振动系统固有频率的测试实验报告
振动系统各阶固有频率及模态测试探究性实验设计
振动系统各阶固有频率及模态测试探究性实验设计频率是很多物理系统都具有的特性之一,而在机械领域中,振动系统的频率则更加重要。
在机械系统中,振动会给设备带来各种问题,如噪声、磨损和破坏等。
因此,正确测量振动系统的固有频率及模态是非常重要的。
实验目的本实验旨在通过对机械系统的振动测试,显式各阶固有频率及模态。
最终得到系统的振动状况,以便确定系统的运动模式及其特征。
实验原理在振动系统中,每个固有频率都代表着一种运动模式。
为了测试系统的固有频率及模态,可以利用加速度传感器和数据采集设备来测量系统在不同频率下的振动状况,并利用傅里叶分析法将多个周期的信号转换成频域信号,以得到振动系统的固有频率及模态。
实验步骤以下是具体的实验步骤:1. 将振动系统连接到一个加速度传感器,并将传感器的输出连接到数据采集设备。
2. 按照设备制造商的说明书,设置信号记录参数。
包括采样率、采集时间、高/低通滤波器的设置等。
3. 开始记录信号,并将系统激励到不同的频率。
可以使用一个简单的振荡器来实现此功能,或者手动调整振动系统的某些参数以改变其频率响应。
4. 记录一段时间后,通过数据采集软件将测试数据导出为csv格式,并进一步将其转换为matlab文件。
5. 在matlab中,将信号进行傅里叶变换以得到频域信号,并从中找出每个固有频率。
6. 将找到的固有频率与振动系统的运动模式相对应,确定每个频率的模态。
7. 通过对每个模态的特征分析,得出系统的整体振动状况。
实验注意事项以下是实验中需要注意的要点:1. 确保使用的加速度传感器能够在测试频率范围内工作。
2. 在设置数据采集参数时,需要确保其能够滤除系统本身的噪声,以防止误差的产生。
3. 对于高阶模态,信号的振幅通常会降低,因此需要采用更高的增益或更敏感的传感器。
4. 准确的实验结果需要多次测量和建模来验证。
结论通过对系统的各阶固有频率及模态的测试,我们可以得出一个系统的振动特征,并能够判断其正常运行状态。
振动系统各阶固有频率及模态测试探究性实验设计
振动系统各阶固有频率及模态测试探究性实验设计1. 引言1.1 引言振动系统是指具有振动特性的物体或系统,它们会在外力作用下发生振动。
振动系统的研究对于理解和分析各种物体或结构的振动行为具有重要意义。
在实际工程中,振动系统的研究和分析通常会涉及到固有频率和模态测试。
固有频率是指一个振动系统在没有外力作用下自发振动的频率。
固有频率的大小与系统的质量、刚度和阻尼等因素有关,它反映了系统振动的特性和稳定性。
固有频率的测定对于系统的性能分析和设计优化具有重要意义。
模态测试是一种用于测定振动系统各阶固有频率和振动模态的方法。
通过模态测试可以获得系统各个振动模态的振幅、相位和频率等信息,从而帮助分析系统的振动特性和优化设计。
本实验旨在探究振动系统各阶固有频率及模态的测试方法和实验设计。
通过实验可以深入理解振动系统的工作原理和特点,为实际工程应用提供参考。
在本文中,将介绍振动系统的概念和特点、固有频率的含义和重要性、模态测试的意义和方法、实验设计的步骤和要点以及实验结果分析与讨论,旨在全面了解振动系统的性能和优化方法。
2. 正文2.1 振动系统的概念和特点振动系统是由质量、弹簧和阻尼器构成的物理系统,当外力作用于系统时,系统会发生振动。
振动系统具有以下特点:振动系统具有固有频率,即系统在没有外力作用下的自然频率,这取决于系统的质量和弹性系数;振动系统可能出现共振现象,即在外力频率接近系统的固有频率时,系统会受到更大的振幅影响;振动系统具有不同的模态,即系统在不同方式振动时呈现不同的振动模式。
振动系统的概念和特点对于工程领域具有重要意义。
通过对振动系统的研究,可以更好地了解系统的动态特性,预测系统的振动响应,并设计有效的振动控制措施。
振动系统的特点也直接影响到系统的性能和稳定性,在工程实践中需要认真考虑和分析。
在进行振动系统的实验设计时,需要充分考虑系统的特点,合理选择实验方法和参数,以获取准确和可靠的实验数据。
振动系统固有频率的测试
振动系统固有频率的测试实验指导书一.实验目的1.学习振动系统固有频率的测试方法;2.了解DASP-STD软件;3.学习锤击法测试振动系统固有频率的原理与方法;(传函判别法)二.实验仪器及简介ZJY-601T型振动教学实验台,ZJY-601T型振动教学试验仪,采集仪,DASP-STD(DASP Standard 标准版)软件,微机。
1.ZJY-601T型振动教学实验台:主要由底座、桥墩型支座、简支梁、悬臂梁、等强度梁、偏心电动机、调压器、接触式激振器及支座、非接触式激振器、磁性表座、减振橡胶垫、减振器、吸振器、悬索轴承装置、配重锤、钢丝、圆板、质量块等部件和辅助件组成。
与ZJY-601T型振动教学实验仪配套,完成各种振动教学实验。
它以力学和电学参数为设计出发点,力学模型合理,带有10种典型力学结构,多种激振、减振和拾振方式。
