锌合金 zinc alloy
电镀锌与锌合金的特性,应用
屠振密
摘 要:目前,锌和锌合金主要用作钢铁表面的防护性镀层。锌对钢铁来说是自牺牲性金属。近年来,人们对锌合金越来越感兴趣,因为它比单一锌镀层具有更高的耐蚀性。主要综述并讨论了电镀锌和锌合金的特性(重点是耐蚀性)应用及发展。
关键词:镀锌;镀锌合金;合金特性;耐蚀性;应用和发展
对于无氰电镀工艺[1~7],发展的关键是镀液中“高级”更有效地有机添加剂的研制和应用,而其中光亮剂占有重要地位。目前,国内外多采用几种有机物复配的组合光亮剂,它们的综合效应和影响是显著的提高了阴极极化,能获得致密、平整、光亮和机械性能优良的镀层,并与基体结合力良好,例如碱性锌酸盐镀锌添加剂,已由胺类和环氧丙烷的缩合物发展为杂环化合物(如咪唑和吡啶及其衍生物等)与环氧丙烷的缩合物,能得到光亮,且综合力和韧性好的镀层,即使镀厚8~13μm弯折,也不暴皮,但进一步提高电流效率还是必要的;氯化物镀锌,近10年来发展比较快,目前使用的光亮剂多数是由主光亮剂(芳香族的醛类和酮类等)、载体光亮剂(聚醚化合物等)和辅助光亮剂(芳香族羟酸盐等)三种物质组合而成,他们具有对镀液和镀层性能的协同效应,性能和质量有了明显改善,促使氯化物镀锌发展很快。近几年来,镀锌添加剂有了不断的改进和提高,有效的和无毒(或低毒)的复合添加剂的研制成功,这类添加剂不仅质量高和用量低,使用量从过去的3%~5%(体积)降低到1.5%~3.0%,并能避免或减少在镀层中夹杂,从而也解决了钝化难和结合力的问题,在金属盐用量方面,已经注意到尽可能降低起始浓度,主盐中锌含量范围可控制在15%~26%为宜。在镀锌钝化方面,正在继续向着低污染、高耐蚀、多色彩方向发展,并取得了可喜的成绩。
通过分析发现:(1)合金镀层表面有微裂纹;(2)在钝化过程中,合金镀层的铁迁移进入钝化膜,并与铬酸形成了较稳定的化合物,因而大大提高了耐蚀性。
锌合金材料,国内外牌号对照表_工程材料知识_打工基本技术
无图版 | 风格切换 | 帮助 | Home 首页 | 论坛首页? 您尚未 登录 注册 | 推荐 | 搜索 | 社区服务 | 广告管理 | 银行 | 订阅本帖更新打工族论坛 ? 打工基本技术 ? 工程材料知识 ? 锌合金材料,国内外牌号对照表本页主题: 锌合金材料,国内外牌号对照表打印 | 加为IE 收藏 | 复制链接 | 收藏主题 | 上一主题 | 下一主题admi n打工族关心的,就是我关心的!为打工族服务,就是为人民服务!级别: 管理员 精华: 19发帖: 3013威望: 3051 点金钱: 7128 RMB贡献值: 0 点在线时间:413(小时)注册时间:2008-09-28最后登录:2010-08-09小 中 大引用 推荐 编辑 只看 复制 锌合金材料,国内外牌号对照表锌合金压铸件主要做:家具配件;手袋配件;皮带扣;扳手;首饰盒与相框; 奖章与LOGO 牌;钥匙扣与开瓶器; 圣诞礼品;手机饰物; 烟灰缸; 金属玩具,平衡块,偏心轮等机械零件。
1,国产锌合金产品系列参数成分包装物理性质铝:4% 抗拉强度:3P(牛顿/mm 2) 镁:0.038% 伸长率:5.1% 铜:0.70% 铁:0.02% 铅:0.003% 镉:0.001% 锡:0.001%重量(平均):10.3kg 尺寸(mm):480×95×45 整件重量(平均):980kg 整件数量(块):95 整件尺寸(mm):960×480×510密度g/cm 3:6.7熔点℃:386.1热膨胀系数K -1:27.4×10-6热导度w/mk :108.8热容量J/(kg·k):418.4电导度S/m(20℃):15.08×10-6(26%IACS)组别牌号机械性能抗拉强度 牛/毫米2伸长率 %布氏硬度 HB压铸ZZnAL4245 5.065ZZnAL4-0.5275 5.075ZZnAL4-1275 5.080Y41(ZZnAL4Cul)275 2.090砂型铸造ZZnAL10-52750.580ZZnAL9-1.52750.790金属铸造ZZnAL10-5294 1.0100ZZnAL9-1.5314 1.5105ZZnAL4-11770.580顶端Posted: 2009-01-25 10:03 | [楼主]admin打工族关心的,就是我关心的!为打工族服务,就是为人民服务!级别: 管理员精华: 19发帖: 3013威望: 3051 点金钱: 7128 RMB贡献值: 0 点在线时间:413(小时)注册时间:2008-09-28最后登录:2010-08-09小中大引用推荐编辑只看复制1.7锌合金:1.7.1锌合金的压铸性能:机械性能、电镀性能都非常好,是目前本厂所生产的铝、镁、锌中压铸性能最好一种压铸合金。
z开头化学单词
z开头化学单词
1. 锌(Zinc) - 一种化学元素,符号为Zn,原子序数为30。
2. 锌合金(Zinc Alloy) - 由锌和其他金属组成的合金,具有良好的耐腐蚀性和可塑性。
3. 氧化锌(Zinc Oxide) - 一种白色固体,具有高度的折射率和遮盖力,常用于制造防晒霜和颜料。
4. 硫化锌(Zinc Sulfide) - 一种半导体材料,具有高导电性和光敏性,常用于制造太阳能电池和光敏电阻器。
5. 氢氧化锌(Zinc Hydroxide) - 一种白色固体,可溶于水,常用于制造锌肥、防腐剂和涂料。
6. 碳酸锌(Zinc Carbonate) - 一种白色粉末,可用于制造陶瓷、玻璃、橡胶和塑料等化学品。
7. 氯化锌(Zinc Chloride) - 一种无色晶体,可溶于水,常用于制造电池、催化剂和消毒剂。
8. 硫酸锌(Zinc Sulfate) - 一种无色结晶体,可溶于水,常用于制造肥料、颜料和纺织品处理剂。
9. 硝酸锌(Zinc Nitrate) - 一种无色结晶体,可溶于水,常用于制造火药、肥料和烟火。
10. 氟化锌(Zinc Fluoride) - 一种白色固体,可溶于水,常用于制造陶瓷、玻璃和光学玻璃。
锌合金喷涂前处理流程
锌合金喷涂前处理流程英文回答:Before the zinc alloy spray coating process, there are several important steps in the pre-treatment process. The purpose of these steps is to ensure the surface of the zinc alloy is properly prepared for the spray coating, resulting in a high-quality and durable finish.The first step in the pre-treatment process is cleaning. The zinc alloy surface needs to be thoroughly cleaned to remove any dirt, grease, or other contaminants. This can be done using solvents, detergents, or mechanical methods such as brushing or blasting. The cleaning process ensures that the spray coating adheres properly to the surface and prevents any contamination that could affect the coating's performance.After cleaning, the next step is surface preparation. This involves roughening the surface of the zinc alloy tocreate a suitable texture for the spray coating to adhere to. Various methods can be used for surface preparation, such as sanding, grinding, or chemical etching. The choice of method depends on the specific requirements of the coating and the condition of the zinc alloy surface.Once the surface is prepared, the zinc alloy may need to undergo a pre-treatment process called conversion coating. Conversion coating involves applying a chemical solution to the surface to create a thin layer that improves the adhesion of the spray coating. This layer also provides corrosion resistance and enhances the overall durability of the coating. Common conversion coating methods for zinc alloys include chromate conversion coating and phosphate conversion coating.After conversion coating, the zinc alloy is ready for the spray coating process. The spray coating is typically applied using a spray gun or other spraying equipment. The coating material, which can be a zinc alloy or another type of coating, is evenly sprayed onto the surface of the zinc alloy. The thickness of the coating can be controlled byadjusting the spraying parameters, such as the spray pressure and nozzle size.Once the spray coating is applied, it needs to be cured or dried. Curing can be done through various methods, such as air drying, oven drying, or using infrared lamps. The curing process ensures that the coating fully adheres to the surface and achieves its desired properties, such as hardness, corrosion resistance, and appearance.In conclusion, the pre-treatment process for zinc alloy spray coating involves cleaning, surface preparation, conversion coating, spray coating, and curing. Each step plays a crucial role in ensuring the quality and durability of the final coating. By following these pre-treatment steps, the zinc alloy can be properly prepared for the spray coating process, resulting in a high-performance and long-lasting finish.中文回答:在进行锌合金喷涂前处理流程时,有几个重要的步骤。
DINEN锌及锌合金涂层
GERMAN STANDARD July 2008 p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55Metallic coatings –Electroplated coatings of zinc and zinc alloys on iron or steel with supplementary Cr(VI)-free treatmentDocument comsists of 13 pagesStandards Committee on Material Testing (NMP) within DINDIN 50979:2008-07c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55ContentsPageForeword................................................................................................................................................3 1. Field of application.................................................................................................................3 2. Normative references.............................................................................................................3 3. Designation:............................................................................................................................4 3.1. Electroplated coatings...........................................................................................................4 3.2. Passivating .............................................................................................................................4 3.3. Sealing.....................................................................................................................................4 3.4. Essential areas (functional area)..........................................................................................5 3.5. Examples of designations.....................................................................................................5 4. Order data................................................................................................................................5 5. Base materials.........................................................................................................................6 6. Coating methods / Process technology...............................................................................6 6.1. Pretreatment and deposition of the zinc or zinc alloy coating..........................................6 6.2. Post-treatments......................................................................................................................6 6.2.1. Passivations ...........................................................................................................................6 6.2.2. Seals........................................................................................................................................7 6.3. Drum/Trestle (parts handling)...............................................................................................7 6.3.1. Drum parts..............................................................................................................................7 6.3.2. Trestle parts............................................................................................................................7 6.4. Hydrogen embrittlement........................................................................................................7 6.4.1. Basics......................................................................................................................................7 6.4.2. Method selection....................................................................................................................8 6.4.2.1. Materials with strengths < 1 000 N/mm 2...............................................................................8 6.4.2.2. Materials with strengths ≥ 1 000 N/mm 2.............................................................................8 7. Requirements for the coatings and test methods...............................................................9 7.1. Coat