高一物理机械能守恒定律单元测试卷附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第八章 机械能守恒定律易错题培优(难)
1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针
转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为
210m/s 。
下列说法正确的是( )
A .物块在传送带上运动的时间为2s
B .物块在传送带上运动的时间为4s
C .整个运动过程中由于摩擦产生的热量为16J
D .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】
AB .滑块先向右匀减速,根据牛顿第二定律有
mg ma μ=
解得
22m/s a g μ==
根据运动学公式有
010v at =-
解得
13s t =
匀减速运动的位移
0106
3m 9m 8m 22
v x t L +=
=⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移
2212m 1m 222
v x a ===⨯
用时
22
s 1s 2
v t a =
== 向左运动时最后3m 做匀速直线运动,有
233
=
s 1s 3
x t v == 即滑块在传送带上运动的总时间为
1234s t t t t =++=
物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;
C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为
110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()
选项C 错误;
D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为
114m l vt ==
物体向左加速过程,传送带运动距离为
222m l vt ==
即
121[]Q fS mg l x l x μ==++-()()
代入数据解得
28J Q =
选项D 正确。
故选BD 。
2.如图所示,两个质量均为m 的小滑块P 、Q 通过铰链用长为L 的刚性轻杆连接,P 套在固定的竖直光滑杆上,Q 放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为
2
L
的轻弹簧水平放置,右端与Q 相连,左端固定在竖直杆O 点上。
P 由静止释放,下降到最低点时α变为60°.整个运动过程中,P 、Q 始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g 。
则P 下降过程中( )
A .P 、Q 组成的系统机械能守恒
B .P 、Q 的速度大小始终相等
C 31
-mgL D .P 达到最大动能时,Q 受到地面的支持力大小为2mg 【答案】CD
【解析】 【分析】 【详解】
A .根据能量守恒知,P 、Q 、弹簧组成的系统机械能守恒,而P 、Q 组成的系统机械能不守恒,选项A 错误;
B .在下滑过程中,根据速度的合成与分解可知
cos sin P Q v v αα=
解得
tan P
Q
v v α= 由于α变化,故P 、Q 的速度大小不相同,选项B 错误; C .根据系统机械能守恒可得
(cos30cos 60)P E mgL =︒-︒
弹性势能的最大值为
31
2
P E mgL -=
选项C 正确;
D .P 由静止释放,P 开始向下做加速度逐渐减小的加速运动,当加速度为零时,P 的速度达到最大,此时动能最大,对P 、Q 和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得
200N F mg m m -=⨯+⨯
解得
F N =2mg
选项D 正确。
故选CD 。
3.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定的细杆上,OA 竖直,OC 间距l =3m 且水平,此时A 、C 间轻绳刚好拉直而无作用力。
已知物块A 、B 、C 质量均力2 kg 。
不计一切阻力和摩擦,g 取10m/s 2。
现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是
A .弹簧的劲度系数为20 N/m
B .此过程中绳子对物块A 做的功为60J
C .此时物块A 速度的大小为
D .绳子对物块C 做功的大小等于物块A 动能的增加量 【答案】AC 【解析】 【详解】
A .初始时弹簧处于压缩状态,弹力等于A 的重力。
B 刚好被提起时,弹簧处于伸长状态,弹簧的弹力等于B 的重力。
由几何关系得,弹簧共伸长了2m 。
物块B 刚好被提起时弹簧的的形变量为:
25m 3m x =-
kx mg =
解得弹簧的劲度系数为:
20N/m k =
故A 正确。
BC .物块C 沿杆下滑的速度分解在沿绳子的方向和垂直的方向,当物块B 刚好被提起时:
cos37A o C v v =
B 的速度为零,弹簧由压缩变为伸长,形变量不变,储存的弹性势能始末两个状态相等,由整个系统动能定理得:
2211222
A C mgh mg x mv mv -=
+ 解得:
A v = 所以C 正确。
对于A 物体,由动能定理得:
2122
A W mg x mv -=
解得:
640
(40)41
W J =+
故B 错误。
D .对C 由动能定理得:
21
2
T C mgh W mv -=
解得绳子对C 做的功为:
2110002280
(80)24141
T C W mgh mv J J =-=-=
物块A 动能的增加量:
21640241
KA A E mv J ∆=
= 所以绳子对物块C 做功的大小不等于物块A 动能的增加量。
故D 错误。
4.如图,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a 、b 可视为质点,重力加速度大小为,则
A .a 减少的重力势能等于b 增加的动能
B .轻杆对b 一直做正功,b 的速度一直增大
C .当a 运动到与竖直墙面夹角为θ时,a 、b 的瞬时速度之比为tanθ
D .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg 【答案】CD 【解析】 【分析】 【详解】
ab 构成的系统机械能守恒,a 减少的重力势能大于b 增加的动能.当a 落到地面时,b 的速度为零,故b 先加速后减速.轻杆对b 先做正功,后做负功.由于沿杆方向的速度大小相等,则
cos sin a b v v θθ=
故
tan a
b
v v θ= 当a 的机械能最小时,b 动能最大,此时杆对b 作用力为零,故b 对地面的压力大小为mg .综上分析,CD 正确,AB 错误; 故选CD .
