霍尔效应实验报告
霍尔效应实验报告文库
一、实验背景霍尔效应是一种重要的物理现象,最早由美国物理学家霍尔于1879年发现。
当电流通过置于磁场中的导体或半导体时,会在垂直于电流和磁场方向上产生电压,这种现象称为霍尔效应。
霍尔效应不仅揭示了电荷运动规律,而且在许多领域有着广泛的应用,如磁场测量、半导体材料分析、传感器等。
二、实验目的1. 理解霍尔效应的基本原理和实验方法;2. 通过实验测量霍尔元件的霍尔电压与磁场、电流的关系;3. 学习对称测量法消除副效应的影响;4. 确定样品的导电类型、载流子浓度和迁移率。
三、实验原理霍尔效应的原理是基于洛伦兹力定律。
当电流通过导体或半导体时,其中的载流子(电子或空穴)会受到洛伦兹力的作用,从而在垂直于电流和磁场方向上产生横向电场,导致电压的产生。
四、实验仪器1. 霍尔效应实验仪;2. 电源;3. 电流表;4. 磁场发生器;5. 测量线;6. 霍尔元件;7. 导线等。
五、实验内容1. 连接实验电路,确保霍尔元件处于磁场中间;2. 调节电源,使电流表读数稳定;3. 测量不同磁场强度下的霍尔电压;4. 测量不同电流下的霍尔电压;5. 测量不同磁场强度和电流下的霍尔电压;6. 根据测量数据绘制霍尔电压与磁场、电流的关系曲线;7. 使用对称测量法消除副效应的影响;8. 根据霍尔电压、电流和磁场强度计算样品的载流子浓度和迁移率。
六、实验步骤1. 按照实验仪说明书连接实验电路,确保霍尔元件处于磁场中间;2. 调节电源,使电流表读数稳定;3. 测量不同磁场强度下的霍尔电压,记录数据;4. 保持磁场强度不变,改变电流大小,测量霍尔电压,记录数据;5. 改变磁场强度,重复步骤3和4,记录数据;6. 根据测量数据绘制霍尔电压与磁场、电流的关系曲线;7. 使用对称测量法消除副效应的影响,计算样品的载流子浓度和迁移率;8. 分析实验结果,得出结论。
七、实验结果与分析1. 根据实验数据绘制霍尔电压与磁场、电流的关系曲线;2. 通过分析曲线,确定样品的导电类型、载流子浓度和迁移率;3. 讨论实验过程中可能出现的误差,并提出改进措施。
霍尔效应的研究实验报告
霍尔效应的研究实验报告实验报告:霍尔效应的研究摘要:本实验通过测量铜箔和σ-Fe薄膜的霍尔效应,研究磁场下的电子运动和磁场效应。
实验结果表明,在磁场的作用下,霍尔电阻Rxy的大小与电流I的正向方向、磁感应强度B及样品厚度d有关,且与样品材料的导电性质、载流子浓度n、载流子类型p、n有关。
引言:霍尔效应是指在外加磁场下,垂直于电流方向的方向会发生电势差,这种电势差所对应的电阻称为霍尔电阻。
该现象广泛应用于电子学、材料科学等领域。
本实验旨在通过实验验证霍尔效应,并深入研究磁场对电子运动和电阻的影响。
实验步骤和方法:1.制备实验样品:分别用化学方法制备铜箔和σ-Fe薄膜样品。
2.测量实验样品的电阻率:用四端子法测量样品的电阻率ρ。
3.测量霍尔效应:在磁场作用下,用直流电流源给样品加电流I,并在样品表面检测到的霍尔电势差UH作为其霍尔电阻Rxy。
4.测量实验数据:通过数据处理对实验结果进行定量分析,并进行结果分析与比较。
结果:1.铜箔和σ-Fe薄膜样品的电阻率分别为2.5×10-8 Ω·m和2.0×10-7 Ω·m。
2.在外加磁场下,两种材质的霍尔电势差UH分别变化,随磁感应强度B增大而增大。
霍尔电阻Rxy的大小与磁场强度B、电流I梦想方向、样品厚度d、载流子密度n和载流子类型p、n有关。
3.样品材质、载流子密度n、载流子类型p、n对样品的Rxy和UH的大小都有一定影响,导电性质较差、载流子密度较低的材料霍尔效应较小。
分析:1.样品的电阻率与样品材质的导电性质有关,样品的Rxy和UH与样品材料及其性质有关。
2.载流子密度n是决定材料电导率的关键因素之一,导电性质优越的材料,其载流子密度较高,霍尔电阻和霍尔电势差都会增大。
3.磁感应强度B的增大清楚样品中载流子受到的场强增大,样品中的霍尔电阻和霍尔电势差增大。
结论:本实验研究了霍尔效应的特性及其与样品的相关性,结果表明,在外加磁场下,铜箔和σ-Fe薄膜均出现了霍尔效应,其相应的霍尔电阻和霍尔电势差都与材料性质、载流子密度、磁感应强度等因素有关。
霍尔效应及其应用实验报告数据处理
霍尔效应及其应用实验报告数据处理一、实验目的本次实验的主要目的是通过测量霍尔电压、电流等物理量,深入理解霍尔效应的原理,并探究其在实际中的应用。
同时,通过对实验数据的处理和分析,提高我们的科学研究能力和数据处理技巧。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象称为霍尔效应。
假设导体中的载流子为电子,其电荷量为 e,平均定向移动速度为v,导体宽度为 b,厚度为 d,外加磁场的磁感应强度为 B。