thickness........................................................................................................................9 7.2. Layer adhesion.......................................................................................................................9 7.3. Cr(VI) absence......................................................................................................................10 7.4. Resistance in short-term corrosion tests..........................................................................10 7.4.1. General..................................................................................................................................10 7.4.2. Minimum resistance of passivated zinc or zinc alloy coatings.......................................10 8. Test report .............................................................................................................................12 8.1. General information.............................................................................................................12 8.2. Special data for coating high-strength materials withtensile strength ≥ 1 000 N/mm ².........................................................................................12 8.3. Test results (12)References (13)DIN 50979:2008-07b sc r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55ForewordThis document has been formulated by the working committee NA 062-01-76 AA “Electroplated coatings” of the Standards Committee for Material Testing (NMP).1. Field of applicationThis standard applies for electrodeposited and Cr(VI)-free passivated zinc coatings and zinc alloy coatings on iron materials. The zinc alloy coatings contain nickel or iron (zinc/nickel, zinc/iron) as alloy components.The main purpose in the application of the coatings or coating systems is to protect components made from ferrous materials against corrosion.This standard defines the designations for the coating systems indicated above and specifies minimum corrosion activities in the described test methods as well as the minimum layer thickness necessary for this.2. Normative referencesThe documents cited below are necessary for the application of this document. In the case of dated references, only the edition referred to applies. In the case of undated references, the last edition of the document (including all amendments) referred to applies.E DIN 50969-1:2008-02, Prevention of hydrogen-induced brittle fractures caused during production in high-strength steel components – Part 1: Preventative measures 1)DIN EN 1403, Corrosion protection of metals – Electrodeposited coatings – Method of specifying general requirements DIN EN 15205, Determination of hexavalent chromium in corrosion protection layers – Qualitative analysisDIN EN ISO 3497, Metallic coatings – Measurement of coating thickness – X-ray spectrometric methods DIN EN ISO 9227, Corrosion tests in artificial atmospheres – Salt spray testsDIN 50979:2008-07c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:553. Designation:3.1. Electroplated coatingsThe electroplated coatings consists of zinc or zinc alloys corresponding to Table 1.Table 1 – Designation of the electroplated coatingsCode Definition Zn Zinc coating without added alloy partnerZnFe Zinc alloy coating with a percent by weight of 0.3 % to 1.0 % iron ZnNiZinc alloy coating with a percent by weight of 12 % to 16 % nickel3.2. PassivatingPassivating designates the production of conversion layers by treatment with suitable Cr(VI)-free solutions in order to improve the corrosion resistance of the coatings. Colourations are possible.As chromium (VI)-free passivations are new systems, a new nomenclature according to Table 2 has been adopted.Table 2 – Passivations3.3. SealingSeals increase the corrosion resistance and usually have a layer thickness up to 2 µm. Seals consist of Cr(VI)-free organic and/or inorganic compounds.Products that can be removed with cold cleaner (e.g. based on oil, grease, wax) are not considered as a seal within the scope of this standard.The effect of seals on the functional properties of the component, e.g. transition resistance, weldability, compatibility with working substance, bonded joints, are to be evaluated on a component-specific basis.DIN 50979:2008-07b sc r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55If there are special requirements for the surface functionality, the use of the seal as well as the type of sealing agent must be agreed, as the range of potential surface modifications through sealing is large. REMARK The interference colours formed through passivation are usually also remedied through sealing.Table 3 – SealsCode Description T0 Without seal T2 With seal3.4. Essential areas (functional area)In the case of components with complex shapes, in particular components with hollow spaces, it ispossible that the requirements for the resistance in the short-term corrosion tests and for the minimum thickness cannot be complied with in all areas of the electroplated surface. In these cases, the areas essential for the surface protection must be marked with a dot-dash line on the drawing.If no essential area is specified by the customer, the definition according to DIN EN 1403 applies.3.5. Examples of designationsDesignation for a zinc/nickel alloy coating on a component made from steel (Fe), a smallest local layer thickness of 8 µm (8) and iridescent passivated (Cn):Eletroplated coating DIN 50979 – Fe//ZnNi8//Cn//T0Designation for a zinc/iron alloy coating on a component made from steel (Fe), a smallest local layer thickness of 8 µm (8) and black passivated (Fn) and sealed:Eletroplated coating DIN 50979 – Fe//ZnFe8//Fn//T2For further information on the designation, see DIN EN 1403.4. Order dataThe customer must provide at least the following information to the coating company: a) Component strengths (with consideration of 6.4);b) Data on the component: Basic material, component manufacturing process, heat treatments; c) Data on the essential areas in conjunction with 3.4; d) Designation of the coating to be applied (see 3.5).If required, more detailed requirements for the coating properties and testing (e.g. appearance, sliding properties, media resistance) can be specified.If necessary, additional information on requirements or restrictions for the coating process can be given.DIN 50979:2008-07c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:555. Base materialsThe coating of components from low-alloy steels with coatings according to this standard is state-of-the-art. If other iron-based materials are present (e.g. cast or sintered materials, materials with distinct components of passivation-friendly alloy elements or also materials with special strength properties), it may be necessary to specially adapt the treatment processes (pretreatment, coating, post-treatment) and, if need be, implement additional measures in order to comply with the requirements of this standard. The coating company therefore needs to have detailed information on the composition, properties and production process of the components to be coated.When coating high-strength steel parts with a tensile strength ≥ 1 000 N/mm², the preproduction (e.g. material selection, hardening, joining) has to be carried out in such way that damage due to delayed hydrogen-induced brittle fractures is eliminated with a high degree of certainty.The components to be coated must not exhibit any material, processing or surface faults which can affect the corrosion protection and/or the appearance of the coatings in an adverse or unexpected manner.The impurities (corrosion products or scale, oil, grease, dirt etc.) occurring on the surfaces of the parts to be treated must be able to be removed in the cleaning and pretreatment processes normally utilised. An agreement concerning the surface quality might be necessary, if applicable.6. Coating methods / Process technology6.1. Pretreatment and deposition of the zinc or zinc alloy coatingIn order to ensure a reliable process sequence, the complete pretreatment and coating process, physical data (treatment times, temperatures) as well as all process chemicals must be recorded, documented and optimised if need be. The individual process intervention limits as well as the frequency of the monitoring and analysis processes must be defined. The resultant measures must be described and archived by the coating company.A typical process sequence is shown below: a) Alkaline degreasing (coordinated in line with the existing oil/grease-based surface films); b) Pickling (usually HCl, inhibited); c) Alkaline electrolytic degreasing (preferably anodic); d) Metal deposition; e) Post-treatment through passivation and, if necessary, sealing; f) Drying.6.2. Post-treatments6.2.1. PassivationsPassivations are conversion coatings and are created by immersing or spraying the components with passivation solutions. At the same time, the deposited coating reacts with the passivation solution to form a thin film protecting the metallic coating. Part of the coating is usually dissolved by the reaction.DIN 50979:2008-07b sc r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:556.2.2. SealsAdditional organic and/or inorganic substances are applied onto or embedded in the passivation during the sealing.Layer accumulations can result, depending on the component geometry and process. These must be minimised, if possible, through suitable measures (e.g. blowing-off for trestle parts, movement of drum parts).6.3. Drum/Trestle (parts handling)6.3.1. Drum partsTypical drum parts are bolts, nuts and other small components. The components are introduced into the coating drums as bulk material then pretreated and provided with the coating while the drum is rotating. The drum rotation ensures that all components are coated comparably. However, surface damage can result due to the movement of the parts. It is possible to minimise the damage e.g. through reduced drum rotation or lower drop heights when emptying the drum. Nevertheless, drum coatings usually yield a lower corrosion resistance than is the case with trestle coatings. 