力学结构有:两端简支梁、两端固支梁、等截面悬臂梁、等强度悬臂梁(变截面)、复合材料梁、圆板、单自由度质量-弹簧系统、两自由度质量-弹簧系统、三自由度质量-弹簧系统、悬索。
激励方式有:脉冲锤击法、正弦激励(接触、非接触式)、正弦扫描(接触、非接触式)、偏心质量、支承运动。
减振和隔振有:主动隔振、被动隔振、阻尼减振、动力减振(单式)、动力减振(复式)。
传感器类型有:压电加速度传感器、磁电式速度传感器、电涡流位移传感器、力传感器(力锤中)。
2.ZJY-601T型振动教学试验仪:由双通多功能振动测试仪、扫频信号发生器、功率放大器组成,并集成了数据采集器,可连接压电式加速度传感器、磁电式速度传感器或电涡流传感器,对被测物体的振动加速度、速度和位移进行测量。
可将每个通道所测振动信号转换成与之相对应的0~5V AC电压信号输出,供计算机使用。
扫频信号发生器的输出频率在手动档时,可通过旋钮在0.1~1000Hz范围内连续调节;在自动档时,可从10到1000Hz自动变换,扫频时间可由电位器控制,3s~240s连续可调,激振频率可由液晶显示器显示。
单自由度振动系统固有频率及阻尼的测定-实验报告
4、根据相频特性的测试数据,在同一图上绘出几条相位差频率( 特性曲线,由此分析阻尼的影响并计算系统的固有频率及阻尼比。
5、根据实验现象和绘制的幅频、相频特性曲线,试分析对于不同阻尼的振动系统,几种固有频率和阻尼比测量方法的优劣以及原因。
首先,在水平振动台面上不加任何重物,测量系统在自由衰减振动时的固有频率;之后在水平振动台面上放置一个质量已知的砝码,再次测量系统在自由振动时的固有频率。记录两次测得的固有频率,并根据其估算水平振动台面的等效质量。
4、测定自由衰减振动特性:
撤去水平振动台面上的砝码,调整励磁电流至0.6A。继续使用“自由衰减记录”功能进行测试。操作方法与步骤3基本相同,但需按照数据记录表的提示记录衰减振动的峰值、对应时间和周期数i等数据,以计算系统的阻尼。
假设实验使用的单自由度振动系统中,水平振动台面的等效质量为 ,系统的等效刚度为 ,在无阻尼或阻尼很小时,系统自由振动频率可以写作 。这一频率容易通过实验的方式测得,我们将其记作 ;此时在水平振动台面上加一个已知质量 ,测得新系统的自由振动频率为 。则水平振动台面的等效质量为 可以通过以下关系得到: 。
、 的意义同拾振器。但对激振器说, 的值表示单位电流产生的激振力大小,称为力常数,由厂家提供。JZ-1的力常数约为5N/A。频率可变的简谐电流由信号发生器和功率放大器提供。
4、计算机虚拟设备:
在计算机内部,插有A/D、D/A接口板。按照单自由系统按测试要求,进行专门编程,完成模拟信号输入、显示、信号分析和处理等功能。
6、教师签名的原始数据表附在实验报告最后,原始数据记录纸在实验课上提供,必须每人交一份,可以采用复印、拍照打印等方式进行复制。原始数据上要写清所有人的姓名学号,不得使用铅笔记录。
固有频率测量实验报告
固有频率测量实验报告固有频率测量实验报告引言固有频率是物体在没有外力作用下自由振动的频率。
在工程和科学领域中,准确测量固有频率对于设计和分析结构的动态响应至关重要。
本实验旨在通过使用简单的装置和方法来测量固有频率,并探讨其在不同条件下的变化。
实验装置本实验使用了一个简单的弹簧振子装置。
装置由一个固定在支架上的弹簧和一个连接在弹簧末端的质量块组成。
质量块可以通过调整位置来改变弹簧振子的质量。
实验中使用了一个光电传感器和计算机软件来测量振子的运动。
实验步骤1. 将弹簧振子装置固定在实验台上,并调整质量块的位置,使其与弹簧保持水平。
2. 将光电传感器安装在弹簧振子的一侧,并将其连接到计算机。
3. 打开计算机上的测量软件,并进行校准。
4. 将振子拉至一侧,并释放,观察振子的自由振动。
5. 记录振子的振动时间和光电传感器的读数。
6. 重复步骤4和5,进行多次测量。
实验结果通过多次测量,我们得到了振子在不同质量条件下的固有频率。
结果显示,随着质量块的增加,振子的固有频率减小。
这是因为质量块的增加增加了振子的惯性,使其振动变得缓慢。
我们还发现,振子的固有频率受到环境条件的影响。
在不同温度和湿度下,振子的固有频率会发生变化。
这是因为温度和湿度的变化会导致弹簧的刚度和振子的质量发生变化,从而影响固有频率的测量结果。
讨论与分析本实验结果表明,固有频率是一个重要的物理参数,可以用于分析和设计结构的动态响应。
通过测量固有频率,我们可以了解结构的振动特性,并采取相应的措施来避免共振和破坏。
然而,本实验使用的装置和方法存在一些限制。
首先,弹簧振子的简化模型并不能完全代表复杂的实际结构。
其次,由于环境条件的变化,测量结果可能存在一定的误差。
因此,在实际应用中,需要综合考虑其他因素,并采用更精确的测量方法。
结论本实验通过简单的装置和方法成功测量了弹簧振子的固有频率,并探讨了其在不同条件下的变化。
结果表明,质量和环境条件对固有频率有重要影响。
实验五简支梁固有频率测试实验1
实验五 简支梁固有频率测试实验一、 实验目的:1、 掌握固有频率测试的工程意义及测试方法。
2、 掌握用共振法、李萨育图形法测量振动系统的固有频率的方法及步骤。