则电子受到的洛伦兹力为 F = e v B,在洛伦兹力的作用下,电子会向导体的一侧偏转,从而在导体两侧产生电势差,即霍尔电压 UH 。
根据霍尔效应的基本公式:UH = RH I B / d ,其中 RH 为霍尔系数。
三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计等。
四、实验步骤1、连接实验仪器,将霍尔元件放入磁场中,确保磁场方向与霍尔元件平面垂直。
2、调节直流电源,给霍尔元件通入恒定电流 I ,并记录电流值。
3、用特斯拉计测量磁场的磁感应强度 B ,并记录。
4、测量霍尔元件两端的霍尔电压 UH ,改变电流和磁场的方向,多次测量取平均值。
五、实验数据记录以下是一组实验数据示例:|电流 I (mA) |磁场 B (T) |霍尔电压 UH (mV) |||||| 500 | 050 | 250 || 500 | 100 | 500 || 500 | 150 | 750 || 1000 | 050 | 500 || 1000 | 100 | 1000 || 1000 | 150 | 1500 |六、数据处理方法1、计算霍尔系数 RH根据公式 UH = RH I B / d ,可得 RH = UH d /(I B) 。
由于 d 为霍尔元件的厚度,在实验中为已知量,因此可以通过测量不同电流和磁场下的霍尔电压,计算出霍尔系数 RH 。
霍尔效应实验报告
霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪器。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这种现象称为霍尔效应。
设导体的厚度为 d,宽度为 b,通过的电流为 I,磁场强度为 B,电子的电荷量为 e,电子的平均定向移动速度为 v。
则在磁场的作用下,电子受到洛伦兹力的作用,其大小为 F = evB。
电子会在导体的一侧积累,从而在导体的两侧产生电势差,这个电势差称为霍尔电压 UH。
当达到稳定状态时,电子受到的电场力与洛伦兹力相等,即 eEH = evB,其中 EH 为霍尔电场强度。
霍尔电场强度 EH = UH / b,所以 UH = EHb = vBb。
又因为 I = nevbd(n 为单位体积内的自由电子数),所以 v = I /(nebd)。
将 v 代入 UH 的表达式中,可得 UH = IB /(ned),霍尔系数 RH = 1 /(ned),则 UH = RHIB / d 。
三、实验仪器霍尔效应实验仪、特斯拉计、双刀双掷开关、直流电源、毫安表、伏特表等。
四、实验步骤1、连接电路将霍尔效应实验仪的各部分按照电路图连接好,确保连接正确无误。
2、调节磁场打开特斯拉计,调节磁场强度,使其达到所需的值。
3、测量霍尔电压接通电源,让电流通过霍尔元件。
分别测量不同电流和磁场强度下的霍尔电压,并记录数据。
4、改变电流方向和磁场方向重复测量步骤 3,以消除副效应的影响。
5、数据处理根据测量的数据,计算出霍尔系数和载流子浓度。
五、实验数据记录与处理|磁场强度 B(T)|电流 I(mA)|霍尔电压 UH(mV)|||||| 01 | 10 | 25 || 01 | 20 | 50 || 02 | 10 | 50 || 02 | 20 | 100 |根据实验数据,计算霍尔系数 RH 和载流子浓度 n。
霍尔效应实验报告(共8篇)
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
霍耳效应实验报告原理
一、实验背景霍尔效应是电磁学中的一个重要现象,由美国物理学家霍尔于1879年首次发现。
当电流垂直于磁场通过一个导体或半导体时,会在导体或半导体的垂直方向上产生一个电压,这个电压称为霍尔电压。
霍尔效应的研究不仅对基础物理学具有重要意义,而且在工程应用中也具有广泛的应用价值。
二、实验目的1. 理解霍尔效应的产生原理和基本规律。
2. 掌握霍尔效应实验的原理和方法。
3. 学习使用霍尔效应原理测量磁场的强度和方向。
4. 分析霍尔元件的特性,如霍尔系数、载流子浓度等。
三、实验原理1. 霍尔效应基本原理霍尔效应的产生可以用洛伦兹力来解释。
当电流通过半导体薄片时,载流子(电子或空穴)在电场作用下定向移动,形成电流。
当薄片置于垂直于电流方向的磁场中时,载流子会受到洛伦兹力的作用,导致其运动方向发生偏转。
由于载流子的偏转,薄片两侧会产生电荷积累,形成电势差,即霍尔电压。
2. 霍尔电压的计算根据洛伦兹力公式和电流密度公式,霍尔电压 \( U_H \) 可以表示为:\[ U_H = R_H \cdot I \cdot B \]其中:- \( R_H \) 为霍尔系数,与材料的性质有关;- \( I \) 为工作电流;- \( B \) 为磁感应强度。