6.3.2. Trestle parts This involves parts which have to be coated on the trestle owing to their size, design or, possibly, special requirements. During this, the parts are coated while positioned on trestles. Depending on the position of the components on the trestle, different layer properties (mainly layer thickness of the metallic coating) can result Optimisation is possible, for example, by using component-specific trestles.6.4. Hydrogen embrittlement6.4.1. BasicsThe steel parts to be coated can absorb hydrogen during the electroplating treatment for creating coatings according to this standard, e.g. during pickling, electrolytic cleaning and during the electroplating metal deposition. Active hydrogen diffused in the metal lattice preferably at energetically favourable areas (lattice structural faults, areas of high stress concentration).Hydrogen-induced, delayed brittle fractures can arise from this, while the critical interaction of: – material and material state (strength, hardness); – hydrogen absorption during the pretreatment and coating process; – mechanical parts stress, also locally depending on the design of the parts. have to be taken into account in particular.DIN 50979:2008-07 c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55Figure 1 – Interaction of material, mechanical stress and hydrogen absorptionThe critical parameters for the material are the tensile strength and toughness. The hazard due to hydrogen increases as the strength increases.All steel parts with a tensile strength of R m ≥ 1 000 N/mm 2 (also locally restricted, e.g. for case-hardened or cold-formed joints or in weld seam areas) are deemed to be high-strength and are classified as critical.6.4.2. Method selection6.4.2.1. Materials with strengths < 1 000 N/mm 2The choice of treatment method is free insofar as the requirements comply with this standard and no damage to the usage properties occurs. 6.4.2.2. Materials with strengths ≥ 1 000 N/mm 2 Protection against delayed brittle fracture (hydrogen embrittlement) is paramount for the coating.The surface treatment method must be realised so that damage due to delayed hydrogen-induced brittle fractures is eliminated with a high degree of certainty. The procedure for dealing with potential defective coatings (peeling-off of coatings and new coatings) must be examined and consequences resulting from this described.The measures for minimising the risk of delayed hydrogen-induced brittle fractures and the processes necessary for this must be agreed between the customer/manufacturer and the coating company.The required process inspection and process testing accompanying production can typically be carried via stress tests on a sufficient number of suitable hydrogen-sensitive samples. The information given in E DIN 50969-1 must be observed.MaterialMechanical stress (also internal or localstress)Hydrogen in thematerialFracture, at critical interactionDIN 50979:2008-07b sc r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55Heat treatments are necessary to avoid brittle fractures. These must be carried out after the electroplating for the hydrogen effusion and, if necessary, also before the electroplating to relieve component internal stresses. For this, see also E DIN 50969-1:2008-02, 3.4 and 4.4.It is particularly important to ensure that the applied metallic coating as a diffusion barrier does not prevent the success of the heat treatment for the hydrogen effusion. The properties of the parts must not be altered detrimentally. REMARK Reference values for a heat treatment for the hydrogen effusion are given in Table 4:Table 4 – Reference values for heat treatment for hydrogen effusion after an electroplatingtreatment corresponding to this standard Tensile strengthR m N/mm 2 Heat treatment conditions in the air circulation furnace minimum retentiontime at parts temperature (215 ± 15) °Ch1,000 to 1,250 6 1,251 to 1,450 12 1,451 to 1,600 20 1,601 to 2,00024In conjunction with the coating of components at potential risk from hydrogen, tests as per E DIN 50969-2 must be carried out in addition to the above measures.7. Requirements for the coatings and test methods7.1. Coat thicknessThe methods according to Table 5 give minimum material thicknesses (d min ) and apply for the essential areas.The thicknesses of the zinc and zinc alloy coatings should preferably be determined with the X-ray spectrometric method as per DIN EN ISO 3497.Other applicable layer thickness measuring methods are e.g.: – Microscopic measurement as per DIN EN ISO 1463; – Coulometric method as per DIN EN ISO 2177; – Magnetic method as per DIN EN ISO 2178The layer thickness of passivations and seals is not included in the consideration.7.2. Layer adhesionThe test parts are stored for 30 minutes at (220 ± 10) °C and then immediately quenched in water with a temperature of 15 °C to 25 °C. Flaking and blister formation must not occur in the coating (thermal shock test as per DIN EN ISO 2819). REMARK A bending or surface grinding of the components, if feasible, is recommended as a further test for theadhesive strength.DIN 50979:2008-07c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:557.3. Cr(VI) absenceThe applied layer must be chromium-(VI)-free in agreement with DIN EN 15205.7.4. Resistance in short-term corrosion tests7.4.1. GeneralSalt spray tests as per DIN EN ISO 9227-NSS must be carried out. REMARK The corrosion performance of the coated components in use cannot be concluded from the results of theshort-term corrosion tests without more information. When using the components, very different load profiles(temperature, moisture, flow …) can occur, while only the specified, limited test climates occur in the short-term corrosion tests.7.4.2. Minimum resistance of passivated zinc or zinc alloy coatingsDepending on the coating system and test, minimum test times are specified concerning the test duration by which no corrosion products of the coating (white rust) or basic material (red rust) may occur. The essential areas of the tested component are to be evaluated.The requirements for the minimum resistance apply in the “coated state” as well as after a heat storage at 120 °C/24 h before the corrosion test. The heat storage is not necessary for the coating system Zn//An//T0.Non-agreed treatments (e.g. waxing, greasing) which can improve the resistance in the corrosion tests are not permissible.Influences (e.g. through sorting processes, transport, assembly or aggressive media), which can damage the corrosion protection properties of the coatings must be avoided before the corrosion test. An evaluation or limitation of the extent of the damage is not an object of this standard.The attainable corrosion resistance of coatings can also depend greatly on the components to be coated (material, geometry) in addition to the coating system and coating quality. In the case of components where an optimum coating quality cannot be achieved without further measures (e.g. due to material defects or complex component geometry), an agreement concerning lower corrosion resistance might be necessary.DIN 50979:2008-07b sc r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55Table 5 – Minimum layer thicknesses and test duration for passivated (transparent, iridescent)zinc and zinc alloy coatings for testing as per DIN EN ISO 9227-NSSMinimum test durationhType of surface protection layerVersion type Methodwithout coating corrosionwithout basic materialcorrosion(depending on the Zn or Zn alloy layer thickness)5 µm 8 µm 12 µm Drum 8 48 72 96 Electroplated zinc coating,transparent passivatedZn//An//T0Trestle 16 72 96 120 Drum 72 144 216 288 Electroplated zinc coating,iridescent passivatedZn//Cn//T0Trestle 120 192 264 336 Drum 120 192 264 360 Electroplated zinc coating,iridescent passivated and sealedZn//Cn//T2 Trestle 168 264 360 480 Drum 96 168 240 312 Electroplated zinc-iron alloy coating, iridescent passivatedZnFe//Cn//T0Trestle 168 240 312 384 Drum144 216 288 384 Electroplated zinc-iron alloy coating, iridescent passivated and sealed ZnFe//Cn//T2Trestle 216 312 408 528 Drum 120 480 720 720a Electroplated zinc-nickel alloy coating, iridescent passivatedZnNi//Cn//T0Trestle 192 600 720 720a