大学无机化学分子结构大连理工版

合集下载

大连理工大学胡涛中级无机化学3

大连理工大学胡涛中级无机化学3

v(1)
1 0 0 0 0 1 0 1 0
v(2)
0 0 1 0 1 0 1 0 0
v(3)
0 1 0 1 0 0 0 0 1
Γr
C3v
E
1 2 3 2 0
C31
仅含有一个对称中心i。例如1,2-二氯-1,2-二氟 乙烷分子。
4. Cnv点群
C2
O H H σv σv
含有一个Cn轴和n个通过Cn轴的对称面。如: H2O 分子具有一个C2轴和两个包含该轴的互相垂直 的对称面,故属于C2v点群。又如:NH3属于C3v点 群,XeOF4属于C4v点群,CO,HCl属于C∞v点群。
如果分子被一平面等分为两半,任一半中的每 个原子通过此平面的反映后,能在另一半(映象)中 与其相同的原子重合,则称此对称分子具有一对称 面,用表示。据此进行的操作叫对称面反映操作, 或简称反映。
含有竖直轴(主轴)的平面叫竖直对称面, v;
垂直主轴的平面叫水平对称面, h; 通过主轴且平分相邻两个两次轴(xy平面内)夹 角的平面叫分角对称面, d;
如果分子沿顺时针方向绕一轴旋转2π/n角后能 够复原,就称此操作为旋转操作,上述旋转所围绕 的轴就称作n次旋转轴,记做Cn。
倘若分子中有一个以上的旋转轴,则轴次最高
的称为主轴,主轴通常取作z轴。
绕同一个旋转轴还可以进行若干次等价的旋转
操作,如:
绕C3轴分别旋转120度、240度和360度都可以 使分子复原,分别记做C31、C32、C33(E); 所有直线分子和A2型双原子分子都具有C∞旋转
小结
符号 E 对称元素 对称操作 恒等操作
Cn
σ i
旋转轴

