2 1dx ∫ 1 1 x sin x sin 2 x C 2 4 cos 2 x sin 2 x cos 2 x sin 2 x ∫ ∫ cos 1(11)2 2 dx 2 2 dx 2 tan x C sin x cos x x ∫(12)e x 1 dx e x x C x 5 x 5(13)2 dx 3 dx 2 x 3 8 C ∫ ∫ 8 5 ln 8 x x(14)2 dx dx ∫ 5 ∫ 1 1 1 2 x 1 5 2 x C 5 2 ln 5 5 ln 2(15)e x dx e x ln x C ∫ 1 x ∫ 2x 3e x 6x(16)e x
6 x 2 x 3e x dx e x C ln 2 l ln 3 ln 6 1 x 1 x ∫ ∫ 1(17)dx 2 dx 2 arcsin x C 1 x 2 1 x2 x2 1(18)∫ dx 1 x 2 ln x 5 arcsin x C 5 x 2 1 x 2 ∫ 1(19)dx arcsin x C 1 x2 1 cos 2 x 1 1 ∫ 2 cos ∫ 1 x(20)dx 1dx tan x C 2 x 2 cos 2 x 2 2 x x 2 1 1 1 1 1 ∫ ∫ 1(21)dx 2 x dx ln x arctan x C x 2 1 x 2 x 1 x2 x x 4 1 x 2 1 2 2 x3(22)∫ 1 x 2 dx x 2 2 ∫ 2 1 x dx 3 2 x 2 arctan x C8.用换元积分法计算下列各题. x4(1)∫ x2 dx ∫ (2)3x 28 dx .。