Drum168 600 720 720a Electroplated zinc-nickel alloy coating, iridescent passivated and sealedZnNi//Cn//T2Trestle360720720a720aaTo limit the expense of the tests, the requirements are restricted to 720 h.DIN 50979:2008-07c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55Table 6 – Minimum layer thicknesses and test duration for passivated (black) zinc and zinc alloycoatings for testing as per DIN EN ISO 9227-NSSMinimum test durationhType of surface protection layerVersion type Methodwithout coating corrosionwithout basic materialcorrosion(depending on the Zn or Zn alloy layer thickness)5 µm 8 µm 12 µm Drum 120 192 264 360 Electroplated zinc-iron alloy coating, black passivated and sealed ZnFe//Fn//T2Trestle168 264 360 480 Drum 168 480 720 720a Electroplated zinc-nickel alloy coating, black passivated and sealed ZnNi//Fn//T2Trestle240 600 720 720a Drum 48 480 720 720a Electroplated zinc-nickel alloy coating, black passivatedZnNi//Fn//T0Trestle72600720720aaTo limit the expense of the tests, the requirements are restricted to 720 h.The occurrence of mild visual changes (grey fog) without voluminous character is permissible and does not represent any impairment to the corrosion protection.There are still no universally recognised values for the corrosion resistance at present for electroplated zinc coatings, black passivated and sealed (Zn//Fn//T2).8. Test report8.1. General informationThe following must be tested by the coating company: a) Reference to this standard (i.e. DIN 50979);b) Conformity of the coatings with the requirements of this standard; c) Coating company for the surface protection;d) Applied technology (e.g. trestle or drum coating and applied coating system).8.2. Special data for coating high-strength materials with tensile strength ≥ 1 000N/mm²Designation and confirmation of the measures implemented for minimising the risk of delayed hydrogen-induced brittle fractures.8.3. Test resultsResults of the technological tests according to this standard (see section 7). The tests as per 7.2, 7.3, 7.4 must be carried out accompanying the process. The test bodies (supplier and/or subcontractor and/or independent test institute) are to be appointed.DIN 50979:2008-07b sc r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55ReferencesDIN EN ISO 1463, Metallic and oxide coatings – Measurement of coating thickness – Microscopical methodDIN EN ISO 2177, Metallic coatings – Measurement of coating thickness – Coulometric method by anodic dissolutionDIN EN ISO 2178, Non-magnetic coatings on magnetic substrates – Measurement of coating thickness – Magnetic methodDIN EN ISO 2819, Metallic coatings on metallic substrates – Electrodeposited and chemically deposited coatings – Review of methods available for testing adhesion。
锌合金成分比例
锌合金是指以锌为主要成分,并添加其他合金元素来改善其性能和特性的合金材料。
具体的锌合金成分比例可以根据不同的合金类型和应用领域而有所差异。
以下是几种常见的锌合金及其典型的成分比例:
锌铝合金(Zinc-Aluminum Alloy):锌铝合金常用于压铸和热处理工艺。
典型的成分比例是锌含量约为95-99.5%,铝含量约为0.5-5%。
这种合金具有较高的强度和耐腐蚀性能。
锌铜合金(Zinc-Copper Alloy):锌铜合金常用于电子和电器行业,以及装饰和艺术品制作。
典型的成分比例是锌含量约为95-99.5%,铜含量约为0.5-5%。
这种合金具有良好的导电性和热传导性。
锌镁合金(Zinc-Magnesium Alloy):锌镁合金常用于航空航天、汽车和船舶等领域。
典型的成分比例是锌含量约为92-99%,镁含量约为0.1-6%。
这种合金具有较高的强度和耐腐蚀性能。
锌铝镁合金(Zinc-Aluminum-Magnesium Alloy):锌铝镁合金是一种新型的高强度合金,常用于航空航天和汽车制造。
典型的成分比例是锌含量约为92-97%,铝含量约为2-8%,镁含量约为0.1-2%。
这种合金具有优异的强度和轻量化特性。
锌合金sn的环境编码
锌合金Sn的环境编码1. 引言锌合金(Zinc Alloy)是一种由锌与其他金属元素混合而成的合金材料。
其中,锌(Zn)是主要成分,其他常见的合金元素包括铝(Al)、铜(Cu)、镁(Mg)等。
锌合金具有优良的物理性能和化学性能,在工业领域得到广泛应用。
为了准确描述和标识不同类型的锌合金,需要进行环境编码。
2. 环境编码介绍环境编码是一种将材料特性转换为数字代码的方法,用于标识和描述材料在不同环境中的性能。
在锌合金领域,环境编码可以帮助人们快速了解和比较不同类型的锌合金材料。
3. 锌合金Sn的环境编码体系为了实现对锌合金Sn进行准确描述和标识,需要建立一个完整的环境编码体系。
该体系应包括以下几个方面:3.1 主要成分代码主要成分代码用于表示锌合金中主要含量超过5%的元素。
例如,代码“Zn”表示该锌合金主要由锌组成。
3.2 合金元素代码合金元素代码用于表示锌合金中含量较低的元素。
常见的合金元素包括铝、铜、镁等。
例如,代码“Al”表示该锌合金中含有铝。
3.3 物理性能代码物理性能代码用于表示锌合金的物理性能,如硬度、强度、韧性等。
例如,代码“H”表示该锌合金具有较高的硬度。
3.4 化学性能代码化学性能代码用于表示锌合金的化学性质,如耐腐蚀性、导电性等。
例如,代码“C”表示该锌合金具有良好的耐腐蚀性。
3.5 表面处理代码表面处理代码用于表示对锌合金表面进行的处理方法,如电镀、喷涂等。
例如,代码“E”表示该锌合金经过电镀处理。
4. 示例和应用以下是一个示例的环境编码:Zn-Al-H-C-E。
根据编码可知,该锌合金主要成分为锌和铝(Zn-Al),具有较高硬度(H)和良好的耐腐蚀性(C),并经过了电镀处理(E)。
通过环境编码,人们可以快速了解该锌合金的主要特性,从而在不同应用场景中进行选择和比较。
例如,在需要高硬度和耐腐蚀性的场合,可以选择这种锌合金进行使用。
5. 环境编码的优势环境编码具有以下几个优势:5.1 标准化环境编码提供了一种标准化的方法,使得不同厂家和用户可以使用统一的编码体系进行描述和标识。
压铸锌合金英文缩写
压铸锌合金英文缩写以下是为您生成的 20 个关于“压铸锌合金”的相关内容:---1. 英文缩写:Die Cast Zinc Alloy(缩写:DCZA)- 英语释义:A type of alloy made of zinc that is formed by the die casting process.- 短语:Die cast zinc alloy components(压铸锌合金部件)- 单词:die(模具)、cast(铸造)、zinc(锌)、alloy(合金) - 用法:The die cast zinc alloy is widely used in the automotive industry.(压铸锌合金在汽车工业中被广泛使用。
)- 双语例句:- 这种产品是由压铸锌合金制成的。
This product is made of die cast zinc alloy.- 压铸锌合金具有良好的性能。
Die cast zinc alloy has good performance.2. 英文缩写:Zinc Diecasting Alloy(缩写:ZDA)- 英语释义:An alloy based on zinc and suitable for diecasting.- 短语:Zinc diecasting alloy parts(压铸锌合金零件)- 单词:zinc(锌)、diecasting(压铸)、alloy(合金)- 用法:The properties of zinc diecasting alloy make it suitable for various applications.(压铸锌合金的性能使其适用于各种应用。
) - 双语例句:- 我们需要高质量的压铸锌合金。
We need high-quality zinc diecasting alloy.- 压铸锌合金的成本相对较低。
锌合金
2. 时效作用
锌合金 的组织主要 由含Al和Cu 的富锌固溶 体和含Zn的 富Al固溶体 所组成,它 们的溶解度 随温度的下 降而降低。 但由于压铸 件的凝固速 度极快,因 此到室温 时,固溶体 的溶解度是 大
3. 可进行表 面处理: 电镀、喷 涂、喷漆 、抛光、 研磨等。
4. 熔化 与压铸时不 吸铁,不腐 蚀压型,不 粘模。
5. 有很好的 常温机械 性能和耐 磨性。
6. 熔点低, 在385℃ 熔化,容 易压铸成 型。
锌合金拉手
使用过程中 须注意的问 题:
1. 抗蚀 性差。当合 金成分中杂 质元素铅、 镉、锡超过 标准时,导 致铸件老化 而发生变 形,表现为 体积胀大, 机械性能特 别是塑性显 著下降,时 间长了甚至 破裂。
英文名: zinc alloy
低温锌合金
锌合金的主 要添加元素 有铝,铜和镁 等.锌合金按 加工工艺可 分为形变与 铸造锌合金 两类.铸造锌 合金流动性 和耐腐蚀性 较好,适用于 压铸仪表,汽 车零件外壳 等。
编辑本段 锌合金成 分及铸件 品质 一、锌合 金的特点
1. 相对 比重大。
2. 铸造 性能好,可 以压铸形状 复杂、薄壁 的精密件, 铸件表面光 滑。
锌合 金彩钢防 盗窗,所 用材质和 高速公路 护栏、高 压电塔等 野外设施 相同。高 强度、外 观精美、 色泽鲜艳 、质优价 廉,是不 锈钢防护 网的最佳 替代品 编辑本段 锌合金自 润滑轴承 及其生产 工艺
申请专利号
CN0315279 4.9
锌合金镀黑锌白色粉末
锌合金镀黑锌白色粉末英文回答:Zinc alloy is a popular choice for various applications due to its excellent corrosion resistance, high strength, and low cost. To enhance its aesthetic appeal and provide additional protection, black zinc plating is often applied to the surface of zinc alloy. This black zinc plating creates a dark, uniform coating that gives the alloy a sleek and modern appearance.The process of black zinc plating involves immersing the zinc alloy in a solution containing black chromate. This solution contains various chemicals, including chromic acid, sulfuric acid, and sodium dichromate. When the zinc alloy is immersed in the solution, a chemical reaction occurs, resulting in the formation of a black oxide layer on the surface of the alloy.After the black zinc plating process is complete, thealloy is rinsed and dried to remove any excess solution. The resulting black coating is durable and provides excellent corrosion resistance, making it suitable for various applications where aesthetics and protection are important.In addition to black zinc plating, white powder coating can also be applied to zinc alloy surfaces. This powder coating is a dry finishing process that involves applying a free-flowing, electrostatically charged powder to the surface of the alloy. The powder is then cured under heat to form a hard, protective coating.White powder coating offers several advantages for zinc alloy surfaces. It provides excellent resistance to chipping, scratching, and fading, ensuring long-lasting durability. The coating also offers good chemical resistance, protecting the alloy from various substances that may come into contact with it.To achieve a white powder coating on zinc alloy, a wide range of powder coatings is available on the market. Thesecoatings come in different formulations, allowing for customization in terms of color, texture, and gloss. The coating can be applied using various methods, such as spraying or electrostatic deposition, depending on the specific requirements of the application.中文回答:锌合金镀黑锌是为了增强其美观度和提供额外的保护而常用的方法。
锌合金门钢雕工艺流程
锌合金门钢雕工艺流程英文回答:The process of creating zinc alloy door steel carvings involves several steps to achieve the desired design and finish.Step 1: Design and Planning.The first step in the process is to create a design for the door steel carving. This may involve sketching the design by hand or using computer-aided design (CAD) software to create a digital model. Once the design is finalized, the dimensions and details are carefully planned to ensure the carving will fit the door and meet theclient's specifications.Step 2: Material Preparation.Next, the zinc alloy material is prepared for thecarving process. This may involve melting the zinc alloy and pouring it into molds to create the desired shape and size for the door steel carving. The material is then allowed to cool and harden before moving on to the next step.Step 3: Carving and Engraving.Once the material is prepared, the carving and engraving process begins. This may involve using hand tools or machinery to carefully sculpt the zinc alloy material into the desired design. Intricate details and patterns are engraved onto the surface to add depth and visual interest to the door steel carving.Step 4: Finishing.After the carving and engraving is complete, the door steel carving is carefully finished to achieve the desired look. This may involve polishing the surface to create a smooth and shiny finish, or applying coatings and finishes to add color and protection to the zinc alloy material.Step 5: Quality Control.Finally, the finished door steel carving undergoes a thorough quality control process to ensure that it meets the highest standards of craftsmanship and durability. Any imperfections or flaws are carefully addressed before the carving is ready for installation.中文回答:制作锌合金门钢雕的工艺流程涉及几个步骤,以实现所需的设计和完成效果。