大连理工大学2024年硕士招生考试自命题科目考试大纲 630 无机化学及无机化学实验

大连理工大学2024年硕士招生考试自命题科目考试大纲  630 无机化学及无机化学实验

大连理工大学2024年硕士研究生入学考试大纲科目代码:630 科目名称:无机化学及无机化学实验具体复习大纲如下:一、气体和溶液1、理想气体的概念、理想气体状态方程、理想气体状态方程的应用.2、混合气体中组分气体、分压的概念,分压定律、分体积定律.3、真实气体与理想气体的差别.4、液体的蒸发及饱和蒸汽压.5、稀溶液的依数性.二、热化学1、系统、环境、相、热、功、热力学能和焓等概念.2、热力学第一定律.3、热化学方程式、化学反应的标准摩尔焓变(Δr H mӨ).4、物质的标准摩尔生成焓(Δf H mӨ)、物质的标准摩尔燃烧焓(Δc H mӨ).5、Hess定律及有关计算.三、化学反应速率1、化学反应速率、(基)元反应、复合反应等概念.2、反应速率方程、速率系数、反应级数的确定.3、活化分子、活化能等概念、阿伦尼乌斯方程.4、用碰撞理论和活化络合物理论说明浓度、温度和催化剂对反应速率的影响.四、化学平衡熵和Gibbs函数1、化学平衡、标准平衡常数、平衡组成的计算、多重平衡规则.2、反应商判据、Le Chaterlier原理.3、浓度、压力、温度对化学平衡移动的影响及相关计算.4、熵的概念、吉布斯函数的概念,物质的标准摩尔熵S mӨ、物质的标准摩尔生成Gibbs函数、反应的Δr S mӨ和Δr G mӨ的简单计算,Δr G mӨ与Δr H mӨ和Δr S mӨ的关系、Δr G mӨ与KӨ的关系.5、介绍反应的Δr G m,用Δr G m和Δr G mӨ判断反应进行的方向和程度.五、酸碱平衡1、酸碱质子理论、水的解离平衡、水的离子积常数、常见酸碱指示剂的变色范围.2、强酸、强碱溶液有关离子浓度和pH的计算.3、一元(多元)弱酸(碱)的解离平衡、解离常数和平衡组成的计算.4、一元弱酸强碱盐和一元强酸弱碱盐的水解平衡、水解常数和平衡组成的计算.5、多元弱酸强碱盐的分步水解及其平衡组成的计算、酸式盐溶液pH的近似计算.6、同离子效应、缓冲溶液、缓冲能力、缓冲溶液pH的计算.7、酸碱电子理论、配合物的基本概念、配合物的命名、配合物的不稳定常数和稳定常数、配体过量时配位平衡组成的计算、酸碱反应与配合反应共存时溶液平衡组成的计算.六、沉淀-溶解平衡1、难溶电解质的沉淀-溶解平衡、标准溶度积常数、标准溶度积常数与溶解度之间的关系和有关计算.2、溶度积规则、用溶度积规则判断沉淀的生成和溶解.3、pH对难溶金属氢氧化物沉淀-溶解平衡的影响及有关计算、沉淀的配位溶解及其简单计算.4、分步沉淀和两种沉淀间的转化及有关计算.七、氧化还原反应电化学基础1、氧化还原反应的基本概念、氧化反应方程式的配平.2、原电池的基本概念、电池电动势的概念.3、电极电势的概念及其影响因素、Nernst方程式及其相关计算、电极电势的应用.4、元素电势图及其应用.八、原子结构和元素周期律1、氢原子光谱、Bohr原子结构理论、电子的波粒二象性、量子化和能级、原子轨道、概率密度、概率、电子云.2、四个量子数的名称、符号、取值和意义.3、s、p、d原子轨道与电子云的形状和空间伸展方向.4、多电子原子轨道能级图和核外电子排布的规律、写出常见元素原子的核外电子排布、根据核外电子排布确定它们在周期表中的位置.5、周期表中元素的分区、结构特征.6、原子半径、电离能、电子亲和能和电负性的变化规律.九、分子结构1、化学键的分类、共价键价键理论的基本要点、共价键的特征和类型.2、杂化轨道理论的概念和类型、用杂化轨道理论解释简单分子和离子的几何构型.3、价层电子对互斥理论的要点、用价层电子对互斥理论推测简单分子或离子的几何构型.4、分子轨道的概念、第二周期同核双原子分子的能级图、电子在分子轨道中的分布、推测第二周期同核双原子分子(离子)的磁性和稳定性(键级).5、键级、键能、键长、键角等概念.十、晶体结构1、晶体的类型、特征和组成晶体的微粒间的作用力.2、金属晶体的三种密堆积结构及其特征、金属键的形成和特征.3、三种典型离子晶体的结构特征、晶格能的概念、离子电荷和半径对晶格能的影响、晶格能对离子化合物熔点、硬度的影响、晶格能的热化学计算方法.4、离子极化及其对键型、晶格类型、溶解度、熔点、颜色的影响.5、键的极性和分子的极性、分子的偶极矩和变形性及其变化规律、分子间力的产生及其对物质性质的影响.6、氢键形成的条件、特点及对物质某些性质的影响.7、过渡性晶体结构(如:层状晶体).十一、配合物结构1、配合物价键理论的基本要点、配合物的几何构型与中心离子杂化轨道的关系、内轨型和外轨型配合物的概念、中心离子价电子排布与配离子稳定性和磁性的关系.2、配合物晶体场理论的基本要点、八面体场中d电子的分布、高自旋和低自旋配合物、推测配合物的稳定性和磁性、配合物的颜色与d-d跃迁的关系.十二、s区元素1、碱金属和碱土金属的通性、单质的重要物理性质和化学性质.2、碱金属和碱土金属的重要氢化物、氧化物、过氧化物、超氧化物的生成和基本性质.3、碱金属和碱土金属氢氧化物碱性强弱的变化规律、重要盐类的溶解性和稳定性.4、锂和铍的特殊性、对角线规则.十三、p区元素(一)1、硼族元素的通性、缺电子原子和缺电子化合物的概念、乙硼烷的结构和重要性质、硼酸的晶体结构和性质、硼砂的结构和性质、硼的卤化物的结构和水解.2、铝及其重要化合物的性质.3、碳族元素的通性、碳单质的结构、碳的氧化物、碳酸及其盐的重要性质、用离子极化理论说明碳酸盐的热稳定性.4、硅单质、硅的氢化物、硅的氧化物、硅酸及其盐的重要性质.5、硅的卤化物的结构和水解.6、锡和铅的氧化物和氢氧化物的酸碱性及其变化规律、Sn(Ⅱ)的还原性、Pb(Ⅳ)的氧化性、锡和铅硫化物的颜色、生成和溶解性.十四、p区元素(二)1、氮族元素的通性、氮分子的结构和特殊稳定性、铵盐的性质、氮的氧化物的结构、硝酸的结构和性质、硝酸盐和亚硝酸盐的性质.2、磷的单质、氢化物、氧化物、卤化物的结构和性质.3、磷酸及其盐的性质、亚磷酸、次磷酸、焦磷酸、聚磷酸、聚偏磷酸的结构和性质.4、砷、锑、铋氧化物及其水合物的酸碱性及其变化规律.5、砷、锑、铋化合物氧化还原性的变化规律和重要反应.6、砷、锑、铋硫化物的颜色、生成和溶解性及砷、锑的硫代酸盐.7、氧族元素的通性、氧单质的结构和性质、过氧化氢的结构和性质及其重要反应.8、硫单质的结构和性质、硫化氢的性质、金属硫化物的溶解性、多硫化物的性质、二氧化硫和三氧化硫的结构、亚硫酸及其盐的性质、硫酸及其盐的性质、硫代硫酸盐的结构和性质、过二硫酸盐的结构和性质、焦硫酸盐和连二亚硫酸盐的性质.十五、p区元素(三)1、卤素的通性、卤素单质的制备和性质、卤化氢的制备及其性质(还原性、酸性、稳定性)的变化规律、氯的含氧酸及其盐的性质及其变化规律、溴和碘的含氧酸的基本性质.2、稀有气体的重要性质及其变化规律、稀有气体化合物及其几何构型.3、p区元素的氢化物、氧化物及其水合物性质的递变规律.4、p区元素化合物的氧化还原性递变规律、p区元素含氧酸盐的热稳定性递变规律.十六、d区元素(一)1、过渡元素的原子结构特征和通性.2、钛单质的性质和用途.3、铬单质的性质、Cr(Ⅲ)和Cr(Ⅵ)化合物的酸碱性和氧化还原性及其相互转化,杂多酸盐磷钼酸铵.4、Mn(Ⅱ)、Mn(Ⅳ)、Mn(Ⅵ)、Mn(Ⅶ)重要化合物的性质.5、Fe(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)重要化合物的性质及其变化规律.6、Fe(Ⅲ)、Co(Ⅲ)、Ni(Ⅲ)重要化合物的性质及其变化规律.7、铁、钴、镍的重要配合物.十七、d区元素(二)1、铜族元素的通性.2、铜的氧化物、氢氧化物、重要铜盐的性质.3、Cu(Ⅰ)和Cu(Ⅱ)相互转化、铜的重要配合物、水溶液中Cu2+的重要反应.4、银的氧化物和氢氧化物的性质、银的重要配合物、水溶液中Ag+的重要反应.5、锌族元素的通性、氢氧化锌的性质、水溶液中Zn2+的重要反应、锌的重要配合物.6、镉的重要化合物的性质.7、汞的重要化合物的性质、Hg(Ⅰ)和Hg(Ⅱ)间的相互转化、水溶液中Hg2+和Hg22+的重要反应.十八、无机化学实验1.实验基本操作:加热、洗涤、过滤等无机化学实验操作。

无机化学 课件 大连理工 高教 第九章 分子结构

无机化学 课件 大连理工 高教 第九章 分子结构

空间几何构型: 正四面体 键角: 109°28
CH 4的形成
4.不等性杂化 问题的提出 2P 2S N原子轨道 2P 2S 杂化 SP3杂化 孤对电子 杂化 SP3杂化
NH3
O原子轨道
H2O
第九章 分子结构
9.3 价层电子对互斥理论
基本要点: • 分子或离子的空间构型与中心原子的价层电子对数目有关。
9.4 键参数
一 、键级
1 B.O (成键电子数 反键电子数) 2
* 2 2 * 2 4 2 N 2 ( 1s ) 2 ( 1 ) ( ) ( ) ( π ) ( ) s 2s 2s 2p 2p



