第一章汽车工程材料

合集下载

工程材料的分类与性能

工程材料的分类与性能
400~ 1455 500 23 35~ 0.59 40 60~ 70 80
Fe 7.86
250~ 1539 330 16 25~ 0.84 55 70~ 85 65
Ti 4.51
250~ 1660 300 3 50~ 0.17 70 76~ 88 100
Pb 11.34
18 327 7 45 — 90 4
钢材硬度换算
HRC≈2HRA-104 (HRC=20~60) HB≈10HRC (HRC=20~60)
HB≈2HRB
钢材强度、硬度换算 σb≈3.4HB (HB=125~175) σb≈3.6HB (HB>175)
四、冲击韧度

是指材料抵抗冲击载荷作用 而不破坏的能力。

指标为冲击韧
性值a k(通过冲
金属和退火、正火钢等。

HRC用于测量中等硬度材料,如调 质钢、淬火钢等。 洛氏硬度的优点:操作简便,压痕

小,适用范围广。

缺点:测量结果分散度大。
洛氏硬度压痕
维氏硬度
维氏硬度试验原理
维氏硬度压痕
维氏硬度计

维氏硬度用符号HV表示,符号前的数字为硬度值,后面的数 字按顺序分别表示载荷值及载荷保持时间。 根据载荷范围不同,规定了三种测定方法—维氏硬度试验 、
aC
第三节 工程材料的其他性能
物理性能 —— 密度、熔点、导热性、导电性、热膨胀性、磁性。
一些金属的物理性能及机械性能
元素符号 Al Al 2.70 80~ 660 110 60 32~ 2.09 40 70~ 90 20 Cu Mg Ni Fe Ti Pb Sn
元素符号 密度,kg/m3×103

说明: ① 用面缩率表示塑性比伸长率更接近真实变形。 ② 直径d0 相同时,l0,。只有当l0/d0 为常数

汽车工程材料教案

汽车工程材料教案

教案一、课题:第一章金属材料力学性能指标二、教材分析:本章是《汽车材料》第一次课,是属于基础性知识,在教材的安排上是符合认知的过程三、(1)基础知识:掌握强度与塑性、硬度、冲击韧性及金属疲劳概念(2)能力培养:通过本次学习,培养学生在生产和生活中树立善于思考的良好习惯四、教学重点:金属材料的力学性能教学难点:屈服强度和金属疲劳概念五、课型:综合型六、教学方法:讨论+讲授七、教具:铁钉、铁片、铝片等,多媒体幻灯片八、课时:2九、教学过程:第一节课:第一章金属材料力学性能指标(板书)一)、组织教学:安定课堂教学秩序二)、请同学们回顾并思考以下两个问题:1)你所知道的汽车材料有哪些?2)汽车材料的选用与环境有关吗?三)引入新课:(一)、汽车材料分类:1、金属材料---黑色金属、有色金属、合金2、非金属材料----有机高分子、无机非金属材料、新型复合材料3、汽车运行材料---燃料、润滑剂、工作液(板书)(二)、金属材料性能:(分组讨论每组给出答案,老师点拨)1、使用性能----力学性能、物理性能、化学性能、其他性能2、工艺性能----压力加工性能、铸造性能、焊接性能、切削加工热处理(板书)(三)、1、力学性能定义:材料受到外力作用所表现出来的性能,又称机械能。

2、力学性能包括:强度、塑性、硬度、冲击韧性、抗疲劳性(板书)(四)、两个概念:(板书)1、强度---在外力作用下,金属材料抵抗永久变形和断裂的能力2、塑性---在外力作用下,金属材料产生永久变形而不断裂的能力(五)、同学分组讨论你们所知的外力(载荷)指的是哪些?并指出实例(六)强度有关知识:(请同学描述你所知的强度)(板书)(1)强度的大小用应力表示,金属材料在受到外力作用时必然在材料内部产生与外力相等的抵抗力,即内力。

(2)单位截面上的内力称为应力。

(3)用符号σ表示,σ=F/S(4)单位:Pa(5)通过拉伸试验得到的指标有;弹性极限、屈服强度、抗拉强度。

工程材料在汽车中的应用2000字论文

工程材料在汽车中的应用2000字论文

工程材料在汽车中的应用2000字论文随着汽车工业的发展,我国的汽车产量稳步增长,汽车消费规模日趋庞大。

据中国汽车工业协会发布数据显示,2008年我国产量达到934.51万辆,汽车销量达到938.05万辆。

虽然目前全球经济危机对各国的汽车产业带来了严重影响,但国内汽车厂家积极应对,加上政府政策的支持,近两月来中国的汽车销量开始回升,从整体趋势上看,我国的汽车工业仍将保持一个持续高速增长态势。

浅谈工程塑料在汽车轻量化中的应用进展论文在汽车及相关行业的进步带来巨大机遇的同时,汽车工业也面临着巨大的挑战。

汽车及相关行业的发展对社会能源供给、环境保护等方面的影响日益明显,因此要承受的节能减排的压力也日趋增大。

汽车结构的轻量化和轻量化材料的使用等汽车轻量化技术,可以有目的地减轻汽车自身的重量,又能保证汽车行驶的安全性、耐撞性、抗振性及舒适性,同时满足汽车本身的经济性要求。

汽车轻量化已经成为汽车材料发展的主要方向,节能和环保则是汽车行业的两大课题。

以工程塑料件代替各种昂贵的有色金属及合金材料部件,不仅能减轻车重,降低燃油消耗和碳氢化合物排放,还可提高动力,适应恶劣环境,增加安全性,而且塑料可回收,从而节约了制造过程中的资源消耗,最终使汽车在安全和成本两个方面获得更多的突破。

汽车造型更为美观和设计更为灵活,是降低零部件加工、装配和维修费用的有效途径。

汽车用塑料的使用已经成为衡量汽车工业发展水平的标志之一。

工程塑料作为工程材料,是电子信息、交通运输、航空航天、机械制造业的上游产业,在国民经济中占据着重要的地位,其发展不仅对国家支柱产业和现代高新技术产业起着支撑的作用,同时也推进传统产业改造和产品结构的调整。