3. 霍尔元件的特性霍尔元件是利用霍尔效应原理制成的传感器,具有以下特性:- 霍尔系数:霍尔系数是表征材料霍尔效应强度的一个重要参数,与材料的电子迁移率、载流子浓度和电荷量有关。
- 载流子浓度:载流子浓度越高,霍尔效应越明显。
- 温度依赖性:霍尔系数和载流子浓度都会受到温度的影响。
四、实验方法1. 实验装置霍尔效应实验装置主要包括霍尔元件、电源、电流表、电压表、磁铁等。
2. 实验步骤(1)将霍尔元件固定在实验装置上,确保其工作面与磁场方向垂直。
(2)调节电源,使霍尔元件中通过一定的工作电流。
(3)将磁铁置于霍尔元件附近,调整磁铁的位置和方向,使霍尔元件受到不同的磁场。
(4)测量霍尔元件的霍尔电压,记录数据。
大霍尔效应实验报告
大霍尔效应实验报告一、实验目的本实验旨在研究大霍尔效应,通过测量霍尔电压、电流、磁场强度等物理量,深入理解霍尔效应的原理和应用,掌握相关实验技能和数据处理方法。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象称为霍尔效应。
霍尔电压$V_H$ 与通过导体的电流$I$、外加磁场的磁感应强度$B$ 以及导体的厚度$d$ 等因素有关,其关系式为:$V_H =\frac{RHIB}{d}$其中,$R_H$ 为霍尔系数,它与导体的材料性质有关。
在本实验中,我们通过给霍尔元件通以电流,并在其周围施加磁场,测量产生的霍尔电压,从而计算出霍尔系数等相关物理量。
三、实验仪器1、霍尔效应实验仪:包括磁场发生装置、霍尔元件、电流源、电压表等。
2、特斯拉计:用于测量磁场强度。
四、实验步骤1、连接实验仪器将霍尔元件插入实验仪的插槽中,确保接触良好。
按照电路图连接电流源、电压表和磁场发生装置。
2、测量霍尔电压与电流的关系设定磁场强度为一定值。
逐渐改变电流大小,测量不同电流下的霍尔电压,并记录数据。
3、测量霍尔电压与磁场强度的关系设定电流为一定值。
逐渐改变磁场强度,测量不同磁场强度下的霍尔电压,并记录数据。
4、测量不同方向磁场下的霍尔电压改变磁场方向,测量相应的霍尔电压。
5、重复测量对每个测量步骤进行多次测量,以减小误差。
五、实验数据记录与处理1、霍尔电压与电流的关系|电流(mA)|霍尔电压(mV)||||| 100 | 250 || 200 | 500 || 300 | 750 || 400 | 1000 || 500 | 1250 |根据数据绘制霍尔电压与电流的关系曲线,可以发现霍尔电压与电流呈线性关系。
2、霍尔电压与磁场强度的关系|磁场强度(T)|霍尔电压(mV)||||| 010 | 200 || 020 | 400 || 030 | 600 || 040 | 800 || 050 | 1000 |绘制霍尔电压与磁场强度的关系曲线,同样呈现线性关系。
霍尔效应实验报告优秀4篇
霍尔效应实验报告优秀4篇实验四霍尔效应篇一实验原理1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的'自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
这时光的偏振面与P2的透光轴平行,因而有光通过。
在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。
于是原来的扭曲结构被破坏,成了均匀结构。
从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。
这时光的偏振方向与P2正交,因而光被关断。
由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。
霍尔效应实验报告
一、实验目的1. 了解霍尔效应的产生原理及现象。
2. 掌握霍尔元件的基本结构和工作原理。
3. 通过实验测量霍尔系数、电导率等参数,判断半导体材料的导电类型。
4. 学习使用对称测量法消除副效应产生的系统误差。
5. 利用霍尔效应测量磁感应强度及磁场分布。
二、实验原理霍尔效应是当电流垂直于磁场通过导体时,在导体两侧会产生垂直于电流和磁场的电压差。
这种现象称为霍尔效应。
根据霍尔效应,可以推导出霍尔电压、霍尔系数、电导率等参数之间的关系。
三、实验仪器与材料1. 霍尔效应实验仪2. 直流电源3. 数字多用表4. 磁场发生器5. 半导体样品四、实验步骤1. 霍尔效应现象观察:将霍尔元件置于磁场中,调节电流和磁场方向,观察霍尔电压的变化。
2. 测量霍尔电压:使用数字多用表测量霍尔电压,记录数据。
3. 测量电流和磁场:使用数字多用表测量通过霍尔元件的电流和磁场强度,记录数据。
4. 计算霍尔系数和电导率:根据实验数据,计算霍尔系数和电导率。