3、 加深了解常用简单振动测试仪器的使用方法。
二、实验设备和工具1.机械振动综合实验装置(安装简支梁) 1套2.激振器及功率放大器 1套3.加速度传感器 1台4.电荷放大器 1台5.数据采集仪 1台6.信号分析软件 1套三、实验内容1.用共振法测量简支梁固有频率共振法测量振动系统的固有频率是比较常用的方法之一。
共振是指当激振频率达到某一特定值时,振动量的振动幅值达到极大值的现象。
由弹性体振动理论可知,计算简支梁固有频率理论解为:APEJ L f 20115.49 式中,L 为简支梁长度(cm );E 为材料弹性系数(kg/cm 2);A 为梁横截面积(cm 2);P 为材料比重(kg/cm 3);J 为梁截面弯曲惯性矩(cm 4)。
用共振法测量简支梁固有频率的仪器连接如图1所示图1测量双简支梁固有频率框图2.用李萨育图形法测量简支梁固有频率李萨育图形是由运动方向相互垂直的两个简谐振动的合成运动轨迹。
李萨育图形可以通过示波器或数据采集软件的X-Y轨迹图观察到。
在图的X、Y 轴上同时输入简谐振动两个信号,这两个信号不同的相位差合成不同的李萨育图形如图2所示。
振动的位移、速度及加速度的幅值其各自达到极大值时频率是不同的,只有在无阻尼的情况下,它们频率才相等,并且等于振动系统的固有频率。
但在弱阻尼的情况下,三种共振频率接近系统的固有频率。
只有速度共振频率真正和固有频率相等,所以用速度共振的相位差判别共振。
判别依据是系统发生速度共振时,激振力和速度响应之间的相位差为90°,依据位移、速度、加速度响应判断速度共振的李萨育图形如图3~5所示。
θ=00 θ=450 θ=900 θ=1350 θ=1800图2 不同相位差信号合成的李萨育图形n ωω< n ωω= n ωω>图3用位移响应判断速度共振n ωω< n ωω= n ωω>图4用速度响应判断速度共振n ωω< n ωω= n ωω>图5用加速度响应判断速度共振四、实验原理固有频率是振动系统的一项重要参数。
实验十二:共振法测试有阻尼振动系统的固有频率
实验二十三:变时基锤击法简支梁模态测试一、实验目的1、学习模态分析原理;2、学习模态测试方法;3、学习变时基的原理和应用。
二、实验仪器安装示意图三、实验原理1、模态分析方法及其应用模态分析方法是把复杂的实际结构简化成模态模型,来进行系统的参数识别(系统识别),从而大大地简化了系统地数学运算。
通过实验测得实际响应来寻示相应的模型或调整预想的模型参数,使其成实际结构的最佳描述。
主要应用有:用于振动测量和结构动力学分析。
可测得比较精确的固有频率、模态振型、模态阻尼、模态质量和模态刚度。
可用模态实验结果去指导有限元理论模型的修正,使计算机模型更趋于完善和合理。
用来进行结构动力学修改、灵敏度分析和反问题的计算。
用来进行响应计算和载荷识别。
2、模态分析基本原理工程实际中的振动系统都是连续弹性体,其质量与刚度具有分析的性质,只有掌握无限多个点在每瞬间时的运动情况,才能全面描述系统的振动。
因此,理论上它们都属于无限多自由度的系统,需要用连续模型才能加以描述。
但实际上不可能这样做,通常采用简化的方法,归结为有限个自由度的模型来进行分析,即将系统抽象为由一些集中质量块和弹性元件组成的模型。
如果简化的系统模型中有n个集中质量,一般它便是一个n 自由度的系统,需要n 个独立坐标来描述它们的运动,系统的运动方程是n个二阶互相耦合(联立)的常微分方程。
模态分析是在承认实际结构可以运用所谓“模态模型”来描述其动态响应的条件下,通过实验数据的处理和分析,寻求其“模态参数”,是一种参数识别的方法。
模态分析的实质,是一种坐标转换。
其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。
这一坐标系统的每一个基向量恰是振动系统的一个特征向量。
也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。
经离散化处理后,一个结构的动态特性可由N 阶矩阵微分方程描述:()t f Kx x C x M =++(1) 式中f(t)为N 维激振向量;x ,x,x 分别为N 维位移、速度和加速度响应向量;M 、K 、C 分别为结构的质量、刚度和阻尼矩阵,通常为实对称N 阶矩阵。
单自由度振动系统固有频率及阻尼的测定实验报告(精)
单自由度振动系统固有频率及阻尼的测定实验报告一、实验目的1、掌握测定单自由度系统固有频率、阻尼比的几种常用方法2、掌握常用振动仪器的正确使用方法二、实验内容1、记录水平振动台的自由衰减振动波形2、测定水平振动台在简谐激励下的幅频特性3、 测定水平振动台在简谐激励下的相频特性4、 根据上面测得的数据,计算出水平振动台的固有频率、阻尼比三、实验原理由台面、支撑弹簧片及电磁阻尼器组成的水平振动台(见图四),可视为单自由度系统,它在瞬时或持续的干扰力作用下,台面可沿水平方向振动。
1、 衰减振动:用一橡皮锤沿水平方向敲击振动台,系统获得一初始速度而作自由振动,因存在阻尼,系统的自由振动为振幅逐渐减小的衰减振动。