B.O = 1/2( 10 - 4 ) = 3
* 2 2 4 * 2 O2 KK ( 2s ) 2 ( 2 ) ( ) ( π ) ( π ) s 2p 2p 2p
核间形成一个电子概率密度较大的区域。系统
能量降低,形成氢分子。
氢分子的形成过程
共价键的本质: 原子轨道重叠(原子共享电子)
9.1 价键理论
9.1.1 共价键的本质与特点 二. 现代价键理论 1. 要点: 自旋相反的未成对电子相互配对成键; 配对成键时原子轨道最大重叠; 原子轨道同号重叠成键,异号重叠不成键 2.重叠的原则:能量相近、最大重叠原理、对称性匹配。
: P N H
107o18'
N
H
中心原子电负性大者,键角较大;配位原子电负性大者,键角较小。
:
F
H
F
102o
F
H H H
93o18'
思考题:
解释NO2+, SnCl3ˉ, OF2, ICl3, XeF5+, ICl4ˉ 等离子或分子的空间构型, 并 指出其中心原子的轨道杂化方式。

无机化学第六版大连理工知识点总结

无机化学第六版大连理工知识点总结

无机化学第六版大连理工知识点总结
嘿呀!今天咱们来聊聊《 无机化学第六版大连理工知识点总结》!
首先呢,哇,无机化学里的原子结构这部分可太重要啦!你知道吗?像原子的电子构型,哎呀呀,那可是理解元素性质的关键呢!从氢原子的波尔模型开始,一直到复杂的多电子原子,这里面的规律和原理,咱们得好好琢磨琢磨呀!
再来看看化学热力学基础,哇塞!热力学第一定律、第二定律,这可都是解决能量变化问题的利器呢!比如计算反应的热效应,哎呀呀,要是弄不清楚这些定律,那可就抓瞎啦!
化学键与分子结构这方面也不能忽视呀!离子键、共价键,它们的特点和形成条件都得搞清楚。

还有分子的极性、分子间作用力,这些对物质的物理性质影响可大着呢!
化学平衡也是重点中的重点哟!平衡常数的计算和应用,怎么判断反应的方向和限度,这可都关系到化学反应的走向呢!
然后是酸碱平衡和沉淀溶解平衡。

酸碱的定义和强弱判断,沉淀的生成和溶解条件,这些知识点都要牢记在心呀!
氧化还原反应这部分也很精彩!氧化数的确定,电极电势的计算,原电池的工作原理,是不是听起来就很有趣?
无机化学中的元素部分,哎呀呀,各种元素的性质、化合物的制备和用途,那真是丰富多彩!像卤素、氧族元素、氮族元素等等,每个都有独特的特点和反应。

总之呢,这《 无机化学第六版大连理工》的知识点可真是又多又
重要!咱们得下功夫好好学,才能掌握得扎实哟!怎么样,是不是觉得无机化学很有魅力呀?。

无机化学 第3章 分子结构与化学键理论

无机化学 第3章  分子结构与化学键理论
试根据价层电子对互斥理论和杂化轨道 理论,写出下列物质的分子结构,并说 明中心原子的杂化态和成键情况:
O3 ; PCl3 ; CO2 ; OF2 。
O3分子的结构
O3 中心原子 O 价层电子对数: (6+0×2)/2=3
价电子对构型平面三角形。分子构型为V型
O 127.8pm
O
O
O
O
O
116.80
价电子对构型和分子构型都为线形。
O
C
O
CO2以sp杂化成键:一个
键,两个
4 3
键。
OF2的分子结构
OF2 中心原子O的价层电子对数为: (6+1×2)/2=4
价电子对构型为四面体,分子构型为V型
O
F
F
OF2以sp3不等性杂化成键。
3.4 分子轨道理论
分子轨道理论的基本要点
原子轨道的线性组合—s-s重叠
原子轨道的线性组合—s-p重叠
原子轨道的线性组合—p-p重叠(1)
原子轨道的线性组合—p-p重叠(2)
能量近似原则
最大重叠原则
对称性原则
同核双原子分子的分子轨道能级图(1)
同核双原子分子的分子轨道能级图(2)
同核双原子分子的分子轨道能级图
N2分子的分子轨道能级图
O2分子的分子轨道能级图
CO的分子轨道能级图
3.5 分子间力和氢键
分子间作用力——范德华力
取向力
诱导力
色散力
化学视野——光电子能谱(PES)
PES——Photoelectron Spectroscope
光电子能谱技术是光电效应的现代应用。
可见光源照射物质可将价电子射出。短波光 源(紫外或X射线)产生的高能光子能将分 子或原子内层具有各种结合能的电子射出, 通过这些结合能的大小可提供分子中能级的 细节。

大连理工大学无机化学课件第14章

大连理工大学无机化学课件第14章
① 强氧化性
无 机 化 学 基 础 教 程
HNO3 非金属单质 相应高价酸 NO
4HNO3 3C 3CO2 (g) 4NO(g) 2H2O 5HNO3 3P 3H3PO4 5NO(g) 2HNO3 S H2SO 4 2NO 10HNO 3I2 6HIO3 10NO 2H2O 3
O2 △
性质:
P4O6白色易挥发的蜡状晶体,易溶于有机溶剂。 P4O10白色雪花状晶体,强吸水性。
无 机 化 学 基 础 教 程
P4O6 6H2O(冷) 4H3PO3
P4O6 6H2O(热) 4H3PO4 PH3 5P4O6 18H2O(热) 12H3PO4 8P P4O10 6H2O 4H3PO4 P4O10 6H2SO 4 6SO3 4H3PO4 P4O10 12HNO 6N2O5 4H3PO4 3
4Zn 10HNO3 (很稀,1 : 10) 4Zn(NO3 ) 2 NH 4 NO 3 3H 2 O
规律:HNO3越稀,金属越活泼, HNO3 被还原的氧化值越低。
冷的浓硝酸使Fe, Al, Cr钝化 王水:(氧化配位溶解)
Au HNO3 4HCl H[AuCl4 ] NO 2H2O
Ag 2 NH3 [Ag(NH3 ) 2 ]
④ 取代反应
570C
2NH3 2Na 2NaNH2 H 2
催化
NH2-NH2联氨(肼),NH 亚氨基,N 氮化物
(2) 铵盐
①铵盐一般为无色晶体,绝大多数易溶于水
水解:NH + H2O
无 机 化 学 基 础 教 程
4
H3O+ + NH3