近年来,随着我国制造业的迅速发展,工程塑料的应用领域日趋广泛,用量从2000年的39.4万t上升到2007年的182万t,其中汽车行业2007年消费的工程塑料占国内工程塑料市场消耗比例的11.89%。

工程塑料,尤其是高性能工程塑料,因其具有良好的机械性能、综合力学性能,而且耐热性、耐酸、寿命长、可靠性好等特点而越来越广泛地用于汽车工业,其前景非常好,例如发动机上的一些零部件如调速阀、机动盘、气流盘、水泵、输油管、皮带轮罩、冷却风扇、油门踏板等已开始使用PA、PPS、PBT等注塑或吹塑成型。

汽车工程中的材料力学分析

汽车工程中的材料力学分析

汽车工程中的材料力学分析汽车工程是当今科学技术领域中最为广泛和复杂的一个领域,涉及化学、物理、机械、电子、材料等诸多学科。

在汽车工程中,材料力学的应用非常重要。

材料力学是指在特定的加载和应用条件下,研究材料本身的应变、变形、破裂等现象的学科。

在汽车工程领域,材料力学主要用于材料的选用、设计、结构分析等方面。

本文将从汽车工程中的材料力学分析入手,来介绍汽车工程中的材料力学应用。

一、材料力学在汽车工程中的应用1. 材料的选用在汽车工程中,材料的选用是非常重要的。

不同形式的应力会对材料的强度和应力状态产生不同的影响,因此需要对不同材料的力学性质进行分析和比较。

通过对不同材料的弹性模量、断裂韧度、抗拉、抗压强度、塑性等方面进行分析,选择最合适的材料,提高汽车的性能和安全性。

2. 结构设计与强度分析在车辆结构设计中,需要保证车辆的总体结构稳定和可靠性。

为了更好地设计和优化车体结构,需要进行材料力学分析。

通过根据不同材料的特点,制定不同的强度标准和测试方法,在设计时保障车体结构的强度和刚度,避免在使用中出现断裂或失效的情况。

3. 运动学和动力学分析材料力学可以用于运动学和动力学分析中。

运动学分析可以用于车辆运动学性能的评估,如车辆翻滚角度,以及底盘悬挂系统的刚度等参数的计算。

而动力学分析则主要是对车辆的运动力学特性进行分析研究,如车辆加速度、制动距离等参数。

通过材料力学的分析与计算,改善汽车的运动性能和安全性能。

二、材料力学在轮胎设计中的应用1. 弹性模量轮胎是汽车的重要组成部分,掌握轮胎的力学特性对汽车的性能和安全性至关重要。

材料弹性模量是决定轮胎弹性特性的主要因素之一。

因此,使用材料力学的理论和方法,分析和计算轮胎弹性模量,可以更好地考虑轮胎在行驶过程中所需的弹性特性和稳定性。

2. 硬度和耐磨性车辆在行驶过程中,轮胎与路面的接触产生了很大的摩擦力,而这种摩擦作用的大小与轮胎的硬度和耐磨性等特性有关。

因此,在轮胎的设计中需要考虑轮胎的硬度和耐磨性,而这些特性又可以通过材料力学的方法进行分析、计算和控制。

《汽车工程材料》教案(17,18)—铁碳合金相图的应用

《汽车工程材料》教案(17,18)—铁碳合金相图的应用

主要教学步骤和教学内容★课程回顾:(5min)铁碳合金的基本分类方法;五种典型铁碳合金的平衡结晶过程及室温组织。

★课程导入:(5min)1、铁碳合金相图在实际生产中有何应用,其局限性体现在哪方面?2、工业铸铁与铁碳合金相图中的白口铸铁组织与性能有何区别?(提出问题,学生思考并回答)★新课讲授:(70min)一、碳含量对铁碳合金平衡组织及性能的影响室温下铁碳合金中成分、平衡组织、组成物及性能的定量关系如图所示。

室温下,铁碳合金由铁素体和渗碳体两种基本相组成。

随着含碳量的增加,合金的室温组织中的渗碳体相数量呈直线增加。

同时,铁素体相和渗碳体相的形态和分布(即组织)也随着含碳量的增加而变化。

由于随着含碳量的增加,组成相及平衡组织发生了改变,合金的力学性能也相应发生变化。

亚共析钢的组织是由铁素体和珠光体组成,随着含碳量的增加,其组织中珠光体的数量随之增加,因而强度、硬度逐渐升高,塑性、韧性不断下降。

过共析钢的组织是由珠光体和网状二次渗碳体组成,随着钢中含碳量的增加,其组织中珠光体的数量不断减少,而网状二次渗碳体的数量相对增加,因而强度、硬度升高,塑性、韧性不断下降。