阻尼越大,振幅衰减越快。
选x 为广义坐标,根据记录的曲线可分析衰减振动的周期d T ,频率d f ,对数减幅系数δ及阻尼比ζ,有i t T d ∆=, dd T f 1= )ln(111+=i X X iδd nT =, πδδπδζ2422≈+= 其中∆t 为i 个整周期相应的时间间隔,1X 和1+i X 为相隔i 个周期的振幅。
2、 强迫振动的幅频特性测定:保持功放的输出电流幅值不变,即保持激振力力幅不变,缓慢地由低频2Hz 到高频40Hz 改变激振频率,用相对式速度拾振器检测速度振动量,再经过积分处理后得到位移量,由测试数据可描绘出一条振幅频率特性曲线而根据该测试曲线可由如下关系式估算系统的固有频率n f 及阻尼比ζ nf≈m f , 021B B m =ζ 或 ζm f ff 212-≈ 其中m f 为振幅达到最大m B 时的激振频率;0B 为零频率的相应振幅(约等于f =2Hz 时的振幅);1f 和2f 为振幅m B B 707.0=的对应频率,即半功率点频率。
改变阻尼大小重新进行频率扫描可获得一组相应于不同阻尼比的幅频特性曲线。
四、实验装置测试系统如图四所示,其部分仪器的原理及功能说明如下:1、实验装置:振动台系统由台面、支撑弹簧片及电磁阻尼器组成,台面可沿水平面纵轴方向振动。
单自由度振动系统固有频率及阻尼的测定-实验报告
1
DC 输出:0~30V,2A
PAB 32~2A KIKUSUI(日本)
7
微型计算机
1
内部有 A/D、D/A 插卡
通用型
-3-
五.实验步骤
1. 打开微型计算机,运行进入“单自由度系统”程序。 2. 单击“设备虚拟连接”功能图标,进入设备连接状态,参照图六对显示试验设备进行联
线。连线完毕后,单击“连接完毕”,如连接正确,则显示“连接正确”,即可往下进 行,否则重新连接,直至连接正确。 3. 接通阻尼器励磁及功率放大器电源,调励磁电流为某一定值(分别为������ = 0.6A, 0.8A, 1.0A) 4. 测定自由衰减振动: 单击“自由衰减记录”功能图标,进入如图七显示界面。单击 (Start)键,开始测试。由 一电脉冲沿水平方向突然激励振动台,微机屏幕上显示自由衰减曲线。用鼠标调节光标 的位置,读出有关的数据。改变周期数 i 的数值,即可直接显示相应的周期和频率。 5. 测定幅频特性和相频特性: 单击“简谐激励振动”功能图标,按图八所示,单击“信号输入显示框中的频率,将弹、 出一个对话框,可以直接输入激励频率。也可单击频率的单步步进键进行激励调节。单 击 (Start)键,开始测试,开始强迫振动幅频特性和相频特性测量,其中2Hz~15Hz内大致 相隔1Hz设一个测点;15Hz~30Hz 内每隔5Hz设一个测点。 在显示检测框显示力信号和相应信号波形,以便观察信号的质量。幅值比显示振动位移
注:由于实验时间所限,加之读数难度较大,在������������ 附近没有加密测量相频点。这是实验中的失误。
-5-
七.实验数据处理
1. 根据自由衰减振动记录的有关数据,分析计算系统的固有圆频率������������及阻尼比ζ。
振动系统固有频率实验报告
汕头大学实验报告h学习觀讎輔解繃诚竝X学获嗣法脱翩固有孵腹理与方法;幅蓟别腳融判别法)3>学和击刼试嗣靈翻解桶理与方歯借酬别法)三、买验原理对于振动索竈負営要测定其固有频騒辭用的方法就是用删力®^ 到系统的各阶同有解.另一种方決是用锤击法,用冲击力滋扳衣汀1 的力信号和細狮鮒号进疔传酚飙得昭阶国有频転L蒯力激振由附力作用下的强迫翩]系统,其运动方程划mx+Cx+Kx = f sin w J方程式的腰乩勺+兀这二部分紇成; 血=严((?1 co叫f+G in⑴詁)式巾CD rj =UJ Jl-D*Hk團3阻思强址扳动G 甘数E H 初始条件决定 = A sin cu/+ cos to/+ 牝讣;芍代表迥尼n 由振动基•心代表阻尼强迫振动项.自由振动取周期T D =—强述振动项周期7;=—co f由于阻尼的存在,自白振动基随时间不斷地袁减泊先•最后.只剩下后两项.也就是通常讲的定离强动、 只廻卞强追振动部分.即(CD 2 -CD ;)- +牝硏 3沁」+(co 亍心 F + 4 Jco :沏叭'设频率比“二吳C1)则振幅」_g/co7(1-»2)2 +4w :D =g (co 一 軸;)辺垃变换可写成式申茸中x = A siiX 3 / — 屮)£ = Deo 代入上式2Dit(p = __rI -tr因为=FJm/K/m =^ =兀戲弹簧受干扰力峰值作用引起的静位移,所戏扛幅A跡写成■4 — -(X . — P-T ..J(1 一屮尸+4八"其中P称为动力放大系数=--- ------ --------/1_宀十北莎动力放大系数卩是遥迫抚动讨的动力系敌即动枠童与醴堀坐Z比.这几霞置就拾压器杆舉白白度体系的报动的研究都是很重要的「当k = H即强迫ftU黑;车和系统固有频率相等时,动力系数迅屢增加.引起系统共振,由式x = J sin( lx) / - (p)可知:・共抵寸捱幅和贰位擀有明显的变化.