5.一辆小汽车在水平路面上由静止启动,在前5s 内做匀加速直线运动,5s 末达到额定功率,之后保持以额定功率运动,其v t -图象如图所示.已知汽车的质量为3
110kg m =⨯,
汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )
A .汽车在前5s 内的牵引力为3510N ⨯
B .汽车速度为25m /s 时的加速度为25m /s
C .汽车的额定功率为100kW
D .汽车的最大速度为80m /s
【答案】AC 【解析】 【分析】 【详解】
A .由速度时间图线知,匀加速运动的加速度大小
2220
m/s 4m/s 5
a =
= 根据牛顿第二定律得
F f ma -=
解得牵引力
1000N 4000N 5000N F f ma =+=+=
选项A 正确; BC .汽车的额定功率
500020W 100000W 100kW P Fv ==⨯==
汽车在25m/s 时的牵引力
100000'N 4000N 25
P F v ===
根据牛顿第二定律得加速度
22'40001000'm/s 3m/s 1000
F f a m --===
选项B 错误,C 正确;
D .当牵引力等于阻力时,速度最大,则最大速度
100000m/s 100m/s 1000
m P v f ===
选项D 错误。
故选AC 。
6.如图所示,轻质弹簧一端固定在水平面上O 点的转轴上,另一端与一质量为m 、套在粗糙固定直杆A 处的小球(可视为质点)相连,直杆的倾角为30°,OA =OC ,B 为AC 的中点,OB 等于弹簧原长.小球从A 处由静止开始下滑,初始加速度大小为a A ,第一次经过B 处的速度为v ,运动到C 处速度为0,后又以大小为a C 的初始加速度由静止开始向上滑
行.设最大静摩擦力等于滑动摩擦力.下列说法正确的是
A .小球可以返回到出发点A 处
B .弹簧具有的最大弹性势能为2
2
mv
C .撤去弹簧,小球可以静止在直杆上任意位置
D .a A -a C =g 【答案】BD 【解析】 【分析】 【详解】
AB.设小球从A 运动到B 的过程克服摩擦力做功为f W ,AB 间的竖直高度为h ,小球的质量
为m ,弹簧具有的最大弹性势能为
p E .根据能量守恒定律,对于小球A 到B 的过程有: 21
2
p f mgh E mv W +=+
A 到C 的过程有:
22p f p mgh E W E +=+
解得:
212
f p W mgh E mv ==
, 小球从C 点向上运动时,假设能返回到A 点,由能量守恒定律得:
22p f p E W mgh E =++
该式违反了能量守恒定律,可知小球不能返回到出发点A 处.故A 错误,B 正确. C.设从A 运动到C 摩擦力的平均值为f ,AB =s ,由:
f W mgh =
得:
sin 30f s mgs =
解得:
sin 30f mg =
在B 点,摩擦力cos30f mg μ=,由于弹簧对小球有拉力(除B 点外),小球对杆的压力大于cos30mg μ,所以:
cos30f mg μ>
可得:
sin 30cos30mg mg μ>
因此撤去弹簧,小球不能在直杆上处于静止.故C 错误. D.根据牛顿第二定律得,在A 点有:
cos30sin 30A F mg f ma +-=
在C 点有:
cos30sin 30C F f mg ma --=
两式相减得:
A C a a g -=
故D 正确.