2024年度无机化学第六版电子教案大连理工大学

2024年度无机化学第六版电子教案大连理工大学
热力学基础
研究化学反应的方向、限度以及能量变化,包括热力学第一定律 、热力学第二定律等基本原理。
热化学方程式
表示化学反应中能量变化的化学方程式,包括反应热、焓变等参 数。
2024/2/3
19
化学反应速率理论简介
反应速率
表示化学反应快慢的物理量,与反应物浓度、温 度等因素有关。
速率方程
描述反应速率与反应物浓度之间关系的数学表达 式。
应用
通过控制溶液的pH值和沉淀物的溶 解度,可以实现沉淀溶解平衡的移动 ,从而分离和提纯化学物质。
22
05
无机化合物分类及性质
2024/2/3
23
金属元素单质和重要化合物性质
2024/2/3
01
碱金属和碱土金属
介绍锂、钠、钾、铷、铯、钫等碱金属以及铍、镁、钙、锶、钡等碱土
金属的单质性质,包括物理性质和化学性质,以及它们的重要化合物如
4
教学目标与要求
知识与技能
掌握无机化学的基本概念和原理,了 解物质结构的基础知识和元素化学的 基本规律,培养学生的实验技能和动 手能力
过程与方法
通过理论讲解、实验演示、课堂讨论 等方式,引导学生自主学习、合作学 习和探究学习,提高学生的思维能力 和创新能力
情感态度与价值观
培养学生对无机化学的兴趣和爱好, 激发学生的科学探索精神和实践能力 ,树立学生的科学世界观和价值观
化学平衡的移动
结合实例,分析浓度、温度、压力等因素对化学平衡的影响。
溶解度与溶度积
通过实例计算,帮助学生掌握溶解度与溶度积的换算及应用。
2024/2/3
35
拓展阅读材料推荐
《无机化学》(第六版)教材配套习题集
巩固和加深对知识点的理解。

大连理工大学无机化学教研室《无机化学》(第5版)(课后习题详解 分子结构)

大连理工大学无机化学教研室《无机化学》(第5版)(课后习题详解 分子结构)

9.2 课后习题详解1. 写出下列化合物分子的Lewis 结构式,并指出其中何者是σ键,何者是π键,何者是配位键。

(1)膦PH 3 (2)联氨N 2H 4(N-N 单键);(3)乙烯; (4)甲醛;(5)甲酸;(6)四氧化二氮(有双键)。

解:其结构式与化学键类型如表9.1所示:表 9.12. 根据下列分子或离子的几何构型,试用杂化轨道理论加以说明。

(1)HgCl 2(直线形);(2) SiF 4(正四面体);(3)BCl 3(平面三角形);(4)NF 3(三角锥形,102°);(5)(V 形,115.4°);(6)(八面体)。

2NO -26SiF -解:分子或离子的几何构型及其杂化理论解释如表9.2所示:表 9.23. 试用价层电子对互斥理论推断下列各分子的几何构型,并用杂化轨道理论加以说明。

解:用价层电子对互斥理论推断分子的几何构型应先计算中心原子的价电子对数,然后确定其空间分布,再根据是否有孤电子对来判断分子构型。

如果价层电子对数等于配位数,则分子的空间构型与电子空间排列相同,否则会存在孤对电子,分子的空间构型与电子空间排列不相同。

中心原子的杂化轨道类型与中心原子的价层电子对数有关,中心原子的价层电子对数等于其参与杂化的原子轨道数。

则可推知题中的分子构型如表9.3所示:表 9.34. 试用VSEPR 理论判断下列离子的几何构型。

解:推断结果如表9.4所示:表 9.45. 下列离子中,何者几何构型为T 形?何者构型为平面四方形?解:根据理论,几何构型为形的分子或离子,其中心原子的价层电子对数VSEPR T 为5,配位原子数为3。

所以在配位原子数为3的离子中的几何构型为形。

几何3XeF +T 构型为平面正方形的分子或离子,其中心原子的价电子对数为6,配位原子数为4。

所以的几何构型为平面正方形。

4ICl -6. 下列各对分子或离子中,何者具有相同的几何构型?解:中心原子价层电子对数相同,配位原子数也相同的分子或离子,一定具有相同的几何构型。

无机化学知识点摘要大连理工大学第五版

无机化学知识点摘要大连理工大学第五版

Q 表示。
以热的形式转移能量总带有一定的方向性。热能自动地从高温物体传递到低温物体。热力学中以
Q
值的正、负号来表明热传递的方向。若环境向系统传递热量,系统吸热,
Q 为正值,即 Q>0;。系统
向环境放热, Q 为负值, Q<O。 Q 与具体的变化途径有关,不是状态函数
(2) 功:系统与环境之间除热以外其他的能量传递形式,称之为功,以符号
体积和它们相互间的作用力都可以忽略不计, 这就是理想气体混合物。 其中每一种气体都称为该混合气
体的组分气体。
5、混合气体中某组分气体对器壁所施加的压力叫做该组分气体的分压。
对于理想气体来说, 某组分气体的
分压力等于在相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。
6、 Dalton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 7、 Amage 分体积定律: 混合气体中组分 B 的分体积 VB 是该组分单独存在并具有与混合气体相同温度和压
力时占有的体积。
8、气体分子动理论的基本要点:
(1) 气体是由分子组成的,分子是很小的粒子,彼此间的距离比分子的直径大许多,分子体积与气体体
积相比可以略而不计。
(2) 气体分子以不同的速度在各个方向上处于永恒地无规则运动之中。
(3) 除了在相互碰撞时,气体分子间相互作用是很弱的,甚至是可以忽略的。
(4) 气体分子相互碰撞或对器壁的碰撞都是弹性碰撞。碰撞时总动能保持不变,没有能量损失。
W 表示。环境对系统做功 ( 环
境以功的形式失去能量 ),W>0; 系统对环境做功 (环境以功的形式得到能量 )W<0 。功与热一样,与途
径有关,不是状态函数。