遞垃对这炖个参数进行削亘.我们可以判别系统星否达到共抿动点,从iru确崖出系统列各阶推动頻丰•・1)幅隹判丸法在濒抿功車撞岀不变的駕况下、由低到戲诣节黴报器妁激扼數憲*通过示波器.我们可以观察到在某一频率下.任一振动量速度、血逮度)躺蛍迅速増加,这就是机械振动泵统的某阶固有频率. 建即方注简单•易,厂口在阻尼较大的情况下.不同的测st方法得出的共振动频率稍有差别,不同类型的抿动呈对摄幅变化敏感程度不一样.这样对于一种类型的传感蒂在其阶频率时不够敏感.2)相位判别法再位判法是Hi推并撫时持竦的雄位值以及共掘动前后柑位变化址■申所梃击来的一种共撫判貳法□在简潸力津振的错况下,用片'位法来判迄共振是一珅较为敏感的方也*而且共报足的頻泰就是系统的无阳尼固有频部.可以排琛阻尼因責的彩响’Si报估号呀;F = Tsin toZ 位移估号为:j?= Ksinf tor -cp)速度‘舌号为T y=tjFcos(a)r -p)加速度怙兮为: y - -w;} sin(CDZ一tp)(1)位移判别共fti埒飯推动怙号卷入到采集仪的第一迈道4|【'(讪)•位移传感器就出信号或通辽2 J违0 1型匪动教学牧积分档愉汨金为(2移酣倍号输入到第二通道(即Y轴)•此讨阿通道的信号分别为’戲报伯号戈h F=Fsin^住坯估弓为:y =Fsingf-tp)共撮时,如=⑷八(P二一・X轴信号和Y轴信号的相位差为K/2,根据利萨如图原理可知.屏慕匕的图象将适一个正暂區U当⑴賂大于⑴耗或冏小于他」,區象榔将白正鴉岡变为斜巒列,耳变化过程噩下图所示B闵此医躱圧煞商雾睦恢变为正碉囿的頻幸就是抿动体的嵐有频率.罩小乜移判别共戎拘利我如昌形(2) 速嗖判别共抿用滋抿佶号撞入到采集仪的第一通道<UI:X轴).速度传痣梆检出唱号或通过2 J吨0 1躺动教学仅积分档績出量为速度的伯号轮入到第二通道(即y轴人此时两辿道的伯号分别为:徽振倍号为’ F = Fsm^t遠度们弓为:y -(U ¥ casfujr )忑標时・<p = -・\轴信号和¥轴伯号的相位差沟匚,2’根据利萨幼图原理可知,屏幕上的图彖应是一条貞线*当3晤大于或略小于时.医彖都绍白.直线变为斜巒岡.具变化过程如下图所示.因此图姣:弓魁林圜变为直线的频率就是按动体的底有锲車.■»S 5用洼度判别共娠的剧萨扫:划形(3)加速度判别共撫将4嫌信号输入到采集仪的第一通道(即X 轴W 度传感器输出伯号输入到第二通道(即Y 轴). 此时两邇道的信号分别为:眾据信号为’ F=Fsin (i>f加速嘍悩 v A : y = -to ;Y sin ( sr -u j共掘时* tn =UJ ^(p = -. X 轴信号和Y 轴悄号的相位差>j;t 2.根据利萨幼圏原理可知.屏幕上的图躱应是一个正喘側.当CD 瞪大于(叭或略小于CD 」,1胡彖都將日正稠圆变为斜嘀恻.其变化过 程虻下圧萨乐.因就圏象由铁箭圜变为正咂岡的叔率就是摄动体的氏订臧誑=羊鬥 I;「二戈’一 ―一 .< ;9 峯 T2s 传函内虬也I 毁事响应雷歡判别 ——动力放大系数判别祛)通常我们认为振动系统为线性系统,用一特定已知的滋振力.以可控的方法来滋励踣构.同时测豐 输入和输出信号.通过传函分析,得到系统固有频率.响应与澈振力之间的关系可用导纳表示, y = A=厂 2尹 厂妒半F ^(1 - I ;2)2 +4D 2U 2 丨■『Y 的奩义就是蝠竺为I 的澈唏力靳产生的响应”硏:究¥与澈耐力之问的关岳.就可得到系统的频响 特性曲线.在共抿頻率F 的导纳值迅逑增大.从而可以判别幹阶共掘鹤率. 皿、实验步骤一、幅值判别法测量L 安裝仪器耙电动接粒式激撮器安装在底庫上,调节电动接鎚式激振器高度;让接傩头就简支梁产生一定的预 压力,使澈扳杆上的红线与激摄动器朋面平齐为宜.把藏报器的信号输入朗圳连接线接到ZJV60]A^ 撮动載学试验仪的功放输出接口上.把带厳座的加速度传療器故在简支樂匕输出僧号接到ZJY601A 型振动截学试验仪的加速度传感 器输入瑞.功能档住拔至殛囿档的aM 度。
振动测量实验报告
振动测量实验报告振动测量实验报告一、引言振动是物体在固有频率下做周期性的往复运动。
振动测量是工程领域中常见的实验,用于研究物体的振动特性以及对其进行分析和控制。
本实验旨在通过实际测量和分析,探究不同物体的振动特性,并掌握振动测量的基本方法和技巧。
二、实验装置和方法本实验使用了一台振动测量仪器,该仪器由振动传感器、信号采集模块和数据处理软件组成。
首先,将振动传感器安装在待测物体上,并连接至信号采集模块。
然后,通过数据处理软件进行数据采集和分析。
三、实验一:自由振动实验在自由振动实验中,我们选择了一个简单的弹簧振子作为待测物体。
首先,将弹簧振子拉伸至一定长度,并释放,记录振子的振动周期和振幅。
然后,通过数据处理软件绘制出振子的振动曲线,并计算出其固有频率和阻尼比。
实验结果显示,弹簧振子的振动周期为T=2π√(m/k),其中m为振子的质量,k为弹簧的弹性系数。
通过测量,我们得到了弹簧振子的振动周期,并计算出了其固有频率。