7.如图所示,劲度数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变.用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了0x ,此时物体静止.撤去F 后,物体开始向左运动,运动的最大距离为40x .物体与水平面间的动摩擦因数为μ,重力加速度为g .则( )
A .撤去F 后,物体先做匀加速运动,再做匀减速运动
B .撤去F 后,物体刚运动时的加速度大小为0
kx g m
μ- C .物体做匀减速运动的时间为0
2
x g
μD .物体开始向左运动到速度最大的过程中克服摩擦力做的功为0()mg
mg x k
μμ-
【答案】BD 【解析】 【分析】 【详解】
A .撤去F 后,物体水平方向上受到弹簧的弹力和滑动摩擦力,滑动摩擦力不变,而弹簧的弹力随着压缩量的减小而减小,弹力先大于滑动摩擦力,后小于滑动摩擦力,则物体向左先做加速运动后做减速运动,随着弹力的减小,合外力先减小后增大,则加速度先减小后增大,故物体先做变加速运动,再做变减速运动,最后物体离开弹簧后做匀减速运动,A 错误;
B .刚开始时,由牛顿第二定律有:
0kx mg ma μ-=
解得:0
kx a g m
μ=
-
C .由题意知,物体离开弹簧后通过的最大距离为3x 0,由牛顿第二定律得:
1a g μ=
将此运动看成向右的初速度为零的匀加速运动,则:
20112
3x a t =
联立解得:0
6x t g
μ=
,C 错误; D .当弹簧的弹力与滑动摩擦力大小相等、方向相反时,速度速度最大时合力为零,则有
F mg kx μ==
解得mg
x k
μ=
,所以物体开始向左运动到速度最大的过程中克服摩擦力做的功为:
()f 00(mg W mg x x mg x k μμμ=⎛
⎫=- ⎪⎝⎭
- D 正确。
故选BD 。
8.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧轻绳始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L .现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置E 点,D 、E 两点间
的距离为
2L .若A 、B 的质量分别为4m 和m ,A 与斜面间的动摩擦因数3
8
μ=,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,则( )
A .A 在从C 至E 的过程中,先做匀加速运动,后做匀减速运动
B .A 在从
C 至
D 的过程中,加速度大小为120
g C .弹簧的最大弹性势能为
15
8mgL D .弹簧的最大弹性势能为38
mgL 【答案】BD 【解析】
【详解】
AB .对AB 整体,从C 到D 的过程受力分析,根据牛顿第二定律得加速度为
4sin 304cos30420
mg mg mg g
a m m μ︒--⋅︒=
=+
可知a 不变,A 做匀加速运动,从D 点开始与弹簧接触,压缩弹簧,弹簧被压缩到E 点的过程中,弹簧弹力是个变力,则加速度是变化的,所以A 在从C 至E 的过程中,先做匀加速运动,后做变加速运动,最后做变减速运动,直到速度为零,故A 错误,B 正确; CD .当A 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对AB 整体应用动能定理得
004sin 304cos30222L L L mg L mg L mg L W μ⎛⎫⎛⎫⎛
⎫-=+︒-+-⨯︒+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭弹
解得3
8
W mgL =
弹,则弹簧具有的最大弹性势能为 p 3
8
E W mgL ==弹
故C 错误,D 正确。
故选BD 。
9.如图所示,一根劲度系数为k 的轻弹簧竖直固定在水平地面上,轻弹簧上端正上方h 高度处A 点有一个质量为m 的小球。
现让小球由静止开始下落,在B 点接触轻弹簧的上端,在C 点时小球所受的弹力大小等于重力大小,在D 点时小球速度减为零,此后小球向上运动返回到最初点,已知小球在竖直方向上做周期性运动。