大连理工大学无机化学教研室《无机化学》(第6版)笔记和课后习题(含考研真题)详解(13-18章)【圣

大连理工大学无机化学教研室《无机化学》(第6版)笔记和课后习题(含考研真题)详解(13-18章)【圣

2.p 区元素特征 (1)各族元素性质自上而下呈规律性变化 同族自上而下:原子半径↑,金属性↑,非金属性↓。 (2)多种氧化值 ns2np1~6 的价电子构型使大部分 p 区元素具有多种氧化值。 (3)电负性大 电负性:p 区元素>s 区元素。 (4)第二周期元素具有反常性 第二周期元素单键键能(N、O、F)<第三周期元素单键键能(P、S、Cl)。 (5)第四周期元素表现出异样性 d 区元素的插入,使第四周期元素的原子半径显著减小,性质展现出特殊性。
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 13 章 p 区元素(一)
13.1 复习笔记
一、p 区元素概述 1.p 区元素 p 区元素:除 H 以外的所有非金属元素和部分金属元素。 惰性电子对效应:同族元素,自上而下,氧化值低的化合物的稳定性高于氧化值高的化 合物的现象。
圣才电子书 十万种考研考证电子书、题库视频学习平台

③加合反应:B2H6+2NH3→[BH2·(NH3)2]++[BH4]- 【注意】①乙硼烷自燃和水解放热较大,可用于制作火箭燃料。②乙硼烷是剧毒物质, 空气中其最高允许含量为 0.1µg/g。 (2)硼的含氧化合物 ①三氧化二硼 B2O3 a.物理性质 颜色:白色固体;密度:2.55g·cm-3;熔点:450C。 b.化学性质 被碱金属还原:B2O3+3Mg→2B+3MgO 与水反应:
B 2 O 3 HH 22OO 2 H B O 2 HH 22OO 2 H 3 B O 3
②硼酸 H3BO3 化学性质:硼酸为一元弱酸(固体酸);与多羟基化合物发生加合反应;受热易分解。 ③硼砂 硼砂:硼酸盐的一种,水解呈碱性;溶液中,n(H3BO3)=n(B(OH)4-),具有缓冲 作用。 (3)硼的卤化物 ①三卤化硼 BX3 BX3 在湿空气中发生水解反应 BX3+3H2O→B(OH)3+3HX ②氟硼酸 H[BF4] H[BF4]的酸性比 HF 强,可利用 BF3 的水解制备,反应方程为

大连理工大学无机化学教研室《无机化学》(第5版)笔记和课后习题(含考研真题)详解(9-12章)【圣才

大连理工大学无机化学教研室《无机化学》(第5版)笔记和课后习题(含考研真题)详解(9-12章)【圣才

2.共价键的特点:具有饱和性和方向性。 饱和性:一个原子能有几个未成对的电子,便可与其他原子的几个自旋相反的未成对电 子配对成键。 方向性:指每个原子与周围原子形成共价键有一定角度(两个原子间形成共价键时往往 只能沿着一定的方向结合)。
3.共价键的键型: (1)σ键:原子轨道沿核间联线方向进行同号重叠形成的共价键(头碰头),其键能大, 稳定性高。 (2)π键:两原子轨道垂直核间联线并相互平行进行同号重叠(肩并肩),其键能小于
圣才电子书

第 9 章 分子结构
十万种考研考证电子书、题库视频学习平台
9.1 复习笔记
一、价键理论 价键理论,简称 VB 理论,又称电子配对理论,本质是由于原子轨道重叠,原子核间电 子几率密度增大吸引原子核而成键。 1.基本要点: (1)原子中自旋方向相反的未成对的电子相互配对形成稳定的化学键; (2)形成共价键的原子轨道必须在对称性一致的前提下发生重叠,重叠程度愈大,形 成的共价键愈牢固,即原子轨道最大重叠原理。
键级越大,键越牢固,分子越稳定。 (2)键能 在双原子分子中,于 100 kPa 下将气态分子断裂成气态原子所需要的能量称为键的解 离能。 在多原子分子中,断裂气态分子中的某一个键,形成两个“碎片”时所需要的能量称为 此键的解离能。 键能通常是指标准状态下气体分子拆开成气态原子时,每种键所需能量的平均值。 (3)键长 分子中两原子核间的平衡距离称为键长。 键长递增,键能则递减;单键、双键及叁键的键长依次缩短,键能依次增大,但与单键 并非两倍、三倍的关系。 (4)键角 键角和键长是反映分子空间构型的重要参数,它们均可通过实验测知。 (5)键矩
2 / 74
圣才电子书 十万种考研考证电子书、题库视频学习平台

键矩是表示键的极性的物理量,记作μ。μ为矢量。

大连理工大学无机化学课件第09章

大连理工大学无机化学课件第09章

2p 激发 2s 2p
sp2 sp2杂化
BF3形成
时的sp2杂化。
3. sp杂化
BeCl2分子:直线形。
键角为:180°
无 机
化 2s
2p 激发 2s 2p


sp

sp杂化


BeCl2形成时的
sp杂化。

s轨道
p轨道





sp杂化轨道 sp杂化轨道在空间取向


BeCl2分子
用杂化轨道
成键。
八面体
②VPN-m≠0 :分子的空间构型不同于电子 对的空间构型。
电子对的
分子的
无 VP LP 空间构型
空间构型
机 化
3
1 平面三角形 V形
学 基
4
1 四面体
三角锥
础 教
2 四面体
V形
程 6 1 八面体
四方锥