同时,我们还观察到振子的振幅随时间的变化规律,这对于分析振动系统的能量耗散和阻尼效果具有重要意义。
四、实验二:强迫振动实验在强迫振动实验中,我们选择了一个悬挂在弹簧上的质量块作为待测物体。
首先,将振动传感器安装在质量块上,并通过数据处理软件记录振动信号。
然后,通过改变驱动频率,观察质量块的振动响应,并绘制出频率-幅值曲线。
实验结果显示,在不同的驱动频率下,质量块的振动幅值存在明显的变化。
当驱动频率接近质量块的固有频率时,振动幅值达到最大值,即共振现象发生。
通过分析频率-幅值曲线,我们可以确定质量块的固有频率,并进一步研究共振现象的原理和应用。
五、实验三:阻尼振动实验在阻尼振动实验中,我们选择了一个带有阻尼装置的振动系统作为待测物体。
首先,通过改变阻尼装置的参数,调节阻尼比的大小。
然后,通过数据处理软件记录振动信号,并绘制出阻尼振动曲线。
实验结果显示,当阻尼比较小时,振动系统呈现出明显的周期性振动。
固有频率测量实验报告
固有频率测量实验报告固有频率测量实验报告引言固有频率是物体在没有外界干扰下自然振动的频率。
固有频率的测量对于许多领域都有重要意义,如结构工程、物理学和地震学等。
本实验旨在通过测量弹簧振子的固有频率,探究其与弹簧的刚度和质量的关系。
实验装置和步骤实验装置包括一个弹簧振子、一个质量盘和一个计时器。
首先,将质量盘挂在弹簧振子下方,并调整弹簧的位置,使得质量盘与地面保持平行。
然后,将质量盘抬至一定高度,释放并开始计时。
记录下质量盘振动的周期T。
实验数据处理根据实验数据,我们可以计算出弹簧振子的固有频率f。
固有频率与周期的关系为f=1/T。
将实验测得的周期代入公式,即可得到固有频率的数值。
实验结果分析在实验中,我们通过改变质量盘的质量和弹簧的刚度,分别测量了不同条件下的固有频率。
观察实验结果,我们可以得出以下几点结论:1. 弹簧刚度与固有频率成正比:当弹簧的刚度增加时,固有频率也随之增加。
这是因为弹簧的刚度决定了其回复力的大小,刚度越大,回复力越大,振子的振动周期越短,固有频率越高。
2. 质量与固有频率成反比:当质量增加时,固有频率减小。
这是因为质量的增加会增加振子的惯性,使得振子的振动周期变长,固有频率变低。
3. 弹簧的刚度对固有频率的影响更大:在实验中,改变弹簧的刚度对固有频率的影响更为显著。
这是因为弹簧的刚度直接决定了振子的回复力,而质量仅仅影响振子的惯性。
应用与展望固有频率测量在工程领域有着广泛的应用。
例如,在建筑结构设计中,需要考虑到结构的固有频率,以防止共振现象的发生。
此外,固有频率的测量还可以用于地震学研究,通过测量地震波的固有频率,可以推断地球内部的物质性质。
未来的研究可以进一步探究固有频率与其他因素的关系,如材料的特性和形状等。
同时,可以利用更精确的实验装置和测量方法,提高实验结果的准确性和可靠性。
结论通过本实验,我们成功测量了弹簧振子的固有频率,并探究了其与弹簧刚度和质量的关系。
实验结果表明,弹簧刚度与固有频率成正比,质量与固有频率成反比。
振动系统固有频率的测试实验报告
实验一:振动系统固有频率的测试一. 实验目的1、学习振动系统固有频率的测试方法;2、 学习共振动法测试振动固有频率的原理与方法;(幅值判别法和相位判别法)3、 学习锤击法测试振动系统固有频率的原理与方法;(传函判别法)二. 实验原理(一)、对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起 系统共振,从而找到系统的各阶固有频率。
(二)、相位判别法,相位判法是根据共振时特殊的相位值以及共振动前后相位变化规律 所提出来的一种共振判别法。
在简谐力激振的情况下,用相位法来判定共振是一种较为敏感 的方法,而且共振是的频率就是系统的无阻尼固有频率,可以排除阻尼因素的影响。
若激振信号为:F = F sinwt位移信号为:y €Y sin (wt-j )■ ■ ■速度信号为:丁 €wY cos (wt -j )加速度信号为:」=w 2Y sin (wt -j )(1)、位移判别共振:激振信号为:F = F sin wt 位移信号为:y =F sin (wt -j ) 当w略大于w n 或略小于⑷“时,图象都将由正椭圆变为斜椭圆,因此图象图象由斜椭圆 变为正椭圆的频率就是振动体的固有频率。
(2)、速度判别共振:激振信号为:F = F sin wt ,速度信号为:「=wY cos (wt -j ) 当w略大于w n或略小于⑷“时,图象都将由直线变为斜椭圆,因此图象由斜椭圆变为直线的 频率就是振动体的固有频率。
(3)、加速度判别共振:激振信号F = F sin wt ,加速度信号、=w 2Y sin (wt -j )共振时, 屏幕上的图象应是一个正椭圆。
因此图象由斜椭圆变为正椭圆的频率就是振动体的 固有频率。
(三)、 另一种方法是用锤击法,用冲击力激振, 通过输入的力信号和输出的响应信号 进行传函分析, 得到各阶固有频率。
响应与激振力之间的关系可用导纳表示:Y 的意义就是幅值为也的激励力所产生的响应。
振动系统固有频率实验报告