5. 消除副效应:使用对称测量法消除副效应产生的系统误差。
6. 测量磁感应强度及磁场分布:利用霍尔效应测量磁感应强度及磁场分布。
五、实验结果与分析1. 霍尔效应现象观察:实验观察到,当电流和磁场垂直时,霍尔电压最大;当电流和磁场平行时,霍尔电压为零。
2. 测量霍尔电压:实验测得霍尔电压随电流和磁场强度的变化关系,符合霍尔效应的规律。
3. 计算霍尔系数和电导率:根据实验数据,计算出霍尔系数和电导率,与理论值基本一致。
4. 消除副效应:使用对称测量法消除副效应产生的系统误差,实验结果更加准确。
5. 测量磁感应强度及磁场分布:利用霍尔效应测量磁感应强度及磁场分布,结果与理论值基本一致。
六、实验结论1. 通过实验,我们了解了霍尔效应的产生原理及现象。
2. 掌握了霍尔元件的基本结构和工作原理。
3. 通过实验测量,我们验证了霍尔效应的基本规律,并计算出霍尔系数和电导率。
4. 使用对称测量法消除了副效应产生的系统误差,实验结果更加准确。
霍尔效应实验报告步骤(3篇)
第1篇一、实验目的1. 理解霍尔效应的基本原理。
2. 学习使用霍尔效应实验仪测量磁场。
3. 掌握霍尔效应实验的数据记录和处理方法。
4. 通过实验确定材料的导电类型和载流子浓度。
二、实验原理霍尔效应是当电流通过一个导体或半导体时,若导体或半导体处于垂直于电流方向的磁场中,则会在导体或半导体的侧面产生电压,这个电压称为霍尔电压。
霍尔电压的大小与磁感应强度、电流强度以及导体或半导体的厚度有关。
三、实验仪器1. 霍尔效应实验仪2. 直流稳流电源3. 毫伏电压表4. 霍尔元件5. 导线6. 螺线管7. 磁铁四、实验步骤1. 仪器连接与调整- 将霍尔元件放置在实验仪的样品支架上,确保霍尔元件处于隙缝的中间位置。
- 按照实验仪的接线图连接电路,包括直流稳流电源、霍尔元件、螺线管和毫伏电压表。
- 调节稳流电源,使霍尔元件的工作电流保持在安全范围内(一般不超过10mA)。
- 使用调零旋钮调整毫伏电压表,确保在零磁场下电压读数为零。
2. 测量不等位电压- 在零磁场下,测量霍尔元件的不等位电压,记录数据。
3. 测量霍尔电流与霍尔电压的关系- 保持励磁电流不变,逐渐调节霍尔电流,从1.00mA开始,每隔1.0mA改变一次,记录每次霍尔电流对应的霍尔电压值。
- 改变霍尔电流的方向,重复上述步骤,记录数据。
4. 测量励磁电流与霍尔电压的关系- 保持霍尔电流不变,逐渐调节励磁电流,从100.0mA开始,每隔100.0mA改变一次,记录每次励磁电流对应的霍尔电压值。
- 改变励磁电流的方向,重复上述步骤,记录数据。
5. 绘制曲线- 根据实验数据,绘制霍尔电流与霍尔电压的关系曲线和励磁电流与霍尔电压的关系曲线。
6. 数据处理与分析- 根据霍尔效应的原理,计算霍尔系数和载流子浓度。
- 分析实验结果,确定材料的导电类型。
五、注意事项1. 操作过程中,注意安全,避免触电和电火花。
2. 霍尔元件的工作电流不应超过10mA,以保护元件。
3. 在调节电流和磁场时,注意观察毫伏电压表的读数变化,避免超出量程。
霍尔效应实验报告[共8篇]
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isb?rhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/???? (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
用霍尔效应测量磁场实验报告
用霍尔效应测量磁场实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪测量霍尔电压,并计算磁场强度。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这种现象称为霍尔效应。
设导体的厚度为 d,宽度为 b,通过的电流为 I,磁场强度为 B,电子的电荷量为 e,电子的平均漂移速度为 v,则霍尔电压 VH 可以表示为:VH = KHIB/d其中,KH 为霍尔元件的灵敏度。
三、实验仪器1、霍尔效应实验仪。
2、直流电源。
3、数字电压表。
4、特斯拉计。
四、实验步骤1、按照实验仪器的说明书连接好电路,确保连接正确无误。
2、打开直流电源,调节电流输出,使通过霍尔元件的电流达到一个预定的值,例如 I = 500mA。
3、将特斯拉计探头放置在霍尔元件附近,测量磁场强度 B。
记录此时的磁场强度值 B1。
4、改变磁场方向,再次测量磁场强度 B,记录为 B2。
5、移动霍尔元件在磁场中的位置,测量不同位置处的霍尔电压VH。
6、改变通过霍尔元件的电流大小,重复步骤3 5,测量多组数据。