SnCl2 NH3 H2O IF5
2 八面体
平面正方形 XeF4
VPN = 5,电子对空间构型为三角双锥, 孤对电子占据轴向还是水平方向三角形
标准状态下气体分子拆开成气态原子时,
每种键所需能量的平均值——键能 。

机 化
E(H – H)=436kJ·mol-1

E(H – Cl)=432kJ·mol-1




键能与标准摩尔反应焓变
2H2 (g) + O2(g) r H m 2H2O(g)
无 机
2E(H H)
E(O ...... O)
sp型杂化轨道的夹角公式:

大连理工大学无机化学课件第16章

大连理工大学无机化学课件第16章

E Hg /Hg 0.852V
总趋势:从上到下活泼性降低。
E Cd /Cd 0.402V
16.1.4 d区元素的氧化态
无 机 化 学 基 础 教 程
多种氧化态。例如:Mn的氧化态呈连续状, Mn(CO)5Cl(+1),Mn(CO)5,NaMn(CO)5(-1)。
注:红色为常见的氧化态。
Mn 2H2O Mn(OH)2 (s) H 2 Mn 2H (稀) Mn2 H 2
在加热情况下锰能与许多非金属反应
Δ 3Mn 2O 2 Mn3O 4
无 机 化 学 基 础 教 程
Mn X 2 MnX2 (X F) Mn F2 MnF 和MnF 4 3

4
2
H2S S 或 SO42-
Fe2+ Fe3+
Sn2+ Sn4+
溶液的酸度不同,MnO4被还原的产物不同:
2 2MnO 5SO3 6H 2Mn2 5SO2 3H2O 4 4
2 2MnO 3SO3 H2O 2MnO2 3SO 2 2OH 4 4 2 2MnO SO 3 2OH (浓) 2MnO2- SO 2 H2O 4 4 4
16.1.5 d区元素离子的颜色
Mn (Ⅱ) Fe(Ⅱ)
Co(Ⅱ)
Ni(Ⅱ)
Fe(Ⅲ)
Cu(Ⅱ)
水合离子呈现多种颜色。
§16.2 钛 钒
16.2.1 钛及其化合物
16.2.2 钒及其化合物
16.2.1 钛及其化合物
钛在地壳中的丰度为 0.42%,钛的主要 矿物有:钛铁矿( FeTiO3)和金红石(TiO2)。 1. 钛的单质

大连理工大学无机化学配合物结构课件

大连理工大学无机化学配合物结构课件

例如:[FeF6]3- ,μ=5.90B.M.
外轨配键。以外轨配键形成的配合物 叫外轨型配合物。
同一中心离子的内轨型配合物比外 轨型配合物稳定。 lgK f ([Fe(CN)6]3-) =52.6,lgK f ([FeF6]3-) = 14.3
对价键理论的评价:
• 很好地解释了配合物的空间构型、磁性、 稳定性,直观明了。
第十一章 配合物结构
§11.1 配合物的空间构型、 异构现象和磁性
§11.2 配合物的化学键理论
§11.1 配合物的空间构型、 异构现象和磁性
11.1.1 配合物的空间构型
11.1.2 配合物的异构现象
11.1.3 配合物的磁性
11.1.1 配合物的空间构型
配合物分子或离子的空间构型与配位数 的多少密切相关。
配位数 2
4
6
空 间 构 型 直线形 四面体 平面正方形 八面体

Ag(NH
3
)
2
NiCl
2 4
Ni(CN
)
2 4
Fe(CN)
3 6
配位数 3
空 间 构 型 三角形
例:
HgI
3
5
四方锥 三角双锥
SbCl
2 5
Fe(CO) 5
11.1.2 配合物的异构现象
1. 几何异构现象: 按照配体对于中心离子的不同位置区分。
<EDTA<NH3<en<bipy<phen<SO32<- NO2<CO, CN-
• 配合物的几何构型:
在八面体场和四面体场d轨道的分裂情 况不同,且Δ值也不同。
4. 高自旋与低自旋配合物及其d 电子分布

大连理工大学无机化学教研室《无机化学》(第5版)(复习笔记 p区元素(二))

大连理工大学无机化学教研室《无机化学》(第5版)(复习笔记 p区元素(二))

14.1 复习笔记氮族元素包括氮、磷、砷、锑和铋。

氮和磷是非金属元素,砷和锑为准金属,铋是金属元素。

氮族元素形成的化合物主要是共价型的,且原子愈小,形成共价键的趋势愈大。

氮族元素氢化物的稳定性从NH3到BiH3依次减弱,碱性也依次减弱,酸性依次增强。

氮族元素氧化物的酸性随原子序数的递增而递减。

一、氮族元素单质氮主要以单质N2存在于大气中。

磷容易被氧化,主要以磷酸盐形式存在于自然界中。

通常将磷酸钙、沙子和焦炭混合加热至1500 ℃制取白磷。

磷的同素异形体有白磷、红磷和黑磷三种。

白磷化学性质活泼,易氧化,能自燃,有剧毒。

砷、锑和铋主要以硫化物存在于自然界中。

通常将硫化物焙烧得到相应的氧化物,然后用碳还原制备相应的单质。

二、氮族元素化合物1.氮的化合物氮原子的价层电子构型为n s2n p3。

氮能形成氧化值为+3和+5的化合物,其中氮原子大多以共价键与其他元素的原子结合。

(1)氨与铵盐氨分子是极性分子,其构型为三角锥。

氨分子间形成氢键,氨的熔点、沸点在同族元素氢化物中反常地高。

氨的主要反应类型为:①氨作为Lewis碱发生加合反应;②氨分子中的氢被取代;③氨作为还原剂被氧化。

铵盐易溶于水,在水中发生水解反应,与强碱作用并加热生成氨。

固体铵盐受热分解的规律为:挥发性酸的铵盐(如(NH4)2CO3等)分解为氨和相应的酸;不挥发性酸的铵盐(如(NH4)3PO4等)分解为氨和相应的酸或酸式盐;氧化性酸的铵盐(如(NH4)2Cr2O7等)分解为氮气等产物。