汕头大学实验报告
五、实验现象
用相位判别法:
(1)位移判断:
第一阶共振时的利萨如图:第二阶共振时的利萨如图:
第三阶共振时的利萨如图:
(2)速度判别法:
第一阶共振时的利萨如图:第二阶共振时的利萨如图:
第三阶共振时的利萨如图:
(3)加速度判别法:
第一阶共振时的利萨如图:第二阶共振时的利萨如图:
第三阶共振时的利萨如图:
用传递函数判别法:
其实验数据表:
六、实验数据结果和分析
八、实验心得
通过本次实验,懂得了多种方法测量振动系统的固有频率,形象的把理论运用到操作中。
另外的是熟悉了DASP的软件界面,为接下来的实验操作奠定了基础。
振动系统各阶固有频率及模态测试探究性实验设计
振动系统各阶固有频率及模态测试探究性实验设计【摘要】本文通过实验探究了振动系统各阶固有频率及模态的测试方法,设计了一项具有探究性的振动实验。
首先介绍了振动系统各阶固有频率的测试方法,包括在不同条件下利用传感器采集数据并进行分析。
然后探讨了振动系统各阶模态的测试方法,说明了如何通过激励信号和模态分析软件获得系统的模态信息。
接着详细描述了实验设计,包括实验器材准备、实验流程和数据处理方法。
最后总结了实验结果并提出了结论,指出该实验可以有效地帮助理解振动系统的特性及其影响因素。
通过这项实验,探究了振动系统各阶固有频率及模态的测试方法,为振动系统研究提供了重要的实验基础。
【关键词】振动系统、固有频率、模态、实验设计、探究性实验设计、实验步骤、结论1. 引言1.1 引言振动系统是工程领域中一个十分重要的研究对象,对其各阶固有频率及模态的测试是为了了解系统的振动特性,以便进行优化设计和改进。
振动系统的固有频率代表了系统在没有外力作用下的自然振动频率,而模态则描述了系统在振动过程中各个部分的振动方式和振动幅度。
本实验旨在通过对振动系统各阶固有频率和模态的测试,深入探究其振动特性。
通过实验设计,我们将通过振动激励器施加一定频率的激励信号,测量系统的响应并分析得出各阶固有频率。
通过模态测试,我们将分析系统不同部分的振动模态,并探讨系统在不同工况下的振动特性。
本实验设计旨在通过探究性实验的方式,帮助学生深入理解振动系统的固有频率和模态的概念,同时培养学生的实验设计和分析能力。
实验将分为多个步骤,包括激励信号的选择、数据采集和处理、模态分析等,通过系统化的实验设计和操作流程,帮助学生全面了解振动系统的特性和测试方法。
通过本实验的设计和实施,我们将能够更深入地理解振动系统的各阶固有频率和模态,为工程领域的振动控制和设计提供重要参考依据。
部分结束。
2. 正文2.1 振动系统各阶固有频率测试振动系统各阶固有频率测试是振动领域中非常重要的一项实验。
振动系统固有频率的测试实验原理、方法和报告
振动系统固有频率的测试一、实验目的1、学习振动系统固有频率的测试方法;2、学习共振动法测试振动固有频率的原理与方法二、实验装置简图图2-11、简支梁2、加速度传感器3、接触式激振器三、实验仪器简介请参照实验一《简谐振动幅值测量》内介绍。
四、实验原理1、幅值判别法在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过示波器可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有频率。
这种方法简单易行,但在阻尼较大的情况下,不同的测量方法得出的共振频率稍有差别,不同类型的振动量对振幅变化敏感程度不一样,这样对于一种类型的传感器在某阶频率时不够敏感。
2、相位判别法相位判别法时根据共振时特殊的相位值以及共振前后相位变化规律所提出来的一种共振判别法。
在简谐力激振的情况下,用相位法来判定共振是一种较为敏感的方法,而且共振时的频率就是系统的无阻尼固有频率,可以排除阻尼因素的影响。
激振信号为:F=F sinωt位移信号为:x=x0sin(ωt+φ)速度信号为:v=ωx0cos(ωt+φ)加速度信号为:a=-ω2x0sin(ωt+φ)1)位移判别共振将激振信号输入到采集仪的第一通道(即X轴),位移传感器输出信号或通过振教仪积分档输出量为位移的信号输入到第二通道(即Y轴),此时两通道的信号分别为:激振信号为:F=F sinωt位移信号为:x=x0sin(ωt+φ)共振时,ω=ωn,φ=π/2,X轴信号和Y轴信号的相位差为π/2,根据莉萨如图原理可知,屏幕上的图形将是一个正椭圆。
当ω略大于ωn或略小于ωn时,图像都将由正椭圆变为斜椭圆,其变化过程如图2-2所示。
因此图像由斜椭圆变为正椭圆的频率就是振动体的固有频率。
ω<ωnω=ωnω>ωn图2-2用位移判别共振的莉萨如图形2)速度判别共振将激振信号输入到采集仪的第一通道,速度传感器输出信号或通过振教仪积分档输出量为速度的信号输入到第二通道(即Y轴),此时两通道的信号分别为:激振信号为:F=F sinωt速度信号为:v=ωx0cos(ωt+φ)共振时,ω=ωn,φ=π/2,X轴信号和Y轴信号的相位差为π/2,根据莉萨如图原理可知,屏幕上的图形将是一条直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一:振动系统固有频率的测试