若轻弹簧储存的弹性势能与其形变量x 间的关系为2
12
p E kx =,不计空气阻力,重力加速度为g ,则下列说法正确的是( )
A .在D 点时小球的加速度大小大于重力加速度g 的大小
B .小球从B 点到D 点的过程中,其速度和加速度均先增大后减小
C .从A 点到C 点小球重力势能的减少量等于小球动能的增加量
D .小球在D (2)
mg mg mg kh ++
【答案】AD 【解析】
【分析】 【详解】
A .若小球从
B 点由静止释放,则最低点应该在D ′位置且满足B
C =C
D ′,由对称可知,在D ′点的加速度为向上的g ;若小球从A 点释放,则最低点的位置在D 点,则D 点应该在D ′点的下方,则在D 点时小球的加速度大小大于在D ′点的加速度,即大于重力加速度g 的大小,选项A 正确;
B .小球从B 点到D 点的过程中,在B
C 段重力大于弹力,加速度向下且逐渐减小,速度逐渐变大;在C
D 段,重力小于弹力,加速度向上且逐渐变大,速度逐渐减小,即小球从B 点到D 点的过程中,加速度先减小后增加,速度先增加后减小,选项B 错误; C .由能量守恒定律可知,从A 点到C 点小球重力势能的减少量等于小球动能的增加量与弹簧的弹性势能的增加量之和,选项C 错误; D .由能量关系可知从A 到D 满足
21()2
mg h x kx +=
解得小球在D 点时弹簧的压缩量为
(2)
mg mg mg kh x k
++=
(另一值舍掉)选项D 正确。
故选AD 。
10.如图所示,一轻绳系着可视为质点的小球在竖直平面内做圆周运动,已知绳长为l ,重力加速度为g ,小球在最低点Q 的速度为v 0,忽略空气阻力,则( )
A .若小球恰好通过最高点,速度大小刚好为0
B .小球的速度v 0越大,则在P 、Q 两点绳对小球的拉力差越大
C .当06v gl >P
D .当0v gl <
【答案】CD 【解析】 【分析】
本题小球做变速圆周运动,在最高点和最低点重力和拉力的合力提供向心力,同时结合动能定理列式研究。
要注意绳子绷紧,小球可能通过最高点,也可以在下半圆内运动。
【详解】
A .小球在最高点时,由于是绳拉小球,合力不可能为0,速度也不可能为0,选项A 错误;
C .设小球恰好到达最高点时的速度为v 1,最低点的速度为v 2,由动能定理得
22
1211(2)22
mg l mv mv -=-①
小球恰经过最高点P 时,有
21v mg m l
=
联立解得
2v =因为
02v v >=
所以小球一定能通过最高点P ,选项C 正确;
B .球经过最低点Q 时,受重力和绳子的拉力,根据牛顿第二定律得到
2
22v F mg m l
-=②
球经过最高点P 时
2
11v mg F m l
+=③
联立①②③解得
F 2-F 1=6mg
与小球的初速度无关。
选项B 错误; D .设小球运动到N 点时,由机械能守恒得
2012
mgl mv =
解得
0v =
所以当0v <O 等高的高度,所以细绳始终处于绷紧状
态,选项D 正确。
故选CD 。
11.如图所示,细线上挂着小球,用水平恒力F 将小球从竖直位置P 拉到位置Q ,小球在Q 点垂直绳方向所受的合力恰好为零,此时细绳与竖直方向的夹角为θ,则( )
A .恒力做功等于小球重力势能的增量
B .小球将静止在Q 点
C .细线对小球做的功为零
D .若在Q 点将外力F 撤去,小球来回摆动的角度将等于θ 【答案】C 【解析】 【分析】
小球在Q 点所受的合力恰好为零,由此可分析恒力F 和重力的关系,再根据动能定理可分析小球的运动情况。
【详解】
A .小球在Q 点垂直绳方向所受的合力恰好为零,由图可知恒力F 和重力G 的关系为
tan F G θ=
从竖直位置P 拉到位置Q 过程中位移为s ,恒力F 做功
c tan tan os
cos 2
2
F
W Gs G s θ
θ
θθ
重力G 做功的大小
sin
2
G
W Gh Gs θ
90θ<︒所以
2
2
2
tan cos tan 21sin
2
2
tan
1
tan
F G
G W W G s s θ
θθθ
θ
θ
即有
F
G W W
而小球重力势能的增量等于重力G 做功的大小,因此恒力做功大于小球重力势能的增量,
选项A 错误; B .因为F
G W W ,根据动能定理可知小球到达Q 点时动能不为零,小球具有一定速度,