锌合金材料
锌合金材料,国内外牌号对照表锌合金压铸件主要做:家具配件;手袋配件;皮带扣;扳手;首饰盒与相框; 奖章与LOGO牌; 钥匙扣与开瓶器; 圣诞礼品;手机饰物; 烟灰缸; 金属玩具,平衡块,偏心轮等机械零件。
1,国产锌合金产品系列参数成分包装物理性质铝:4% 抗拉强度:3P(牛顿/ mm2)镁:0.038% 伸长率:5.1% 铜:0.70%铁:0.02%铅:0.003%镉:0.001%锡:0.001% 重量(平均):10.3kg尺寸(mm):480×95×45整件重量(平均):980kg整件数量(块):95整件尺寸(mm):960×480×510密度g/cm3:6.7熔点℃:386.1热膨胀系数K-1:27.4×10-6热导度w/mk:108.8热容量J/(kg·k):418.4电导度S/m(20℃):15.08×10-6(26%IACS)组别牌号机械性能抗拉强度牛/毫米2伸长率%布氏硬度HB压铸ZZnAL4 245 5.0 65 ZZnAL4-0.5 275 5.0 75 ZZnAL4-1 275 5.0 80 Y41(ZZnAL4Cul)275 2.0 90砂型铸造ZZnAL10-5 275 0.5 80 ZZnAL9-1.5 275 0.7 90金属铸造ZZnAL10-5 294 1.0 100 ZZnAL9-1.5 314 1.5 105 ZZnAL4-1 177 0.5 801.7锌合金:1.7.1锌合金的压铸性能:机械性能、电镀性能都非常好,是目前本厂所生产的铝、镁、锌中压铸性能最好一种压铸合金。
压铸件的表面粗糙度、强度、延伸性都很好。
由于锌的流动性很好所以可以做较薄的产品(壁厚可做到0.5),锌最大的缺陷是比重太大,故产品的重量及成本较高,较适合做小件产品。
同时,锌合金尺寸稳定性较差。
1.7.2比重:纯锌:6.6g/cm3;压铸锌合金:6.7-6.9g/cm3;1.7.3熔点:纯锌:419℃;锌合金:387-390℃;压铸温度:390-410℃1.7.4锌合金的种类:通常锌合金可分为三类:1.7.4.1纯锌:纯度99.9%以上,用于电镀1.7.4.3加工锌:纯度、98%以上,用于照相制版、胶印制版、电镀等1.7.4.4铸造锌合金:合金锌通常有两种;1.7.4.4.1翻砂锌合金:含有8.0-12.0%的锌合金,用于砂型铸造。
DIN50979_EN锌及锌合金涂层
GERMAN STANDARD July 2008 p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55Metallic coatings –Electroplated coatings of zinc and zinc alloys on iron or steel with supplementary Cr(VI)-free treatmentDocument comsists of 13 pagesStandards Committee on Material Testing (NMP) within DINDIN 50979:2008-07c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55ContentsPageForeword................................................................................................................................................3 1. Field of application.................................................................................................................3 2. Normative references.............................................................................................................3 3. Designation:............................................................................................................................4 3.1. Electroplated coatings...........................................................................................................4 3.2. Passivating .............................................................................................................................4 3.3. Sealing.....................................................................................................................................4 3.4. Essential areas (functional area)..........................................................................................5 3.5. Examples of designations.....................................................................................................5 4. Order data................................................................................................................................5 5. Base materials.........................................................................................................................6 6. Coating methods / Process technology...............................................................................6 6.1. Pretreatment and deposition of the zinc or zinc alloy coating..........................................6 6.2. Post-treatments......................................................................................................................6 6.2.1. Passivations ...........................................................................................................................6 6.2.2. Seals........................................................................................................................................7 6.3. Drum/Trestle (parts handling)...............................................................................................7 6.3.1. Drum parts..............................................................................................................................7 6.3.2. Trestle parts............................................................................................................................7 6.4. Hydrogen embrittlement........................................................................................................7 6.4.1. Basics......................................................................................................................................7 6.4.2. Method selection....................................................................................................................8 6.4.2.1. Materials with strengths < 1 000 N/mm 2...............................................................................8 6.4.2.2. Materials with strengths ≥ 1 000 N/mm 2.............................................................................8 7. Requirements for the coatings and test methods...............................................................9 7.1. Coat thickness........................................................................................................................9 7.2. Layer adhesion.......................................................................................................................9 7.3. Cr(VI) absence......................................................................................................................10 7.4. Resistance in short-term corrosion tests..........................................................................10 7.4.1. General..................................................................................................................................10 7.4.2. Minimum resistance of passivated zinc or zinc alloy coatings.......................................10 8. Test report .............................................................................................................................12 8.1. General information.............................................................................................................12 8.2. Special data for coating high-strength materials withtensile strength ≥ 1 000 N/mm ².........................................................................................12 8.3. Test results (12)References (13)DIN 50979:2008-07b sc r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55ForewordThis document has been formulated by the working committee NA 062-01-76 AA “Electroplated coatings” of the Standards Committee for Material Testing (NMP).1. Field of applicationThis standard applies for electrodeposited and Cr(VI)-free passivated zinc coatings and zinc alloy coatings on iron materials. The zinc alloy coatings contain nickel or iron (zinc/nickel, zinc/iron) as alloy components.The main purpose in the application of the coatings or coating systems is to protect components made from ferrous materials against corrosion.This standard defines the designations for the coating systems indicated above and specifies minimum corrosion activities in the described test methods as well as the minimum layer thickness necessary for this.2. Normative referencesThe documents cited below are necessary for the application of this document. In the case of dated references, only the edition referred to applies. In the case of undated references, the last edition of the document (including all amendments) referred to applies.E DIN 50969-1:2008-02, Prevention of hydrogen-induced brittle fractures caused during production in high-strength steel components – Part 1: Preventative measures 1)DIN EN 1403, Corrosion protection of metals – Electrodeposited coatings – Method of specifying general requirements DIN EN 15205, Determination of hexavalent chromium in corrosion protection layers – Qualitative analysisDIN EN ISO 3497, Metallic coatings – Measurement of coating thickness – X-ray spectrometric methods DIN EN ISO 9227, Corrosion tests in artificial atmospheres – Salt spray testsDIN 50979:2008-07c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:553. Designation:3.1. Electroplated coatingsThe electroplated coatings consists of zinc or zinc alloys corresponding to Table 1.Table 1 – Designation of the electroplated coatingsCode Definition Zn Zinc coating without added alloy partnerZnFe Zinc alloy coating with a percent by weight of 0.3 % to 1.0 % iron ZnNiZinc alloy coating with a percent by weight of 12 % to 16 % nickel3.2. PassivatingPassivating designates the production of conversion layers by treatment with suitable Cr(VI)-free solutions in order to improve the corrosion resistance of the coatings. Colourations are possible.As chromium (VI)-free passivations are new systems, a new nomenclature according to Table 2 has been adopted.Table 2 – Passivations3.3. SealingSeals increase the corrosion resistance and usually have a layer thickness up to 2 µm. Seals consist of Cr(VI)-free organic and/or inorganic compounds.Products that can be removed with cold cleaner (e.g. based