一.实验目的
1、学习振动系统固有频率的测试方法;
2、学习共振动法测试振动固有频率的原理与方法;(幅值判别法和相位判别法)
3、学习锤击法测试振动系统固有频率的原理与方法;(传函判别法)
二.实验原理
(一)、对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。
(二)、相位判别法,相位判法是根据共振时特殊的相位值以及共振动前后相位变化规律所提出来的一种共振判别法。
在简谐力激振的情况下,用相位法来判定共振是一种较为敏感的方法,而且共振是的频率就是系统的无阻尼固有频率,可以排除阻尼因素的影响。
若激振信号为:F = F sin wt 位移信号为:y = Y sin(wt -j )
速度信号为:=wY cos(wt -j ) 加速度信号为:= -w2Y sin(wt -j)
(1)、位移判别共振:激振信号为:F = F sin wt 位移信号为:y = Y sin(wt -j ) 当w 略大于w n或略小于w n时,图象都将由正椭圆变为斜椭圆,因此图象图象由斜椭圆变为正椭圆的频率就是振动体的固有频率。
(2)、速度判别共振:激振信号为:F = F sin wt,速度信号为:=wY cos(wt -j ) 当w 略大于w n或略小于w n时,图象都将由直线变为斜椭圆,因此图象由斜椭圆变为直线的频率就是振动体的固有频率。
(3)、加速度判别共振:激振信号F = F sin wt,加速度信号= -w2Y sin(wt -j) 共振时,屏幕上的图象应是一个正椭圆。
因此图象由斜椭圆变为正椭圆的频率就是振动体的固有频率。
(三)、另一种方法是用锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。
响应与激振力之间的关系可用导纳表示:
Y 的意义就是幅值为1 的激励力所产生的响应。
研究Y 与激励力之间的关系,就可得到系统的频响特性曲线。
在共振频率下的导纳值迅速增大,从而可以判别各阶共振频率。
三.实验步骤
一、幅值判别法测量
1、安装仪器
把电动接触式激振器安装在底座上,调节电动接触式激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振动器端面平齐为宜。
把激振器的信号输入端用连接线接到ZJY-601A 型振动教学试验仪的功放输出接口上。
把带磁座的加速度传感器放在简支梁上,输出信号接到ZJY-601A 型振动教学试验仪的加速度传感器输入端,功能档位拔到加速度档的a 加速度。
2、开机
进入DASP2005 标准版软件的主界面,选择单通道按钮。
进入单通道示波状态进行波形示波。
3、测量
打开ZJY-601A 型振动教学试验仪的电源开关,调大功放输出按钮,注意不要过载,从0 开始调节频率按钮,当简支梁产生振动,振动最大时,记录当前频率。
继续增大频率可得到高阶振动频率。
二、相位判别法测量
1、将激励信号源输出端信号波形监视,接入采集仪第一通道(X 轴),加速度传感器输出信号经ZJY-601A 型振动教学试验仪后接入采集仪第二通道(Y 轴)。
加速度传感器放在距离梁端1/3处。
2、用DASP2005 标准版双通道中的利萨如图示波,调节激振动器的频率,观察图象的变化情况,分别用ZJY-601A 型振动教学试验仪加速度档的a 、v 、d 进行测量,观察图象,根据共振时各物理量的判别法原理,来确定共振频率。
3、可通过ZJY-601A 型振动教学试验仪“输出增益”旋钮调节传感器测试通道信号的大小,调节“波形监视调节”旋钮调节信号源输出信号的幅值大小。
三、传函判别法测量
1、安装仪器
把试验模型力锤的力传感器输出线接到ZJY-601A型振动教学试验仪第一通道的加速度传感器输入端,档位拔到加速度档的a ,输出信号接到采集仪的第一通道;把带磁座的加速度传感器放在简支梁上,输出信号接到ZJY-601A 型振动教学试验仪的第二通道加速度传感器输入端,档位拔到加速度档的a 加速度,输出信号接到采集仪的第二通道。
2、开机
进入DASP2005 标准版软件的主界面,选择双通道按钮。
进入双通道示波状态进行传函示波。
在自由选择中选择传函幅频和相位项示波。
3、测量
用力锤敲击简支梁中部,就可看到时域波形,按键盘上的“F9”功能键,就可得到频响曲线,第一个峰就是系统的固有频率。
后面的几个峰是系统的高阶频率。
移动传感器或用力锤敲击简支梁的其它部位,再进行测试,记录下各阶固有频率。
四.实验结果和分析
(1)相位判别法李萨如图像:
(2)传递函数幅值图像
表1: 传函峰值列表
分别为01、04和05。
将以上结果汇总为下表
实验结果分析:
通过比较不同测量系统固有频率方法得到的实验数据,可以看出不同的方法得出的结果比较相近,与理论值相差也不多。
值得注意的是第一二阶固有频率的测试值与理论值十分相近,而第三阶固有频率相差比较大,造成这种现象的原因可能跟实验设备老化有关,在高阶的响应特性较差。