由图可看出,当ω=0.9%时,强度极限出现峰值,随后强度显著下降。

这是由于二c次渗碳体量逐渐增加形成连续的网状,从而割裂基体,故使钢的强度呈迅速下降趋势。

由此可见,强度是一种对组织形态很敏感的性能。

实际生产中,为了保证碳钢具有足够的强度,一定的塑性和韧性,碳质量分数一般不应超过1.3%~1.4%。

白口铸铁中都存在莱氏体组织,具有很高的硬度和脆性,既难以切削加工,也不能进行锻造。

因此,白口铸铁的应用受到限制。

但是由于白口铸铁具有很高的抗磨损能力,对于表面要求高硬度和耐磨的零件,如犁铧、冷轧辊等,常用白口铸铁制造。

二、Fe- Fe3C相图在工业中的应用(1)在选材方面的应用C相图反映了铁碳合金组织和性能随成分的变化规律。

这样,就可以根据零Fe- Fe3件的工作条件和性能要求来合理的选择材料。

汽车工程材料分类

汽车工程材料分类

汽车工程材料分类汽车是现代社会不可或缺的交通工具,而汽车工程材料则是构成汽车的基础。

汽车工程材料的分类对于汽车制造和维护有重要的意义。

本文将详细介绍汽车工程材料的分类。

一、金属材料金属材料是汽车工程中最常用的材料之一。

它具有强度高、稳定性能好、寿命长等优点。

其中,钢铁、铝合金、镁合金、钛合金等普遍应用于汽车工程中。

1. 钢铁:汽车制造中广泛使用的钢材包括冷轧、热轧、镀锌、电镀等种类。

不同种类的钢材特点不同,其耐腐蚀性、塑性、强度等性能也各有差异。

2. 铝合金:铝合金是一种轻质、高强度、耐腐蚀的材料。

在汽车车身、发动机舱盖、底盘等部件中广泛应用。

3. 镁合金:镁合金是一种轻质、高强度、刚性好的材料,但其耐腐蚀性低。

在汽车发动机、变速器等部件中常用。

4. 钛合金:钛合金具有高强度、低密度、优异的耐腐蚀性能。

在汽车轮毂、发动机等部件中应用广泛。

二、塑料材料塑料材料是近年来在汽车工程中应用越来越广的材料。

它们具有重量轻、成本低、成型性能好等优点。

在汽车车身、内饰、仪表板等方面中越来越多地采用塑料材料。

1. 聚丙烯:聚丙烯是一种质轻、耐腐蚀的塑料材料,常用于汽车引擎盖、车门板、底盘等部件制造。

2. 防水夹克:防水夹克是一种具有隔热性和耐磨性的塑料材料,常用于汽车密封材料、汽车座椅、地毯等部件制造。

3. 聚苯乙烯:聚苯乙烯是一种低密度、高强度的塑料材料,常用于汽车座椅、中央扶手、防护杆等部件制造。

三、橡胶材料橡胶材料是一种流行的汽车工程材料,由于其具有良好的弹性、耐磨性和耐腐蚀性,常用于汽车轮胎、悬架、密封垫等部件制造。

1. 丁苯橡胶:丁苯橡胶是一种用途广泛的合成橡胶,常用于汽车轮胎和其他橡胶制品的制造。

2. 氟橡胶:氟橡胶是一种耐腐蚀的橡胶,常用于汽车发动机、水泵和其他需要抗腐蚀性能的部件制造。

3. 氟硅橡胶:氟硅橡胶是一种高温、耐腐蚀的橡胶,常用于汽车高温环境下的密封材料。

总而言之,上述几种汽车工程材料都有其自身的优缺点和应用范围,汽车制造厂商可以根据需要选择不同的材料。

第一章材料的原子结合方式及性能

第一章材料的原子结合方式及性能

原子的结合能愈大,键的结合力愈强。
聊城大学机械与汽车工程学院
工程材料及机械制造技术基础
三、原子间结合键的类型
结合键
离子键
共价键
金属键
分子键
聊城大学机械与汽车工程学院
工程材料及机械制造技术基础
①金属键与金属晶体
金属键:依靠正离子与构成
© 2003 Brooks/Cole Publishing / Thomson Learning™
聊城大学机械与汽车工程学院
工程材料及机械制造技术基础
特点:

在离子键结合中,由于离子的外层电子比较牢固 地被束缚,可见光的能量一般不足以使其受激发, 因而不吸收可见光,所以典型的离子晶体是无色 透明的。
聊城大学机械与汽车工程学院
工程材料及机械制造ห้องสมุดไป่ตู้术基础
④ 分子键与分子晶体
范德瓦尔力:外层电子稳定的原子或分子之间存在 的一种微弱结合力 分子键:分子与分子通过偶极之间的吸引力结合在 一起的方式

工程上通常根据机械性能和使用状态将其分为三大类:塑
料、合成纤维、橡胶。
聊城大学机械与汽车工程学院
工程材料及机械制造技术基础
聊城大学机械与汽车工程学院
工程材料及机械制造技术基础
聊城大学机械与汽车工程学院
工程材料及机械制造技术基础

特点 高分子材料它具有良好的塑性、较强的耐蚀性、很好的电
绝缘性、重量轻、减振性好及密度小等优良性能
强度是指金属材料在外力作用时,抵抗塑性变形和断裂的能力
屈服强度σs:金属材料发生屈服现象时的屈服极限。表征材料抵抗微
量塑性变形的能力。 抗拉强度σb:金属材料拉断前所能承受的最大应力。

汽车工程材料总结3000字

汽车工程材料总结3000字

汽车工程材料总结3000字汽车工程是涉及汽车设计和制造的学科,其中材料的选择和设计是影响汽车性能和可靠性的关键因素之一。

因此,了解汽车工程材料的选择和应用对于设计和开发新型汽车具有重要意义。

在本文中,我们将总结汽车工程材料的分类、应用、优缺点等内容。

一、汽车工程材料的分类1. 金属材料金属材料是汽车工程中最常用的材料之一。

根据不同的应用需求,可以分为多种不同的金属材料,如钢铁、铝合金、铜合金、不锈钢等。

其中,钢铁是汽车制造企业中使用最广泛的材料,因其良好的强度和韧性而备受欢迎。

铝合金和铜合金则因其轻量化和耐腐蚀性能而受到关注。

2. 复合材料复合材料是一种特殊的材料,由两种或两种以上的不同材料组合而成。

在汽车工程中,复合材料具有优异的强度和刚度,能够满足高强度、轻量化和耐腐蚀等需求。

常见的复合材料包括碳纤维增强复合材料、玻璃纤维增强复合材料和芳纶增强复合材料等。

3. 聚合物材料聚合物材料是近年来受到越来越多关注的材料之一。

聚合物材料具有高度的可塑性和弹性,能够满足汽车设计中的各种要求。

常见的聚合物材料包括聚苯乙烯、聚醚酮、聚偏氟乙烯等。

二、汽车工程材料的应用1. 金属材料金属材料在汽车工程中的应用非常广泛。

在汽车轻量化方面,金属材料的使用可以帮助减少汽车的重量,从而提高其安全性和燃油效率。

在汽车安全性方面,金属材料可以用于车身框架和结构件的设计,提高汽车的强度和刚度。

在汽车耐久性方面,金属材料可以用于零部件的表面处理和涂层设计,提高其使用寿命和可靠性。

2. 复合材料复合材料在汽车工程中的应用也非常广泛。

在汽车轻量化方面,复合材料的使用可以帮助减少汽车的重量,从而提高其安全性和燃油效率。

在汽车安全性方面,复合材料可以用于车身框架和结构件的设计,提高汽车的强度和刚度。

在汽车耐久性方面,复合材料可以用于零部件的表面处理和涂层设计,提高其使用寿命和可靠性。

3. 聚合物材料聚合物材料在汽车工程中的应用也非常重要。

工程材料的分类性能及应用范围

工程材料的分类性能及应用范围

工程材料的分类性能及应用范围第一章一、工程材料的分类、性能及应用范畴;工程材料可分为金属材料〔黑色金属及有色金属〕、非金属材料〔高分子材料及无机非金属材料〕和复合材料等。