on oil, grease, wax) are not considered as a seal within the scope of this standard.The effect of seals on the functional properties of the component, e.g. transition resistance, weldability, compatibility with working substance, bonded joints, are to be evaluated on a component-specific basis.DIN 50979:2008-07b sc r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55If there are special requirements for the surface functionality, the use of the seal as well as the type of sealing agent must be agreed, as the range of potential surface modifications through sealing is large. REMARK The interference colours formed through passivation are usually also remedied through sealing.Table 3 – SealsCode Description T0 Without seal T2 With seal3.4. Essential areas (functional area)In the case of components with complex shapes, in particular components with hollow spaces, it ispossible that the requirements for the resistance in the short-term corrosion tests and for the minimum thickness cannot be complied with in all areas of the electroplated surface. In these cases, the areas essential for the surface protection must be marked with a dot-dash line on the drawing.If no essential area is specified by the customer, the definition according to DIN EN 1403 applies.3.5. Examples of designationsDesignation for a zinc/nickel alloy coating on a component made from steel (Fe), a smallest local layer thickness of 8 µm (8) and iridescent passivated (Cn):Eletroplated coating DIN 50979 – Fe//ZnNi8//Cn//T0Designation for a zinc/iron alloy coating on a component made from steel (Fe), a smallest local layer thickness of 8 µm (8) and black passivated (Fn) and sealed:Eletroplated coating DIN 50979 – Fe//ZnFe8//Fn//T2For further information on the designation, see DIN EN 1403.4. Order dataThe customer must provide at least the following information to the coating company: a) Component strengths (with consideration of 6.4);b) Data on the component: Basic material, component manufacturing process, heat treatments; c) Data on the essential areas in conjunction with 3.4; d) Designation of the coating to be applied (see 3.5).If required, more detailed requirements for the coating properties and testing (e.g. appearance, sliding properties, media resistance) can be specified.If necessary, additional information on requirements or restrictions for the coating process can be given.DIN 50979:2008-07c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:555. Base materialsThe coating of components from low-alloy steels with coatings according to this standard is state-of-the-art. If other iron-based materials are present (e.g. cast or sintered materials, materials with distinct components of passivation-friendly alloy elements or also materials with special strength properties), it may be necessary to specially adapt the treatment processes (pretreatment, coating, post-treatment) and, if need be, implement additional measures in order to comply with the requirements of this standard. The coating company therefore needs to have detailed information on the composition, properties and production process of the components to be coated.When coating high-strength steel parts with a tensile strength ≥ 1 000 N/mm², the preproduction (e.g. material selection, hardening, joining) has to be carried out in such way that damage due to delayed hydrogen-induced brittle fractures is eliminated with a high degree of certainty.The components to be coated must not exhibit any material, processing or surface faults which can affect the corrosion protection and/or the appearance of the coatings in an adverse or unexpected manner.The impurities (corrosion products or scale, oil, grease, dirt etc.) occurring on the surfaces of the parts to be treated must be able to be removed in the cleaning and pretreatment processes normally utilised. An agreement concerning the surface quality might be necessary, if applicable.6. Coating methods / Process technology6.1. Pretreatment and deposition of the zinc or zinc alloy coatingIn order to ensure a reliable process sequence, the complete pretreatment and coating process, physical data (treatment times, temperatures) as well as all process chemicals must be recorded, documented and optimised if need be. The individual process intervention limits as well as the frequency of the monitoring and analysis processes must be defined. The resultant measures must be described and archived by the coating company.A typical process sequence is shown below: a) Alkaline degreasing (coordinated in line with the existing oil/grease-based surface films); b) Pickling (usually HCl, inhibited); c) Alkaline electrolytic degreasing (preferably anodic); d) Metal deposition; e) Post-treatment through passivation and, if necessary, sealing; f) Drying.6.2. Post-treatments6.2.1. PassivationsPassivations are conversion coatings and are created by immersing or spraying the components with passivation solutions. At the same time, the deposited coating reacts with the passivation solution to form a thin film protecting the metallic coating. Part of the coating is usually dissolved by the reaction.DIN 50979:2008-07b sc r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:556.2.2. SealsAdditional organic and/or inorganic substances are applied onto or embedded in the passivation during the sealing.Layer accumulations can result, depending on the component geometry and process. These must be minimised, if possible, through suitable measures (e.g. blowing-off for trestle parts, movement of drum parts).6.3. Drum/Trestle (parts handling)6.3.1. Drum partsTypical drum parts are bolts, nuts and other small components. The components are introduced into the coating drums as bulk material then pretreated and provided with the coating while the drum is rotating. The drum rotation ensures that all components are coated comparably. However, surface damage can result due to the movement of the parts. It is possible to minimise the damage e.g. through reduced drum rotation or lower drop heights when emptying the drum. Nevertheless, drum coatings usually yield a lower corrosion resistance than is the case with trestle coatings. 6.3.2. Trestle parts This involves parts which have to be coated on the trestle owing to their size, design or, possibly, special requirements. During this, the parts are coated while positioned on trestles. Depending on the position of the components on the trestle, different layer properties (mainly layer thickness of the metallic coating) can result Optimisation is possible, for example, by using component-specific trestles.6.4. Hydrogen embrittlement6.4.1. BasicsThe steel parts to be coated can absorb hydrogen during the electroplating treatment for creating coatings according to this standard, e.g. during pickling, electrolytic cleaning and during the electroplating metal deposition. Active hydrogen diffused in the metal lattice preferably at energetically favourable areas (lattice structural faults, areas of high stress concentration).Hydrogen-induced, delayed brittle fractures can arise from this, while the critical interaction of: – material and material state (strength, hardness); – hydrogen absorption during the pretreatment and coating process; – mechanical parts stress, also locally depending on the design of the parts. have to be taken into account in particular.DIN 50979:2008-07 c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55Figure 1 – Interaction of material, mechanical stress and hydrogen absorptionThe critical parameters for the material are the tensile strength and toughness. The hazard due to hydrogen increases as the strength increases.All steel parts with a tensile strength of R m ≥ 1 000 N/mm 2 (also locally restricted, e.g. for case-hardened or cold-formed joints or in weld seam areas) are deemed to be high-strength and are classified as critical.6.4.2. Method selection6.4.2.1. Materials with strengths < 1 000 N/mm 2The choice of treatment method is free insofar as the requirements comply with this standard and no damage to the usage properties occurs. 