五、实验数据记录与处理|电流 I (mA) |磁场强度 B1 (T) |磁场强度 B2 (T) |霍尔电压 VH1 (mV) |霍尔电压 VH2 (mV) |||||||| 500 | 010 |-010 | 250 |-250 || 1000 | 020 |-020 | 500 |-500 || 1500 | 030 |-030 | 750 |-750 |根据实验数据,计算霍尔元件的灵敏度 KH。
以电流 I = 500mA 为例:KH = VH1 /(I × B1 × d) = 250 /(500 × 010 × d)同理,可计算其他电流下的 KH 值,并取平均值。
六、实验误差分析1、系统误差实验仪器本身的精度限制,如直流电源的输出稳定性、数字电压表的测量精度等。
大学霍尔效应实验报告
实验名称:霍尔效应实验实验日期: 2023年11月1日实验地点:物理实验室实验者: [姓名]指导教师: [教师姓名]一、实验目的1. 理解霍尔效应的基本原理和现象。
2. 掌握霍尔效应实验的原理和方法。
3. 通过实验测量霍尔元件的霍尔电压与霍尔元件工作电流、励磁电流之间的关系。
4. 学习利用霍尔效应测量磁感应强度及磁场分布。
5. 判断霍尔元件载流子的类型,并计算其浓度和迁移率。
二、实验原理霍尔效应是指当电流垂直于磁场通过导体时,在导体的垂直方向上产生电动势的现象。
这一现象是由美国物理学家霍尔在1879年发现的。
根据霍尔效应,当载流子在磁场中受到洛伦兹力的作用时,会发生偏转,从而在垂直于电流和磁场的方向上产生电动势。
霍尔电压(VH)与电流(I)和磁感应强度(B)之间的关系可以用以下公式表示:\[ VH = k \cdot I \cdot B \]其中,k是霍尔系数,它取决于材料的性质。
三、实验仪器1. 霍尔效应实验仪2. 电流表3. 电压表4. 励磁电源5. 磁场发生器6. 样品支架四、实验内容及步骤1. 仪器调整:按照实验仪器的说明书进行仪器调整,确保霍尔元件位于磁场中间,并且连接好所有电路。
2. 测量霍尔电压:闭合开关,调节励磁电源,使磁场达到预定的强度。
然后调节霍尔元件的工作电流,记录不同电流下的霍尔电压。
3. 测量霍尔电压与电流的关系:在不同的励磁电流下,重复步骤2,记录不同电流下的霍尔电压。
4. 测量霍尔电压与励磁电流的关系:在不同的工作电流下,改变励磁电流,记录不同励磁电流下的霍尔电压。
5. 数据处理:根据实验数据,绘制霍尔电压与工作电流、励磁电流的关系曲线。
6. 计算霍尔系数:根据实验数据,计算霍尔系数k。
7. 判断载流子类型:根据霍尔电压的符号,判断霍尔元件载流子的类型。
8. 计算载流子浓度和迁移率:根据霍尔系数和实验数据,计算载流子浓度和迁移率。
五、实验结果与分析1. 霍尔电压与工作电流的关系:实验结果表明,霍尔电压与工作电流成正比。
工作报告之霍尔效应的实验报告
霍尔效应的实验报告【篇一:霍尔效应实验报告】实验数据is 1 1.5 2 2.5 3 3.5 4v1 -4.85 -7.27 -9.73 -12.11 -14.47 -16.92 -19.34 v1 -4.9 -6.58 -8.24 -9.92 -11.6 -13.27v2 5.13 7.66 10.18 12.79 15.29 17.83 20.56 v2 5.16 6.84 8.52 10.19 11.89 13.58v3 -5.13 -7.7 -10.19 -12.79 -15.29 -17.83 -20.56 v3 -5.19 -6.84 -8.54 -10.2 -11.91 -13.54v4 4.86 7.28 9.66 12.1 14.5 16.93 19.33 v4 4.9 6.6 8.26 9.98 11.62 13.28vh -4.9925 -7.4775 -9.94 -12.4475 -14.8875 -17.3775 -19.9475 vh -5.0375 -6.715 -8.39 -10.0725 -11.755 -13.4175rh -8667.53 -8654.51 -8628.47 -8644.1 -8615.45 -8619.79 -8657.77 rh -5830.44 -5828.99 -5826.39 -5828.99 -5830.85 -5823.57im 0.3 0.4 0.5 0.6 0.7 0.8思考题1. 本实验是采用什么方法消除各种负效应的?1.由不等电位差引起的误差;应尽量使样品的霍尔电压测试点处于同一等位线上2.爱延豪森效应;使样品通入交流电流3.里纪-勒杜克效应;改变磁场方向4.能斯脱效应;使样品通过磁场方向v度.rhi,其中,v为载流子的迁移率,rh为电导率,i为电流 l 为导体板宽度,d 为板的厚ld【篇二:霍尔效应的应用实验报告】一、名称:霍尔效应的应用二、目的:1.霍尔效应原理及霍尔元件有关参数的含义和作用2.测绘霍尔元件的vh—is,vh—im曲线,了解霍尔电势差vh与霍尔元件工作电流is,磁场应强度b及励磁电流im之间的关系。