(2)氮的氧化物、含氧酸及其盐氮可以形成多种氧化值的氧化物:N2O,NO,N2O3,NO2,N2O4,N2O5等。

它们的热稳定性较差。

NO易被O2氧化为NO2,NO用于制取硝酸和硝酸盐。

①亚硝酸:亚硝酸是弱酸,很不稳定,易分解;亚硝酸盐一般易溶于水,碱金属、碱土金属的亚硝酸盐热稳定性较高。

在酸性溶液中亚硝酸盐具有氧化性。

NO2-中,氮原子与氧原子形成σ键,还形成一个三中心四电子的大π键。

大连理工大学无机化学课件完整版

大连理工大学无机化学课件完整版

机 化
xB — 溶液中溶质B的摩尔分数。

拉乌尔定律:在一定温度下,难挥发
基 础
非电解质稀溶液的蒸气压下降与溶质的摩
教 尔分数成正比。

在稀溶液中:nA远大于nB,nA+nB≈ nA
无 机
xB
nB nA nB
nB nA
nB mA
MA
bBM A
化 学
∆ p = pA* xB = pA*MAbB =kbB
nNH3
n
p
0.320 133.0kPa 35.5kPa 1.200
p(O2 )
n(O2 ) n
p

0.180 133.0kPa 20.0kPa

1.200


基 p(N2) = p- p(NH3)-p(O2)


= (133.0-35.5-20.0) kPa

= 77.5 kPa
分体积:
无 透膜向对方运动,净结果使溶剂进入溶液的
机 化
现象称为渗透。


半透膜:只允
础 教
许溶剂分子通过,
程 不允许溶质分子通
过的薄膜。
为使渗透现象
不发生,必须在液
面上施加一个额 无 外压力(示意图)。

化 为维持只允许溶剂 学 分子通过的膜所隔

础 开的两种溶液之间 教 的渗透平衡而需要 程 的额外压力,定义

T — 热力学温度,K
若水溶液的浓度很小,则cB≈bB ,
= bBRT
van’t Hoff方程说明:在一定温度下, 非电解质稀溶液的渗透压力仅取决于单位体
化 学
通常所说的沸点是指大气压为101.325kPa

大连理工大学无机化学课件第10章

大连理工大学无机化学课件第10章

分子的极化率α(×10-40C· m2 · V-1)
分子式
无 机 化 学 基 础 教 程
极化率 0 .2 2 7 0 .4 3 7 1 .8 1 2 .7 3 4 .4 5 0 .8 9 2 1 .7 4 1 .9 3 5 .0 1 7 .1 5
10.3.3 离子极化
无 机 化 学 基 础 教 程
离子的极化率(α): 描述离子本身变形性的物理量。 离子的极化力(f ): 描述一个离子对其他离子变形的影响能力。
1.离子的极化率(α ) 一般规律: ① 离子半径 r : r 愈大, α 愈大。 如α :Li+<Na+<K+<Rb+<Cs+;F-<Cl-<Br-<I- ② 负离子极化率大于正离子的极化率。 ③ 离子电荷:正离子电荷少的极化率大。 如:α (Na+) >α (Mg2+) ④ 离子电荷:负离子电荷多的极化率大。 如:α (S2-) >α (Cl-) ⑤ 离子的电子层构型:(18+2)e-,18e-> 9-17e->8e如:α (Cd2+) >α (Ca2+); α (Cu+) >α (Na+)
Na (g) + Cl (g)
-1 -1
+
-
786 kJ mol △ rHm 786 kJ mol U
1. Born-Haber循环
无 机 化 学 基 础 教 程
1 K ( s ) + Br 2 ( l ) 2 1
△ fHm
KBr(s)
U △ rHm,6
2 1 升 Br2 (g) 华 △ rHm,1 2 1 焓 键能 △ rHm,4 2

无机化学(第六版)电子教案——大连理工大学 (9)

无机化学(第六版)电子教案——大连理工大学 (9)