6.4.2.2. Materials with strengths ≥ 1 000 N/mm 2 Protection against delayed brittle fracture (hydrogen embrittlement) is paramount for the coating.The surface treatment method must be realised so that damage due to delayed hydrogen-induced brittle fractures is eliminated with a high degree of certainty. The procedure for dealing with potential defective coatings (peeling-off of coatings and new coatings) must be examined and consequences resulting from this described.The measures for minimising the risk of delayed hydrogen-induced brittle fractures and the processes necessary for this must be agreed between the customer/manufacturer and the coating company.The required process inspection and process testing accompanying production can typically be carried via stress tests on a sufficient number of suitable hydrogen-sensitive samples. The information given in E DIN 50969-1 must be observed.MaterialMechanical stress (also internal or localstress)Hydrogen in thematerialFracture, at critical interactionDIN 50979:2008-07b sc r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55Heat treatments are necessary to avoid brittle fractures. These must be carried out after the electroplating for the hydrogen effusion and, if necessary, also before the electroplating to relieve component internal stresses. For this, see also E DIN 50969-1:2008-02, 3.4 and 4.4.It is particularly important to ensure that the applied metallic coating as a diffusion barrier does not prevent the success of the heat treatment for the hydrogen effusion. The properties of the parts must not be altered detrimentally. REMARK Reference values for a heat treatment for the hydrogen effusion are given in Table 4:Table 4 – Reference values for heat treatment for hydrogen effusion after an electroplatingtreatment corresponding to this standard Tensile strengthR m N/mm 2 Heat treatment conditions in the air circulation furnace minimum retentiontime at parts temperature (215 ± 15) °Ch1,000 to 1,250 6 1,251 to 1,450 12 1,451 to 1,600 20 1,601 to 2,00024In conjunction with the coating of components at potential risk from hydrogen, tests as per E DIN 50969-2 must be carried out in addition to the above measures.7. Requirements for the coatings and test methods7.1. Coat thicknessThe methods according to Table 5 give minimum material thicknesses (d min ) and apply for the essential areas.The thicknesses of the zinc and zinc alloy coatings should preferably be determined with the X-ray spectrometric method as per DIN EN ISO 3497.Other applicable layer thickness measuring methods are e.g.: – Microscopic measurement as per DIN EN ISO 1463; – Coulometric method as per DIN EN ISO 2177; – Magnetic method as per DIN EN ISO 2178The layer thickness of passivations and seals is not included in the consideration.7.2. Layer adhesionThe test parts are stored for 30 minutes at (220 ± 10) °C and then immediately quenched in water with a temperature of 15 °C to 25 °C. Flaking and blister formation must not occur in the coating (thermal shock test as per DIN EN ISO 2819). REMARK A bending or surface grinding of the components, if feasible, is recommended as a further test for theadhesive strength.DIN 50979:2008-07c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:557.3. Cr(VI) absenceThe applied layer must be chromium-(VI)-free in agreement with DIN EN 15205.7.4. Resistance in short-term corrosion tests7.4.1. GeneralSalt spray tests as per DIN EN ISO 9227-NSS must be carried out. REMARK The corrosion performance of the coated components in use cannot be concluded from the results of theshort-term corrosion tests without more information. When using the components, very different load profiles(temperature, moisture, flow …) can occur, while only the specified, limited test climates occur in the short-term corrosion tests.7.4.2. Minimum resistance of passivated zinc or zinc alloy coatingsDepending on the coating system and test, minimum test times are specified concerning the test duration by which no corrosion products of the coating (white rust) or basic material (red rust) may occur. The essential areas of the tested component are to be evaluated.The requirements for the minimum resistance apply in the “coated state” as well as after a heat storage at 120 °C/24 h before the corrosion test. The heat storage is not necessary for the coating system Zn//An//T0.Non-agreed treatments (e.g. waxing, greasing) which can improve the resistance in the corrosion tests are not permissible.Influences (e.g. through sorting processes, transport, assembly or aggressive media), which can damage the corrosion protection properties of the coatings must be avoided before the corrosion test. An evaluation or limitation of the extent of the damage is not an object of this standard.The attainable corrosion resistance of coatings can also depend greatly on the components to be coated (material, geometry) in addition to the coating system and coating quality. In the case of components where an optimum coating quality cannot be achieved without further measures (e.g. due to material defects or complex component geometry), an agreement concerning lower corrosion resistance might be necessary.DIN 50979:2008-07b sc r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55Table 5 – Minimum layer thicknesses and test duration for passivated (transparent, iridescent)zinc and zinc alloy coatings for testing as per DIN EN ISO 9227-NSSMinimum test durationhType of surface protection layerVersion type Methodwithout coating corrosionwithout basic materialcorrosion(depending on the Zn or Zn alloy layer thickness)5 µm 8 µm 12 µm Drum 8 48 72 96 Electroplated zinc coating,transparent passivatedZn//An//T0Trestle 16 72 96 120 Drum 72 144 216 288 Electroplated zinc coating,iridescent passivatedZn//Cn//T0Trestle 120 192 264 336 Drum 120 192 264 360 Electroplated zinc coating,iridescent passivated and sealedZn//Cn//T2 Trestle 168 264 360 480 Drum 96 168 240 312 Electroplated zinc-iron alloy coating, iridescent passivatedZnFe//Cn//T0Trestle 168 240 312 384 Drum144 216 288 384 Electroplated zinc-iron alloy coating, iridescent passivated and sealed ZnFe//Cn//T2Trestle 216 312 408 528 Drum 120 480 720 720a Electroplated zinc-nickel alloy coating, iridescent passivatedZnNi//Cn//T0Trestle 192 600 720 720a Drum168 600 720 720a Electroplated zinc-nickel alloy coating, iridescent passivated and sealedZnNi//Cn//T2Trestle360720720a720aaTo limit the expense of the tests, the requirements are restricted to 720 h.DIN 50979:2008-07c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55Table 6 – Minimum layer thicknesses and test duration for passivated (black) zinc and zinc alloycoatings for testing as per DIN EN ISO 9227-NSSMinimum test durationhType of surface protection layerVersion type Methodwithout coating corrosionwithout basic materialcorrosion(depending on the Zn or Zn alloy layer thickness)5 µm 8 µm 12 µm Drum 120 192 264 360 Electroplated zinc-iron alloy coating, black passivated and sealed ZnFe//Fn//T2Trestle168 264 360 480 Drum 168 480 720 720a Electroplated zinc-nickel alloy coating, black passivated and sealed ZnNi//Fn//T2Trestle240 600 720 720a Drum 48 480 720 720a Electroplated zinc-nickel alloy coating, black passivatedZnNi//Fn//T0Trestle72600720720aaTo limit the expense of the tests, the requirements are restricted to 720 h.The occurrence of mild visual changes (grey fog) without voluminous character is permissible and does not represent any impairment to the corrosion protection.There are still no universally recognised values for the corrosion resistance at present for electroplated zinc coatings, black passivated and sealed (Zn//Fn//T2).8. Test report8.1. General informationThe following must be tested by the coating company: a) Reference to this standard (i.e. DIN 50979);b) Conformity of the coatings with the requirements of this standard; c) Coating company for the surface protection;d) Applied technology (e.g. trestle or drum coating and applied coating system).8.2. Special data for coating high-strength materials with tensile strength ≥ 1 000N/mm²Designation and confirmation of the measures implemented for minimising the risk of delayed hydrogen-induced brittle fractures.8.3. Test resultsResults of the technological tests according to this standard (see section 7). The tests as per 7.2, 7.3, 7.4 must be carried out accompanying the process. The test bodies (supplier and/or subcontractor and/or independent test institute) are to be appointed.DIN 50979:2008-07b sc r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55ReferencesDIN EN ISO 1463, Metallic and oxide coatings – Measurement of coating thickness – Microscopical methodDIN EN ISO 2177, Metallic coatings – Measurement of coating thickness – Coulometric method by anodic dissolutionDIN EN ISO 2178, Non-magnetic coatings on magnetic substrates – Measurement of coating thickness – Magnetic methodDIN EN ISO 2819, Metallic coatings on metallic substrates – Electrodeposited and chemically deposited coatings – Review of methods available for testing adhesion。
DIN12844锌和锌合金
199810-22
1
NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW
--```,,,-`-`,,`,,`,`,,`---
Copyright European Committee for Standardization Provided by IHS under license with CEN No reproduction or networking permitted without license from IHS
Not for Resale
~
~
~
S T D m C E N E N 32844-ENGL 3 9 9 8
3'40'4589 0 3 8 8 9 3 3 1 3 b
=
EUROPEAN STANDARD
EN 12844
November 1998
NORME EUROPÉENNE
EUROPÄISCHE NORM
................................................................................................................................................ 1 scope ................................................................................................................................................... 2 Normative references......................................................................................................................... 3 Definitions ........................................................................................................................................... 4 Casting designation ...........................................................................................................................