不会静止在Q 点,选项B 错误;
C .因为小球的轨迹是圆弧,其速度方向始终与细线垂直,因此细线的拉力始终与速度垂直,对小球做的功为零,选项C 正确;
D .因为小球在Q 点速度不为零,若在Q 点将外力F 撤去,小球还会向上运动一段距离,到最高点后再回落。
之后的摆动过程中只有重力做功,机械能守恒,因此小球来回摆动的角度将大于θ,选项D 错误。
故选C 。
【点睛】
抓住小球在Q 点所受的合力恰好为零是分析问题的关键。
12.物块在水平面上以初速度v 0直线滑行,前进x 0后恰好停止运动,已知物块与水平面之间的动摩擦因数为μ,且μ的大小与物块滑行的距离x 的关系为μ=kx (k 为常数),重力加速度为g 。
则( )
A .0v =
B .0v =
C .0v =
D .0v =
【答案】A 【解析】 【分析】 【详解】
因动摩擦因数kx μ=,则滑动摩擦力为
f m
g kmgx μ==
即滑动摩擦力随位移均匀变化,故摩擦力的功的功可用平均力乘以位移表示,由动能定理
2
00001022
kmgx f x x mv +-=-
⋅=- 解得
0v = 故A 正确,BCD 错误。
故选A 。
13.一物体沿光滑水平面运动时,其速度v 随位移x 变化的关系如图所示,则物体
A.相同时间内速度变化量相同
B.相同时间内速度变化量越来越小
C.相同位移内所受外力做功相同
D.相同位移内所受外力的冲量相同
【答案】D
【解析】
【分析】
本题考查速度位移图像的理解,速度和位移成正比,分析相关物理量的变化。
【详解】
由图得速度和位移成正比,物体不是做匀变速直线运动。
AB.随着位移增大,物体速度均匀增大,所以相同时间内物体位移越来越大,速度变化量越来越大,AB错误;
CD.相同位移速度变化量相同,对同一物体,动量变化量相同,但动能变化量不同,所以所受外力的冲量相同,做功不同,C错误,D正确;
故选D。
14.如图所示,某同学将三个完全相同的物体从A点沿三条不同的路径抛出,最终落在与A点同高度的三个不同位置,三条路径的最高点是等高的,忽略空气阻力,下列说法正确的是()
A.沿路径1抛出的物体在空中运动的时间最短
B.沿路径3运动的物体落地时重力的瞬时功率最大
C.三个物体落地时的动能相等
D.三个物体在运动过程中的任意相等时间内速度变化量相等
【答案】D
【解析】
【分析】
【详解】
A.它们的最高点是等高的,所以这三个物体在竖直方向的分速度v y是相等的,所以这三
个斜抛运动的物体在空中的运动时间
2y v t g
=
均相同,故A 错误;
B .由上面的分析可以知道,这三个做斜抛运动的物体在落地时竖直方向的分速度也是相等的,落地时重力的瞬时功率
G y P mgv =
一样大,故B 错误;
C .同学对小球做的功即为小球获得的初动能,由于三个小球竖直方向分速度相同,第3个小球水平位移大,则第3个小球水平分速度大,故第3个小球落地时的动能大,故C 错误;
D .小球在空中只受重力作用,即小球所作的运动是匀变速运动,加速度g 恒定,所以在相等的时间内速度变化相等,故D 正确。
故选D 。
【点睛】
斜抛运动可看成水平方向的匀速直线运动和竖直方向的竖直上抛运动。
15.小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的2倍,在下落至离地高度h 处,小球的势能是动能的2倍,则h 等于 ( ) A .
9
H B .
29
H
C .
39
H
D .
49
H
【答案】D 【解析】 【分析】 【详解】
设小球受到的阻力大小恒为f ,小球上升至最高点过程,由动能定理得:
2
0102
mgH fH mv --=-
小球上升至离地高度h 处时速度设为1v ,由动能定理得:
22101122
mgh fh mv mv --=
- 又由题有:2
11 22
mv mgh =
小球上升至最高点后又下降至离地高度h 处时速度设为2v ,此过程由动能定理得:
22
2011222
mgh f H h mv mv ---=
-()
又由题有:2
2122
mv mgh ⨯
= 以上各式联立解得:49
H
h =,选项D 正确,ABC 错误. 【点睛】
在应用动能定理解题时,要灵活选择研究的过程,各个力做功的分析非常重要,本题中要注意上升和下降过程中阻力始终做负功.。