• 价键理论继承了Lewis共用电子对的概念。 • 以量子力学为基础。 • 揭示了共价键的本质——原子轨道重叠, 原子核间电子概率密度大吸引原子核而成键。
9.1.3 价键理论的基本要点 1. 基本要点: 与共价键的特点
• 未成对价电子自旋方式相反; • 对称性一致,原子轨道最大程度重叠。
2. 特点:
Dr Hm = 12×389kJ·mol−1+3×498kJ·mol−1 −2×946 kJ·mol−1 −12×464kJ·mol−1
= −1298 kJ·mol−1
键能与标准摩尔反应焓变
2H2 (g) + 2E(H H)
O2(g) Dr H m
E(O ...... O)
2H2O(g) 4E(O—H)
• 饱和性 • 方向性
9.1.4 共价键的键型
1. σ 键和 π 键 σ 键:原子轨道
沿核间联线方向进行 同号重叠(头碰头)。
π 键:两原子轨道垂直核间联线并相 互平行进行同号重叠(肩并肩)。
2. 配位键 形成条件:成键原子一方有孤对电子,
另一方有空轨道。
例: CO
CO
HBF4 HF BF3
2s22p2 2s22p4
H2O(g) = 2H(g) + O(g) Eatm(H2O)=D(HOH)+D(OH)=928kJ·mol-1
3. 键能 E:标准状态下气体分子拆开成 气态原子时,每种键所需能量的平均值。例 如:
E(H – H)=436kJ·mol-1
E(H – Cl)=432kJ·mol-1
4. 键能、键解离能与原子化能的关系: 双原子分子:键能 = 键解离能
电子配对理论——共用电子对成键。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线形 XeF2
VPN m n
AXmLn
VP排布方式
分子几 何构型
实例
6 0 AX6
八面体 SF6
9.3.2 杂化轨道的类型
1. sp型杂化
• sp3杂化
CH4的空间构 型为正四面体。
C:2s22p2
键角为:109.5°
2p
2s
2s
2p 激发 2s 2p
sp3杂化
sp3
CH4形成 时的sp3杂化。
四个sp3杂化轨道
• sp2杂化
BF3的空间构 型为平面三角形。
键角为:120°
B: 2s22p1
第九章 分子结构
§9.1 §9.2 §9.3 §9.4
§9.5 §9.6
Lewis理论 价键理论 杂化轨道理论 价层电子对互斥理论
分子轨道理论 键参数
化学键:分子或晶体中相邻原子(或离 子)之间强烈的吸引作用。
化学键种类:共价键、离子键、金属键。 共价键理论: Lewis理论(1916年) 价键理论(1927年, 1930年) 杂化轨道理论(1931年) 价层电子对互斥理论(1940年) 分子轨道理论(20世纪20年代末)
2p
2s
2s
2p 激发 2s 2p
sp2 sp2杂化
BF3形成
时的sp2杂化。
三个sp2杂化轨道
• sp杂化
BeCl2分子:直线形。
键角为:180°
2s
2p 激发 2s 2p
sp sp杂化
BeCl2形成时的 sp杂化。
两个sp杂化轨道
2. spd型杂化
• sp3d杂化
PCl5(g)的几何构 型为三角双锥。
H
H
§9.4 价层电子对互斥理论 (VSEPR)
9.4.1 价层电子对互斥理论的 基本要点
9.4.2 分子几何构型的预测
9.4.3 判断分子(离子)几何构型的 实例
9.4.1 价层电子对互斥理论的 基本要点
1. AXmLn分子(A为中心原子,X为配 位原子,L为孤对电子) 的几何构型取决 于中心原子A的价电子层电子对数VPN。
P: 3s23p3
3p
3s
3d
激发 3s
3p
3d
sp3d sp3d杂化
• sp3d2杂化
SF6的几何构型为 八面体。
S: 3s23p4
3d 3p
3p 3d
3s
激发 3s
sp3d2杂 化
sp3d2
杂化轨道与分子空间构型
杂化 轨道
杂化
轨道 数目
键角
分子几何构 型
实例
sp
2
120° 直线形
BeCl2,CO2
§9.1 Lewis理论
电子配对理论——共用电子对成键。
• 八隅体规则
• Lewis结构式 :Cl :
H—H
:Cl C Cl :Fra bibliotek:Cl :
O = C= O
:N N:
违背八隅体规则的例子:BF3,PCl5,SF6等。
§9.2 价键理论
9.2.1 共价键的形成和本质 9.2.2 价键理论的基本要点
与共价键的特点 9.2.3 共价键的键型
9.2.1 共价键的形成和本质
Heitler和London用量子力学处理H2分子 的形成过程,得到
E—R关系曲线。
• 价键理论继承了Lewis共用电子对的概念。 • 以量子力学为基础。 • 揭示了共价键的本质——原子轨道重叠, 原子核间电子概率密度大吸引原子核而成键。
分子几 何构型
实例
2 2 0 AX2
直线形 BeCl2
3 0 AX3
3
2 1 AX2L
三角形 BF3 V形 SnCl2
VPN m n
AXmLn
VP排布方式
分子几 何构型
实例
5 0 AX5
三角双 锥
PCl5
4 1 AX4L 5
3 2 AX3L2
变形四
面体(跷 SF4
跷板形)
T形 ClF3
2 3 AX2L3
NH3:几何构型 为三角锥。
键角为:107°
N: 2s22p3
2p
2s
sp3杂化
sp3不等性杂化
一对孤对电子占据的杂化轨道能量较 低,含更多的s成分。
NH3分子形成时的轨道杂化。
H2O:几何构型为V型。
键角为:104.5°
O: 2s22p4
2p
2s
sp3杂化
sp3不等性杂化
两个杂化轨道 能量较低,被两对 孤对电子占据。
3. 配位键 形成条件:成键原子一方有孤对电子,
另一方有空轨道。
例: CO
C O
2s2 2p2 2s2 2p4
HBF4 HF BF3
§9.3 杂化轨道理论
9.3.1 杂化轨道的概念 9.3.2 杂化轨道的类型
9.3.1 杂化轨道的概念
在形成分子的过程中,若干不同类型 能量相近的原子轨道重新组合成一组新轨 道。这种轨道重新组合的过程称为杂化, 所形成的新轨道叫做杂化轨道。
小结:杂化轨道的类型与分子的空间构型
杂化轨道类型 sp sp2 sp3 不等性sp3
参加杂化的轨道s+p s+(2)p s+(3)p s+(3)p
杂化轨道数 2 3 4
4
成键轨道夹角 180 120 10928' 90 109 28'
分子空间构型
实例 中心原子
直线形 三角形 四面体
BeCl 2 BF3 CH 4
sp2
3
180° 平面三角形 BF3,AlCl3
sp3 4 109.5°四面体
CH4,CCl4
sp3d 5 90°, 120°三角双锥 PCl5
sp3d2 6
90° 八面体
SF6,SiF62-
3.不等性杂化 参与杂化的原子轨道s,p和d等成分不
相等,所形成的杂化轨道是一组能量彼 此不相等的轨道。
sp3不等性杂化:NH3 , H2O。
9.2.2 价键理论的基本要点 1. 基本要点: 与共价键的特点
• 未成对价电子自旋方式相反; • 对称性一致,原子轨道最大程度重叠。
2. 特点:
• 饱和性 • 方向性
9.2.3 共价键的键型
1.σ键:原子轨道沿核 间联线方向进行同号 重叠(头碰头)。
2.π键:两原子轨道垂直核间联线并相互平 行进行同号重叠(肩并肩)。
HgCl 2 BCl 3 SiCl 4
Be(ⅡA) B(ⅢA) C,Si
Hg(ⅡB)
(ⅣA)
三角锥
NH 3
PH 3 N,P
(ⅤA)
V型
H2O H 2S O,S
(ⅥA)
思考题:解释CH4,C2H2,CO2的分子构型。
已知: C2H2,CO2均为直线型;
C2H 4 的构型为:
H 121o H
C = C 118o
VPN = m + n
2. 价层电子对尽可能远离,以使斥 力最小。
价层电子对的排布方式
价层电子对数(VPN) 价层电子对的排布方式
2
直线型
3
平面三角形
4
四面体
5
三角双锥
6
八面体
3. 就只含单键的AXmLn分子而言
AXmLn分子的几何构型与价层电子对的排布方式
VPN m n AXmLn
VP排布方式
相关文档
最新文档