锌合金特点
锌合金是以锌为基础加入其他元素组成的合金。
常加的合金元素有铝、铜、镁、镉、铅、钛等低温锌合金。
锌合金熔点低,流动性好,易熔焊,钎焊和塑性加工,在大气中耐腐蚀,残废料便于回收和重熔;但蠕变强度低,易发生自然时效引起尺寸变化。
熔融法制备,压铸或压力加工成材。
按制造工艺可分为铸造锌合金和变形锌合金。
锌合金的主要添加元素有铝,铜和镁等.锌合金按加工工艺可分为形变与铸造锌合金两类.铸造锌合金流动性和耐腐蚀性较好,适用于压铸仪表,汽车零件外壳等。
中文名锌合金外文名zinc alloy化学式Zn具体锌为基础加入其他元素组成的合金目录1成分品质▪特点▪种类▪选择▪成分▪生产注意2分类3使用注意4缺陷分析5发展历程6电镀退镀1成分品质编辑特点1. 相对比重大。
锌合金拉手2.铸造性能好,可以压铸形状复杂、薄壁的精密件,铸件表面光滑。
3. 可进行表面处理:电镀、喷涂、喷漆、抛光、研磨等。
4. 熔化与压铸时不吸铁,不腐蚀压型,不粘模。
5. 有很好的常温机械性能和耐磨性。
6.熔点低,在385℃熔化,容易压铸成型。
种类传统的压铸锌合金有2、3、4、5、7号合金,目前应用最广泛的是3号锌合金。
七十年代发展了高铝锌基合金ZA-8、ZA-12、ZA-27。
Zamak 3: 良好的流动性和机械性能。
应用于对机械强度要求不高的铸件,如玩具、灯具、装饰品、部分电器件。
Zamak 5: 良好的流动性和好的机械性能。
应用于对机械强度有一定要求的铸件,如汽车配件、机电配件、机械零件、电器元件。
Zamak 2: 用于对机械性能有特殊要求、对硬度要求高、耐磨性好、尺寸精度要求一般的机械零件。
ZA8: 具有良好的冲击强度和尺寸稳定性,但流动性较差。
低温锌合金应用于压铸尺寸小、精度和机械强度要求很高的工件,如电器件。
Superloy: 流动性最佳,应用于压铸薄壁、大尺寸、精度高、形状复杂的工件,如电器元件及其盒体。
不同的锌合金有不同的物理和机械特性,这样为压铸件设计提供了选择的空间。
锌合金平面激光打磨工艺流程
锌合金平面激光打磨工艺流程英文回答:The process of laser polishing for zinc alloy surfaces involves several steps. First, the surface of the zinc alloy workpiece is cleaned thoroughly to remove any dirt, grease, or other contaminants. This can be done using a solvent or a cleaning solution.Next, the workpiece is placed on a stable platform or fixture to ensure stability during the laser polishing process. The laser beam is then directed onto the surface of the zinc alloy, and the intensity and duration of the laser beam are adjusted to achieve the desired polishing effect.As the laser beam interacts with the surface of the zinc alloy, it heats up the material, causing it to melt and vaporize. The high-energy laser beam also helps to remove any surface imperfections, such as scratches orunevenness. The melted and vaporized material is then blown away using a gas jet or compressed air.During the laser polishing process, it is important to control the energy and heat input to avoid damaging the surface of the zinc alloy. The laser parameters, such as power, speed, and focus, need to be carefully adjusted to achieve the desired result without causing any deformation or warping of the workpiece.After the laser polishing is complete, the surface of the zinc alloy workpiece may undergo further treatment, such as cleaning, rinsing, or coating, to enhance its appearance and protect it from corrosion.中文回答:锌合金平面激光打磨工艺流程包括以下几个步骤。
太空铝 锌合金
太空铝锌合金
太空铝-锌合金(Space Aluminum-Zinc Alloy)是一种轻质高强材料,具有良好的耐
腐蚀性、高强度和优秀的可塑性,适用于航空、航天、汽车、造船等领域。
太空铝-锌合
金是由铝、锌和铜等几种元素组成的合金,其成分和比例可以根据不同的使用要求进行调
整和改变。
特点
轻量化:太空铝-锌合金相对密度小,在同等强度下比钢材轻30%,比铜材轻20%左右,可以有效地减轻重量和负载,降低能耗和成本。
高强度:太空铝-锌合金具有很高的强度和硬度,且强度与铜合金相当,可以在低温
和高温环境中保持稳定的性能。
耐腐蚀:太空铝-锌合金可以在各种恶劣的环境中保持其表面的光洁和稳定性,不易
氧化、腐蚀和变色,能够延长使用寿命和降低维护成本。
易加工:太空铝-锌合金具有良好的可塑性和可加工性,可以通过模压和拉伸等工艺
进行成型、加工和加热处理,制成各种形状、尺寸和用途的材料和组件。
应用
航空领域:太空铝-锌合金可以用于飞机的机身、翼面、起落架等部件,可以减少重量、提高强度、增加可靠性和降低噪音。
航天领域:太空铝-锌合金可以用于卫星的结构载荷支撑、太阳电池板支架、天线支
架等组件,可以减轻重量、提高稳定性和耐久性。
总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锌合金zinc alloy,以锌为基体加入铝、铜、镁等其他元素而构成的有色合金。
呈蓝白色,有光泽,质硬脆。
锌合金的熔点约为380℃,浇铸温度为440~460℃之间。
铸造用锌合金按铸造方法分,可分为压铸合金和重力铸造合金两大类;目前国际上用作铸件的标准系列有两大类:
1、ZA系列锌合金,一般用于重力铸件。
2、ZAMAK合金,发展要先于ZA系列合金、主要用于压力铸造。
ZAMAK合金分:ZAMAK 2、ZAMAK 3、ZAMAK5、ZAMAK 7型号,其中ZAMAK 3型号锌合金比较适合工艺品、饰品铸造。
ZAMAK 3锌合金元素含量参考:锌96%以上,铝3.9-4.3%,镁0.025-0.05%,铜≤0.10%,铁≤0.075%,锡≤0.002%,铅≤0.004%,镉≤0.003%。
锌合金成分中各元素的作用
一、有效合金元素
铝Al
1、改善合金的铸造性能,增加合金流动性,细化晶粒,引起固溶强化,提高机械性能。
2、降低锌对铁的反应能力,减少对铁质材料,如模具的侵蚀。
铝含量控制在3.8 ~ 4.3%。
主要考虑到所要求的强度及流动性,流动性好是获得一个完整、尺寸准确、表面光滑的铸件必需的条件。
铜Cu
1、增加合金的硬度和强度;
2、改善合金的抗磨损性能;
3、减少晶间腐蚀。
不利:
1、含铜量超过1.25%时,使压铸件尺寸和机械强度因时效而发生变化;
2、降低合金的可延伸性。
镁Mg
1、减少晶间腐蚀
2、细化合金组织,从而增加合金的强度
3、改善合金的抗磨损性能
不利:
1、含镁量> 0.08%时,产生热脆、韧性下降、流动性下降。
2、易在合金熔融状态下氧化损耗。
二、有害杂质元素
铅Pb、镉Cd、锡Sn
它们在合金中固熔度极微,吸附于晶介,构成众多的电极电位差,形成较大的微腐蚀电池,能使合金晶介结合松弛、粗化(老化),令锌合金的晶间腐蚀变成十分敏感,在温、湿环境中加速了本身的晶间腐蚀,降低机械性能,并引起铸件尺寸变化。
当锌合金中杂质元素铅、镉含量过高,工件刚压铸成型时,表面质量一切正常,但在室温下存放一段时间后(八周至几个月),表面出现鼓泡。
铁Fe
1、铁与铝发生反应形成Al5Fe2金属间化合物,造成铝元素的损耗并形成浮渣。
2、在压铸件中形成硬质点,影响后加工和抛光。
3、增加合金的脆性。
铁元素在锌液中的溶解度是随温度增加而增加,每一次炉内锌液温度变化都将导致铁元素过饱和(当温度下降时),或不饱和(当温度上升时)。
当铁元素过饱和时,处于过饱和的
铁将与合金中铝发生反应,结果是造成浮渣量增加。
当铁元素不饱和时,合金对锌锅的腐蚀将会增强,以回到饱和状态。
两种温度变化的一个共同结果是最终造成对铝元素的消耗,形成更多的浮渣。
生产中注意的问题
1、控制锌合金成分从采购锌合金锭开始,合金锭必须是以特高纯度锌为基础,加上特高纯度铝、镁、铜配制成的合金锭,供应厂有严格的成分标准。
优质的锌合金料是生产优质产品铸件的保证。
2、采购回来锌合金锭要保证有清洁、干燥的堆放区,以避免长时间暴露在潮湿中而出现白锈,或被工厂脏物污染而增加渣的产生,也增加金属损耗。
清洁的工厂环境对合金成分的有效控制是很有作用的。
3、新料与水口等回炉料配比,回炉料不要超过50%,一般新料:旧料= 70:30。
连续的重熔合金中铝和镁逐渐减少。
4、水口料重熔时,一定要严格控制重熔温度不要超过430℃,以避免铝和镁的损耗。
5、有条件的压铸厂最好采用集中熔炉熔化锌合金,使锌合金锭与回炉料均匀配比,熔剂可更有效使用,使合金成分及温度保持均匀稳定。
电镀废品、细屑应单独熔炉。
6、锌合金生产场地、机器设备及配套工具应单独使用,严禁与铅锡合金混合,特别在电镀时,严禁与镀过铅锡合金的药水池混用,否则极易起泡。