霍尔效应实验报告(共8篇)
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vhis,vhim曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 feeehevh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,flfe vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为isne (2)由(1),(2)两式可得 vhehlib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh/ (4)式中为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
霍尔效应实验报告
数据记录
• 记录不同磁场强度下的霍尔电压测量结果 • 记录实验过程中的环境参数,如温度、湿度等
实验数据记录与分析
数据记录
• 将实验数据整理成表格形式,方便分析 • 对实验数据进行可视化处理,绘制霍尔电压与磁场强度 之间的关系曲线
结果评估
• 评估实验结果与理论预测的符合程度,为后续研究提供 参考 • 分析实验结果的应用价值,探讨其在各个领域中的应用 前景
05
霍尔效应实验的误差分析与改进措施
实验误差的来源与分类
误差来源
• 实验仪器误差:如电流表、电压表的误差 • 实验环境误差:如磁场环境的稳定性、温度、湿度等因 素的影响 • 实验操作误差:如实验操作不当、数据处理方法不当等
THANK YOU FOR WATCHING
谢谢观看
CREATE TOGETHER
DOCS
实验改进措施与优化方案
改进措施
• 优化实验电路设计,提高实验精度 • 选择合适的霍尔传感器,提高实验灵敏度 • 采用先进的数据处理方法,减小实验误差
优化方案
• 研究新型的霍尔传感器技术,提高实验精度和灵敏度 • 开发自动化、智能化的实验装置,提高实验效率
06
霍尔效应实验的应用实例
霍尔效应在磁场测量中的应用
DOCS SMART CREATE
霍尔效应实验报告
CREATE TOGETHER
DOCS
01
霍尔效应实验的基本原理及背景
霍尔效应的发现及其重要性
霍尔效应的发现
• 美国物理学家埃德温·赫尔于1879年首次发现霍尔效应 • 当电流通过导体时,会在磁场作用下产生垂直于电流和 磁场方向的电势差
霍尔效应实验报告(共8篇).doc
霍尔效应实验报告(共8篇).doc
实验名称:霍尔效应实验
实验目的:通过测量半导体中霍尔电压和霍尔电流,了解半导体中的电子输运性质。
实验器材:霍尔电流源、霍尔电压计、半导体样品、直流电源、数字万用表等。
实验原理:当一个导电材料中存在磁场时,载流子将在该磁场下发生偏转,从而导致材料的横向电场。
这种结果被称为霍尔效应。
V_H = KBIB/Tne
其中V_H为霍尔电压,B为外磁场强度,I为霍尔电流,n为携带载流子的数量密度。
实验步骤:
1. 将半导体样品制成薄片,并对其进样操作。
2. 通过在泳道中流动电流,产生磁场,测量霍尔电压和磁场。
3. 通过改变霍尔电流来改变携带量子的数量密度。
4. 通过改变温度来研究电子输运性质。
实验数据:
实验中测得的数据如下表所示:
B(T) | I(mA) | V_H(mV) | n(cm^-3)
0.002 | 3 | 3.5 | 2.2*10^12
0.004 | 5 | 7.0 | 2.5*10^12
0.006 | 7 | 10.5 | 2.8*10^12
0.008 | 9 | 14.0 | 3.5*10^12
0.01 | 10 | 17.5 | 4.0*10^12
实验结果:
通过上述数据,我们可以绘制出霍尔电压与磁场的曲线,通过分析该曲线,可以获得半导体的部分参数,如携带载流子的数量密度、迁移率和磁场的线性范围。
除了以上的结论,该实验还可以用于检测半导体的杂质和掺杂浓度等质量因素,并可用于研究半导体中的输运行为(例如迁移率),以便确定相应观察特性的重要性及其与材料的性质之间的关联性。
霍尔效应测磁场实验报告(共7篇)
篇一:霍尔元件测磁场实验报告用霍尔元件测磁场前言:霍耳效应是德国物理学家霍耳(a.h.hall 1855—1938)于1879年在他的导师罗兰指导下发现的。
由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。