〔一〕金属材料1 .黑色金属〔 1 〕生铁、铁合金。

生铁分炼钢生铁和铸造生铁。

铁与任何一种金属或非金属的合金都叫做铁合金。

〔 2 〕铸铁。

具有优良的铸造性能和良好的耐磨性、消震性及低的缺口敏锐性。

还具有良好的耐热性和耐腐蚀性。

铸铁包括:灰口铸铁、孕育铸铁、可锻铸铁、球墨铸铁、合金铸铁。

〔3 〕钢。

①钢的分类如下:A .按化学成分分类,可将钢分为碳素钢和合金钢。

B .按冶炼质量分类,可将钢分为一般钢、优质钢和高级优质钢。

C .按用途分类,可将钢分为结构钢、工具钢、专门性能钢等。

D .按冶炼方法分类,可将钢分为平炉钢、转炉钢、电炉钢。

E .按脱氧程度分类,可将钢分为冷静金刚、半冷静钢和沸腾钢。

F .按金相组织分类,在退火状态下,可将钢分为亚共析钢、共析钢、过共析钢;在正火状态下,可将钢分为珠光体钢、贝氏体钢、奥氏体钢。

G .按供应时的保证条件分类,可将钢分为甲类钢、乙类钢和特类钢。

②钢的牌号表示方法。

依照牌号能够看出钢的类别、含碳量、合金元素及其含量、冶炼质量以及应该具备的性能和用途。

例如甲类钢牌号用〝A〞字加上阿拉伯数字0 、1 、2 、3 、4 、5 、6 、7 表示。

又如20 号钢号,表示平均含碳量为0.20% 的钢。

再如9Cr18 表示平均含碳量为0.9% 、含Cr 量为18% 的不锈钢。

③国外钢的牌号的要紧特点方〔略〕。

④几种常用钢的要紧特点及用途。

A .一般碳素钢分甲类钢和乙类钢两种。

甲类钢多用于建筑工业使用的钢筋,机械制造中使用的一般螺钉、螺母、垫圈、轴套等,也能轧成板材、型材〔如工字钢、槽钢、角钢等〕;乙类钢的用途与相同数字的甲类钢相同。

B .一般低合金钢是在一般碳素钢的基础上。

加入了少量的合金元素,不仅具有耐腐蚀性、耐磨损等优良性能,还具有更高的强度和良好的力学性能。

汽车常用工程材料

汽车常用工程材料

汽车常用工程材料汽车是现代交通工具的重要组成部分,而汽车的制造则禤需要大量的工程材料来支撑。

在汽车制造领域,常用的工程材料具有耐磨、耐高温、耐腐蚀等优良性能,以确保汽车在复杂环境下的稳定运行。

本文将介绍汽车制造中常用的几种工程材料。

金属材料金属材料是汽车制造中最常用的工程材料之一。

铝合金是一种轻质、强度高的金属材料,在汽车制造中被广泛应用。

铝合金可以降低汽车的整体重量,提高汽车的燃油效率,同时保证汽车的强度和稳定性。

另外,钢铁也是汽车制造中不可或缺的金属材料,具有良好的塑性和强度,被用于汽车的车身、底盘等部位。

在汽车制造中,金属材料还包括镁合金、钛合金等,用于制造轮毂、发动机零部件等。

塑料材料塑料材料在汽车制造中扮演着越来越重要的角色。

相比于金属材料,塑料材料具有更轻、更便宜、更易加工成型等优点。

在汽车制造中,聚丙烯、聚氯乙烯、聚苯乙烯等塑料材料被广泛应用于汽车的内饰、外部装饰等部位。

另外,碳纤维复合材料也是一种常用的车载塑料,具有优良的强度和硬度,被用于制造汽车的车身、车门等部位。

橡胶材料橡胶材料在汽车制造中主要用于汽车的密封件、减震器等部位。

常用的橡胶材料包括丁腈橡胶、氯丁橡胶、丙烯橡胶等,具有优良的耐磨、耐高温、耐油等性能。

橡胶材料可以有效减少汽车部件之间的摩擦和震动,提高汽车的舒适性和安全性。

复合材料复合材料是由两种或两种以上材料的复合而成的新材料,具有金属材料和塑料材料的优点。

在汽车制造中,玻璃钢、碳纤维等复合材料被广泛应用于汽车车身、外壳等部位。

复合材料具有优越的机械性能和耐腐蚀性能,能有效提高汽车的安全性和可靠性。

综上所述,汽车常用的工程材料包括金属材料、塑料材料、橡胶材料和复合材料等。

这些工程材料在汽车制造中发挥着重要的作用,确保汽车在各种复杂环境下的正常运行。

随着汽车制造技术的不断发展,工程材料的种类和应用范围将会更加广泛,为汽车行业的进步和发展提供更多的支持。

汽车工程采用的新工艺、新技术、新材料介绍

汽车工程采用的新工艺、新技术、新材料介绍

汽车工程采用的新工艺、新技术、新材料
介绍
新工艺
1. 3D打印技术:3D打印技术在汽车工程中得到广泛应用。

它可以快速制造复杂形状的零件,并减少传统制造过程中的浪费和成本。

2. 自动驾驶技术:自动驾驶技术正在成为汽车工程领域的重要趋势。

这项技术利用传感器和计算机系统,使汽车能够自主行驶,提高了驾驶的安全性和便利性。

新技术
1. 智能互联技术:智能互联技术正在改变汽车工程的发展。

通过将汽车与互联网连接,使得车辆能够实现远程控制、数据共享以及智能导航等功能,提升了车辆的智能化水平。

2. 轻量化技术:轻量化技术是为了减少汽车的自重而应用的新技术。

采用轻量化材料和设计,使汽车更加省油、环保,并提高了车辆的整体性能。

新材料
1. 碳纤维材料:碳纤维材料在汽车工程中被广泛使用。

它具有高强度、低密度的特点,能够有效减轻汽车重量,提高燃油效率,同时增加车辆的安全性。

2. 锂离子电池:锂离子电池是电动汽车中常用的电池技术。

它具有高能量密度、长循环寿命等优点,使得电动汽车具有更长的续航里程,并且充电时间更短。

以上是汽车工程中采用的一些新工艺、新技术和新材料的简要介绍。

这些创新为汽车行业带来了许多好处,包括更高的安全性、更低的成本、更高的性能和更环保的特性。

第一章工程材料的分类与性能指标

第一章工程材料的分类与性能指标
塑料 合成纤维 橡胶 胶粘剂
高分子材料制品
陶瓷是一种或多种金属元素同一种非金属元素(通常为氧)的 化合物。
陶瓷材料属于无机非金属材料
由于大部分无机非金属材料含有 硅和其它元素的化合物,所以又 叫做硅酸盐材料。 它一般包括无机玻璃(硅酸盐玻 璃)、玻璃陶瓷(或称微晶玻璃)和 陶瓷等三类。
对工程师来说,陶瓷包括种类繁 多的物质,例如玻璃、砖、石头、 混凝土、磨料、搪瓷、介电绝缘 材料、非金属磁性材料、高温耐 火材料和许多其它材料。
这就解释了为什么当橡胶暴露在阳光和空气 中时会逐渐地硬化;为什么铝不能用在超音速飞 机中;为什么金属在周期性载荷的作用下会产生 疲劳;为什么普通钢的钻头不能象高速钢钻头那 样飞快地切削;为什么磁体在射频场中会失去它 的磁性;又为什么半导体在核辐射下会损坏。这 类例子是数不清的。
在材料的选用中,不仅要考虑初始要求,而 且要考虑那些将使材料内部结构发生变化,从而 也导致材料性能发生变化的使用条件。
因此,金属材料特别是钢铁材料仍然是机械制造业 使用最广泛的材料。
随着科学技术的进步,非金属材料也得到了迅速的 发展。
非金属材料具有一些金属所不具备的许多性能和特 点。
如耐腐蚀、绝缘、消声、质轻、加工成型容易、生 产率高、成本低等。
所以非金属材料在工业中的应用日益广泛。 比如高分子材料常常取代金属材料用作化工管道、
因此,要减少零件的弹性变形,提高其 刚度,只能通过合理设计零件的截面形状、 尺寸,并提高其结构刚度来解决。
刚度:
绝大多数机器零件在工作时基本上都是 处于弹性变形阶段,即均会发生一定量的弹 性变形。但若弹性变形量过大,则工件也不 能正常工作,由此引出了材料对弹性变形的 抵抗能力——刚度(或刚性)指标
补充篇 工程材料的分类与性能

大学《工程材料》课件PPT(九大章节完整版)

大学《工程材料》课件PPT(九大章节完整版)
金属与金属、金属与非金属、非金属与非 金属都可以组成复合材料。当前主要研究 和应用的是以树脂、橡胶、陶瓷或金属为 基体,以各种纤维、粒子、片状物为增强 体组成的复合材料。
如果材料选择不当或加工不合理会给国民经 济造成重大损失,下面给大家介绍几个具体 事例:
1943年1月美国t-2型油船破断的实例属低应力脆断,类似 事件1962年澳大利亚金斯桥建成仅一年就突然断裂。
3、良好加工性能,如铸造,塑性变形,焊 接,机械加工等性能。并且通过热处理可以改变其 性能。
有机高分子材料:该类材料正以前所未有 的速度发展着。工程塑料世界年产量超过 150万吨,通过各种合成或制备技术,性 能不断提高,应用日广。有人预测,汽车 的车身不久将大部分采用塑料,每公斤工 程塑料可代替4-5公斤钢铁,而且可整体 成型,因而成本和油耗将进一步降低;有 机高分子功能材料发展更快,由于它是人 工合成的,且原料充足,可以设计出无穷 的新品种,前景十分广阔 。
青铜器时代 石器时代
复合材料时代 铁器时代
机敏/智能 材料时代
材料的分类:
按原子结构分: 1、金属材料(黑色金属,有色金属) 2、 非金属材料(有机,无机) 3、 复合材料(金属基、塑料基、陶瓷基) 按应用角度分:
1、结构材料,机械性能为主要使用性能兼 具一定物理和化 学性能,如制造机器零件的 钢材。 2、功能材料,具有特异的物理和化学功能, 如超导材料,形状记忆材料,储氢材料,激 光材料,半导体材料,纳米材料等 。
本课程基本由两部分组成
第一部分是金属学的理论基础。主要探讨 金属及合金的晶体结构和结晶过程,金属 在固态下的转变过程以及金属的塑性变形 等。这些基础知识是掌握工程材料内部结 构的变化规律和理解各类材料之间性能差 异的钥匙。

汽车材料第四版习题集答案

汽车材料第四版习题集答案

汽车材料第四版习题集答案汽车材料第四版习题集答案在汽车工程领域,材料的选择和应用是至关重要的。

汽车材料的性能直接影响着汽车的安全性、耐久性和性能表现。

为了更好地理解和应用汽车材料,许多学者和专家编写了各种习题集,其中最著名的就是《汽车材料第四版习题集》。

这本习题集包含了大量的问题和案例,涵盖了汽车材料的各个方面,如金属材料、聚合物材料、复合材料等。

通过解答这些问题,读者可以更好地掌握汽车材料的基本原理和应用技巧。

在习题集的第一章中,主要介绍了汽车材料的分类和性能要求。

汽车材料可以分为结构材料和功能材料两大类。

结构材料主要用于支撑和传递载荷,需要具备较高的强度和刚度;而功能材料则主要用于改善汽车的性能和功能,如隔音材料、防腐材料等。

此外,习题集还详细介绍了汽车材料的性能要求,如强度、韧性、耐磨性等。

在第二章中,习题集详细讨论了金属材料在汽车工程中的应用。

金属材料是汽车制造中最常用的材料之一,具有良好的强度和可塑性。

习题集中的问题涉及了金属材料的选择、加工和性能测试等方面。

通过解答这些问题,读者可以更好地了解金属材料的特点和应用技巧。

在第三章中,习题集介绍了聚合物材料在汽车工程中的应用。

聚合物材料具有较低的密度和良好的耐腐蚀性,广泛应用于汽车的外部和内部部件。

习题集中的问题涉及了聚合物材料的制备、性能测试和应用技巧等方面。

通过解答这些问题,读者可以更好地了解聚合物材料的特点和应用范围。

在第四章中,习题集探讨了复合材料在汽车工程中的应用。

复合材料是由两种或多种材料组合而成的材料,具有优异的力学性能和轻质化特点。

习题集中的问题涉及了复合材料的制备、性能测试和设计原则等方面。

通过解答这些问题,读者可以更好地了解复合材料的特点和应用技巧。

除了以上几个章节,习题集还包含了其他相关的内容,如材料的疲劳和断裂、材料的表面处理和涂装等。

通过解答这些问题,读者可以更全面地了解汽车材料的相关知识。

总而言之,汽车材料第四版习题集是一本非常有价值的参考书。

材料力学在汽车工程中的应用

材料力学在汽车工程中的应用

材料力学在汽车工程中的应用引言:材料力学是工程力学的一个重要分支,研究材料的力学性质及其应用,包括力学原理、强度、刚度、韧度等。

在汽车工程中,材料力学扮演着至关重要的角色,能够影响到汽车的性能、安全性以及寿命。

本文将探讨材料力学在汽车工程中的应用,涵盖车身结构、发动机、悬挂系统和制动系统等方面。

一、车身结构中的材料力学应用汽车的车身结构是保障乘客安全的关键组成部分。

在车身结构设计中,材料的选择和使用对于整车的抗碰撞性能和驾乘舒适性有着重要的影响。

材料力学的应用主要包括以下几个方面:1.1 高强度钢的应用高强度钢具有较高的抗拉强度和抗冲击性能,能够增加汽车车身的刚度和耐撞性。

通过合理使用高强度钢材料,可以降低车身的重量,提高燃油经济性,并且增加车身的安全性。

1.2 金属材料的疲劳寿命分析车身结构在使用过程中经受到不断的振动和载荷作用,容易导致材料疲劳断裂。

材料力学可以帮助工程师通过疲劳寿命分析,预测车身结构的寿命和损坏情况,从而进行结构的优化设计和安全性评估。

1.3 碰撞模拟与仿真材料力学在碰撞模拟与仿真中起着重要的作用。

通过模拟不同碰撞情况下车身结构的应力分布和变形情况,可以评估车身的安全性能。

这有助于指导车身结构设计,提高车身的强度和刚度,以保护车内乘客的安全。

二、发动机中的材料力学应用发动机是汽车的心脏,其性能和可靠性关系到整车的运行效果。

材料力学在发动机中的应用主要包括以下几个方面:2.1 材料的耐高温性能发动机工作时会产生高温,需要材料具备优异的抗热性能。

材料力学帮助工程师评估材料的热膨胀系数、导热系数等参数,选择适合的高温材料,以提高发动机的工作效率和寿命。

2.2 材料的疲劳和强度分析发动机部件经历着数以万计的往复运动,容易受到疲劳和应力集中的影响。

利用材料力学的方法进行疲劳和强度分析,有助于预测发动机部件的寿命,避免突发故障,提高发动机的可靠性和安全性。

2.3 材料的轻量化设计发动机部件在保证强度和刚度的同时,还需要考虑减轻重量,以提高整车的燃油经济性。

汽车材料教学大纲

汽车材料教学大纲

汽车材料教学大纲汽车材料教学大纲引言:汽车材料是指用于制造汽车的各种材料,包括金属材料、聚合物材料、复合材料等。

随着汽车工业的快速发展,对汽车材料的需求也越来越高。

因此,汽车材料教学成为了汽车工程专业中不可或缺的一部分。

本文将探讨汽车材料教学的重要性以及教学大纲的设计。

一、汽车材料教学的重要性1.1 汽车材料对汽车性能的影响汽车材料的选择直接影响着汽车的性能,如安全性、舒适性、经济性等。

不同的材料具有不同的物理、化学性质,因此对汽车的性能产生不同的影响。

了解汽车材料的特性和应用,有助于提高汽车的性能和质量。

1.2 汽车材料的创新与发展随着汽车工业的发展,对汽车材料的要求也在不断提高。

新材料的研发和应用对汽车行业的发展至关重要。

通过汽车材料教学,培养学生的创新意识和科研能力,有助于推动汽车材料的创新与发展。

二、汽车材料教学大纲的设计2.1 教学目标的确定汽车材料教学的目标是培养学生对汽车材料的理论和实践知识的掌握。

学生需要了解各种材料的特性、制备方法、加工工艺以及在汽车工程中的应用。

同时,学生还需要具备分析和解决汽车材料问题的能力。

2.2 教学内容的安排汽车材料教学内容应包括金属材料、聚合物材料和复合材料的基本知识。

具体包括材料的分类、结构与性能、制备方法、加工工艺以及应用案例等。

通过理论教学和实践操作相结合的方式,提高学生的综合素质和实践能力。

2.3 教学方法的选择汽车材料教学应注重理论与实践相结合,以培养学生的实际操作能力。

可以采用讲授、实验、案例分析等多种教学方法。

通过实验室实践,学生可以亲自操作和观察不同材料的性质和特点,加深对汽车材料的理解。

2.4 教学评价的方式汽车材料教学评价应综合考察学生的理论知识和实践能力。

可以采用课堂测试、实验报告、综合实践项目等方式进行评价。

通过多样化的评价方式,全面了解学生的学习情况和能力水平。

三、汽车材料教学的优化与创新3.1 教学资源的丰富为了提高汽车材料教学的质量,学校应加大对教学资源的投入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章汽车工程材料--理论教学内容和过程:.金属材料的性能金属材料的使用性能请同学们回顾并思考以下两个问题:)你所知道的汽车材料有哪些?)汽车材料的选用与环境有关吗?(一)汽车材料分类:、金属材料黑色金属、有色金属、合金、非金属材料有机高分子、无机非金属材料、新型复合材料、汽车运行材料燃料、润滑剂、工作液(二)金属材料性能:(分组讨论每组给出答案,老师点拨).使用性能力学性能、物理性能、化学性能.工艺性能压力加工性能、铸造性能、焊接性能、切削加工热处理(三)、力学性能定义:材料受到外力作用所表现出来的性能,又称机械能。

、力学性能包括:强度、塑性、硬度、冲击韧性、抗疲劳性(板书)(五)力学性能指标:.强度在外力作用下,金属材料抵抗永久变形和断裂的能力(1)强度的大小用应力表示,金属材料在受到外力作用时必然在材料内部产生与外力相等的抵抗力,即内力。

(2)单位截面上的内力称为应力。

(3)用符号σ表示,σ(4)单位:(5)通过拉伸试验得到的指标有;弹性极限、屈服强度、抗拉强度。

.塑性在外力作用下,金属材料产生永久变形而不断裂的能力(1)定义:指材料受力时在断裂前产生永久变形的能力。

(2)指标:伸长率(δ)和断面收缩率ψδ()×﹪ψ()×﹪(3)伸长率、断面收缩率与塑性的关系:δ、ψ值越大,塑性越好。

.硬度——指材料表面抵抗局部塑性变形、压痕或划痕的能力。

汽车零件根据工作条件的不同,要求具有一定的硬度以保证零件具有足够的强度、耐磨性、和使用寿命等。

常用硬度试验法;布氏硬度、洛氏硬度、维氏硬度布氏硬度的测试原理:采用直径为的球体,以一定的压力将其压入被测金属表面,并留下压痕。

压痕的表面积越大,则材料的布氏硬度值越低。

在实际测定中,只需量出压痕直径的大小,然后查表即可得布氏硬度值。

主要用于测定各种不太硬的钢及灰铸铁和有色金属的硬度。

洛氏硬度的测试原理:是以试样被测点的压痕深度为依据。

压痕越深,硬度越低,以锥角为°的金刚石圆锥为压头。

测量洛氏硬度时,根据压头和加载的不同,在洛氏硬度试验机上有、、三种标尺代表三种载荷值,测得的硬度分别用、、表示。

硬度与耐磨性的关系:硬度越大,耐磨性也越好。

.冲击韧性(1)定义:材料抵抗冲击载荷作用而不破坏的能力。

(2)指标:冲击韧度α.疲劳强度(1)交变应力:许多零件,在工作过程中往往受到大小或大小及方向随时间呈周期性变化的应力作用,此应力称为交变应力。

(2)金属的疲劳:金属材料在交变应力的长期作用下,虽然应力远小于材料的抗拉强度,甚至低于屈服点,也会发生突然断裂,这种现象叫金属疲劳。

(3)举例变速箱上齿轮金属材料的工艺性能工艺性能是指材料在成形过程中,对某种加工工艺的适应能力,它是决定材料能否进行加工或如何进行加工的重要因素,材料工艺性能的好坏,会直接影响机械零件的工艺方法、加工质量、制造成本等。

材料的工艺性能主要包括铸造性能、锻造性能、焊接性能、热处理性能、切削加工性能等。

、铸造性能指材料易于铸造成型并获得优质铸件的能力,衡量材料铸造性能的指标主要有流动性、收缩性等。

流动性是指熔融材料的流动能力,主要受化学成分和浇注温度的影响,流动性好的材料容易充满铸型型腔,从而获得外形完整、尺寸精确、轮廓清晰的铸件;收缩性是指铸件在冷却凝固过程中其体积和尺寸减少的现象,铸件收缩不仅影响其尺寸,还会使铸件产生缩孔、疏松、内应力、变形和开裂等缺陷。

、锻造性能是指材料是否容易进行压力加工的性能。

它取决于材料的塑性和变形抗力的大小,材料的塑性越好,变形抗力越小,材料的锻造性能越好。

如纯铜在室温下有良好的锻造性能;碳钢的锻造性能优于合金钢;铸铁则不能锻造。

、焊接性能是指材料是否易于焊接并能获得优质焊缝的能力。

碳钢的焊接性能主要取决于钢的化学成分,特别是钢的碳含量影响最大。

低碳钢具有良好的焊接性能,而高碳钢、铸铁等材料的焊接性能较差。

、热处理性能是指材料进行热处理的难易程度。

热处理可以提高材料的力学性能,充分发挥材料的潜力。

、切削加工性能是指材料接受切削加工的难易程度,主要包括切削速度、表面粗糙度、刀具的使用寿命等。

一般来说,材料的硬度适中(~)其切削加工性能良好,所以灰铸铁的切削加工性比钢好,碳钢的切削加工性比合金钢好。

改变钢的成分和显微组织可改善钢的切削加工性能。

.铁碳合金状态图多数金属在固态下只有一种晶格类型。

但、、、等晶态固体并不只有一种晶体结构,而是随着外界条件(如温度、压力)的变化而有不同类型的晶体结构。

即在固态下会发生晶格类型的转变,这种转变称为同素异构转变。

其中纯铁的同素异构转变尤为重要,它是钢能够进行热处理改变其组织与结构,从而改善力学性能和工艺性能的根本原因。

高温下的液态纯铁在冷却至℃时开始结晶,得到具有体心立方晶格的δ;继续冷却到℃时,则转变为面心立方晶格的γ;再冷却到℃时,又转变成体心立方晶格的α。

(体心立方晶格的晶胞中,八个原子处于立方体的角上,一个原子处于立方体的中心,角上八个原子与中心原子紧靠。

面心立方晶胞,金属原子分布在立方体的八个角上和六个面的中心。

面中心的原子与该面四个角上的原子紧靠。

)铁碳合金的基本组织在铁碳合金中,铁和碳互相结合的方式是:在液态时,铁和碳可以无限互溶;在固态时,碳可溶于铁中形成固溶体;当含碳量超过固态溶解度时,出现化合物(),此外还可以形成由固溶体和化合物组成的混合物。

()铁素体碳溶解在α中形成的间隙固溶体成为铁素体,用符号(或α表示)。

由于体心立方晶格的α的晶格间隙很小,所以碳在α中的溶解度很低,在℃时的最大溶碳量为,随着温度的降低,溶碳量逐渐下降。

铁素体的性能接近于α,具有良好的塑性和韧性,而强度和刚度都较低。

()奥氏体碳溶解在γ中所形成的间隙固溶体成为奥氏体,用符号(或γ)表示。

由于面心立方晶格的γ晶格的间隙较大,故溶碳能力较强,在℃时,溶碳量可达,随着温度的降低,溶碳量逐渐下降,到℃时为。

奥氏体的强度和硬度都不高,但具有良好的塑性,因此绝大多数钢在高温时(处于奥氏体状态)具有良好的锻造和轧制工艺性能。

()渗碳体渗碳体是铁和碳的金属化合物,他的分子式为,其碳的质量分数为,具有很高的硬度,但塑性很差,是一种脆而硬的组织。

()珠光体它是奥氏体从高温缓慢冷却至℃以下时,发生共析反应所形成的铁素体薄层和渗碳体薄层交替重叠的层状复相物。

用表示()莱氏体是碳的质量分数为的熔体,在℃发生共晶反应所形成的奥氏体和渗碳体所组成的共晶体,用表示。

继续冷却至℃时,莱氏体内的奥氏体转变为珠光体,转变后的莱氏体用’表示。

莱氏体的力学性能与渗碳体相似,硬度很高,塑性很差。

铁碳合金状态图分析横坐标上的任何一点,均代表了一种成分的铁碳合金。

图中的任何一点,表明了某一成分的铁碳合金在一定温度下所具有的状态或组织。

图中温度为纵坐标,碳的质量分数为横坐标,其左端点是纯铁(=);右端点是()。

从图中可以看出,含碳量越高,铁素体的量越少而渗碳体的量越多。

因而随着含碳量的增加,钢的强度、硬度相应增加,而塑性、韧性则下降。

铁碳合金的分类3.钢钢,一般是指碳质量分数<的铁碳合金。

钢中除了铁和碳两种元素以外,还有由炼钢原料带入炼钢过程中并残留下来的其他常存元素,称为杂质。

这些元素对钢的性能产生很大影响。

ﻫ常存元素有硅、锰、硫、磷。

ﻫ(1)、锰的影响炼钢时加入锰,能使还原成铁,从而提高钢的质量。

脱氧后残留在钢中的锰可溶于铁素体和渗碳体中,使钢的强度和硬度提高。

锰还可以和硫形成,减轻硫对钢的有害作用。

在钢中的含锰量一般为,锰属于有益元素。

(2)、硅的影响硅也是作为脱氧剂而加入钢中的,硅的脱氧作用比锰还要强。

硅大部分溶于铁素体中,它能提高钢的强度和硬度,所以硅也是钢中的有益元素,硅作为杂质而存在于钢中时,其含量一般不应超过。

(3)、硫的影响硫是钢中的有害杂质元素。

它常以的形式存在于钢中,与铁形成易熔共晶体,其熔点为℃,分布于晶界。

当钢在℃进行锻造时,由于共晶体溶化而导致钢材开裂,这种现象称为热脆。

为避免热脆,钢中含硫量必须严格控制,应小于。

硫对钢的焊接也有不利影响,会导致焊缝热裂现象,同时,硫易氧化形成气体,使得焊缝中产生气孔。

()、磷的影响磷也是钢中的有害元素,磷在钢中能溶于铁素体,使铁素体的强度、硬度显著提高,却使塑性、韧性急剧下降,在低温时,这种情况更加严重,这种现象称为冷脆。

因此,应严格控制钢中的含磷量,一般情况含磷量应小于。

()、非金属夹杂物钢中的非金属夹杂物有氧化物(、、、)、硫化物(、)、硅酸盐等。

这些夹杂物是炼钢时产生的而未能完全排除在钢液之上,或是从炉渣、炉体、铸锭设备等耐火材料中带入的。

非金属夹杂物降低钢的强度、塑性,因而夹杂物越少,钢的质量越好。

碳素钢碳素钢又称碳钢,在工业上占有很重要的地位。

这是由于碳钢不仅具有较好的机械性能,良好的工艺性能,而且价格低廉、品种多样,能够满足各种场合的使用要求,所以约占钢总产量的以上。

例如汽车的外壳、车架、车桥等,其中的零部件材料很多采用的是碳素钢。

碳素钢的分类碳素钢的分类方法很多,最常见的有以下三种:()按钢中的含碳量分低碳钢 (ω<);中碳钢(ω);高碳钢(ω>)(2)按钢的质量分普通钢、高级优质钢和特种钢(3)按用途分碳素结构钢、碳素工具钢一、碳素结构钢()普通碳素结构钢碳素结构钢的牌号由代表钢材屈服点的字母()、屈服点数值、质量等级符号和脱氧方法符号等四部分按顺序组成。

规定牌号有、、和四种。

这类钢的碳的质量分数较低,加上硫、磷等有害元素和其他杂质含量较多,故强度不够高。

但塑性、韧性好,焊接性能优良,冶炼方便成本低,适合工程用钢批量大的特点。

()优质碳素结构钢含碳量,有害杂质含量很少,通常经过热处理后可提高机械性能。

牌号用两位数字表示,数字代表钢平均碳的质量万分数,如牌号表示其平均碳的质量分数为。

较高含量()的优质碳素结构钢,牌号后加“”,如、等。

根据炭、热处理和用途的不同,优质碳素结构钢还可分为以下三类: )渗碳钢其ω,常用的为钢。

渗碳钢属于低碳钢,其强度较低,但塑性和韧性较好,切削加工性能和焊接性能优良,可直接用来制造各种受力不大,但要求较高韧性的零件以及焊接件和冷冲件,如拉杆、轴套等。

但通常多进行表面渗碳处理、淬火和低温回火处理,以获得表面硬度高、耐磨、且心部韧性好的“表硬里韧”的性能,适用于要求承受一定冲击载荷和有摩擦、磨损的机器零件,如凸轮、滑块、活塞销等。

)调质钢ω ,常用的为钢。

属于中碳钢,常用牌号为、等。

调质钢多进行调质处理,即进行淬火和高温回火处理,已获得良好的综合力学性能等。

调质钢多用于制造较重要的机器零件,如凸轮轴、曲轴、连杆和齿轮等。

)弹簧钢ω,通常多进行淬火和中温回火,以获得较高的弹性极限。

主要用于制造弹簧等各种弹性元件以及易磨损的零件,如车轮等。

相关文档
最新文档