六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。
利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。
由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。
此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。
近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。
在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。
了解这一富有实用性的实验,对今后的工作将大有益处。
教学目的:1. 了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。
2. 掌握用霍尔元件测量磁场的原理和方法。
3. 学习用霍尔器件测绘长直螺线管的轴向磁场分布。
教学重难点: 1. 霍尔效应2. 霍尔片载流子类型判定。
实验原理如右图所示,把一长方形半导体薄片放入磁场中,其平面与磁场垂直,薄片的四个侧面分别引出两对电极(m、n和p、s),径电极m、n 通以直流电流ih,则在p、s极所在侧面产生电势差,这一现象称为霍尔效应。
这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。
图片已关闭显示,点此查看假设霍尔片是由n型半导体材料制成的,其载流子为电子,在电极m、n上通过的电流由m极进入,n极出来(如图),则片中载流子(电子)的运动方向与电流is的方向相反为v,运动的载流子在磁场b中要受到洛仑兹力fb的作用,fb=ev×b,电子在fb的作用下,在由n→m运动的过程中,同时要向s极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(p极所在侧面)带正电,在上下两侧面之间就形成电势差vh,即霍尔电势差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
霍尔元件测螺线管轴向磁场装置、多量程电流表 2 只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线 15 根。
三、 实验原理:
1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁
生不同的势效应,使 x 方向产生温度梯度。电子将从热端扩散到冷端,扩散电子
3文档来源为:从网络收集整理.word 版本可编辑.
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
在磁场中的作用下在横向形成电场,从而产生电压。电压的正负与磁场 B 有关, 与电流 I 无关。
(3)里纪-勒杜克效应电压 由能斯特效应引起的扩散电流中的载流子速度不一样,类似于爱廷豪森效 应,也将在 y 方向产生温度梯度场,导致产生一附加电压,电压的正负与磁感应 强度 B 有关,与电流 I 无关。 (4)不等势电势差 不等势电势差是由于霍尔元件的材料本身不均匀,以及电压输出端引线在制 作时不可能绝对对称焊接在霍尔片的两侧所引起的。这时即使不加磁场也存在这 种效应。若元件制作不好,有可能有着相同的数量级,因此不等势电势差是影响 霍尔电压的一种最大的副效应。电压的正负只与电流有关,与磁感应强度 B 无关。 因为在产生霍尔效应的同时伴随着各种副效应,导致实验测得的两极间的电 压并不等于真实的霍尔电压VH 值,而是包括各种副效应所引起的附加电压,因 此必须设法消除。根据副效应产生的机理可知,采用电流和磁场换向的对称测量 法,基本上能把副效应的影响从测量结果中消除。即在规定了电流和磁场正反向 后,分别测量由下列四组不同方向的 I S 和 B 组合的VA/ A ( A/ ,A 两侧的电势差) 即 然后求V1、V2、V3、V4 代数平均值,得: 通过上述的测量方法,虽然还不能消除所有的副效应,但引入的误差不大, 可以忽略不计。
根据 RH 可进一步确定以下参量:
(1)由 RH 的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压
为负, RH 为负,样品属于 n 型;反之则为 p 型。
(2)由 RH 求载流子浓度 n.即 n
1 RH e
这个关系式是假定所有载流子都具有相
同的漂移速度得到的。
(3)结合电导率的测量,求载流子的迁移率 与载流子浓度 n 以及迁移率 之
四、 实验内容:
1、掌握仪器性能,连接测试仪与实验仪之间的各组连线
4文档来源为:从网络收集整理.word 版本可编辑.
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
(1)开、关机前,测试仪的“ I S 调节”和“ IM 调节”旋钮均置零位(即逆时针 旋转到底);
(2)按课本装置图连接测试仪和实验仪之间各组连线。注意:(1)样品各 电机引线与对应的双刀开关之间的连线已经制造好了,不能再动。(2)严禁将测 试仪的励磁电流的输出接口误接到实验仪的其他输入输出端口,否则一旦通电, 霍尔样品会被立即损毁。本实验样品的尺寸为:d=0.5mm,b=4.0mm,l=3.0mm。 本实验霍尔片已处于空隙中间,不能随意改变 y 轴方向的高度,以免霍尔片与磁 极间摩擦而受损。
4、伴随霍尔效应出现的几个副效应及消除办法
在研究固体导电的过程中,继霍尔效应之后又相继发现了爱廷豪森效应、能
斯特效应、理吉勒杜克效应,这些都属于热磁效应。现在介绍如下:
(1)爱廷豪森效应电压
爱廷豪森发现,由于载流子速度不同,在磁场的作用下所受的洛仑磁力不相
等,快速载流子受力大而能量高,慢速载流子受力小而能量低,因而导致霍尔元
导体 高, 适中,是制造霍尔元件较为理想的材料,由于电子的迁移率比空穴
迁移率大,所以霍尔元件多采用 n 型材料,其次霍尔电压的大小与材料的厚度成
反比,因此薄膜型的霍尔元件的输出电压较片状要高得多。就霍尔器件而言,其
厚度是一定的,所以实用上采用
KH
1 ned
来表示器件的灵敏度,
KH
称为霍尔
灵敏度,单位为 mV mA •T .
件的一端较为另一端温度高而形成一个温度梯度场,从而出现一个温差电压。此
效应产生的电压的大小与电流 I、磁感应强度 B 的大小成正比,方向与VH 一致。 因此在实验中无法消去,但电压值一般较小,由它带来的误差约为 5%左右。
(2)能斯特效应电压
由于电流输入输出两引线端焊点处的电阻不可能完全相等,因此通电后会产
1文档来源为:从网络收集整理.word 版本可编辑.
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场 EH . 如果 EH <0,则说明载流子为电子,则为 n 型试样;如果 EH >0,则说明载
流子为空穴,即为 p 型试样。
VH
EH b
1 ne
ISB d
RH
ISB d
(3)
即霍尔电压VH (上下两端之间的电压)与 IS B 乘积成正比与试样厚度 d 成反比。
比列系数 RH
1 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要 ne
测出VH 以及知道 I S 、B 和 d 可按下式计算 RH :
2、霍尔系数 RH 与其他参量间的关系
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
南昌大学物理实验报告
课程名称:
ቤተ መጻሕፍቲ ባይዱ普通物理实验(2)
实验名称:
霍尔效应
学院:
专业班级:
学生姓名:
学号:
实验地点:
座位号:
实验时间:
一、 实验目的:
1、了解霍尔效应法测磁感应强度 I S 的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法;
间有如下关系
2文档来源为:从网络收集整理.word 版本可编辑.
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
ne
3、霍尔效应与材料性能的关系
即 = RH ,测出 值即可求 。
由上述可知,要得到大的霍尔电压,关键是选择霍尔系数大(即迁移率高、
电阻率也较高)的材料。因 RH ,金属导体 和 都很低;而不良导体 虽 高,但 极小,所以这两种材料的霍尔系数都很小,不能用来制造霍尔器件。半
显然霍尔电场 EH 是阻止载流子继续向侧面偏移,当载流子所受的横向电场 力 e EH 与洛仑磁力 evB 相等,样品两侧电荷的积累就达到动态平衡,故有:
e EH =- evB 其中 EH 为霍尔电场,v 是载流子在电流方向上的平均速度。若试样的宽度 为 b,厚度为 d,载流子浓度为 n,则 I nevbd 由上面两式可得: