《相交线与平行线》单元测试卷含答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章相交线与平行线单元测试卷

一、选择题(每题2分,共20分)

1.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()

A.同位角

B.内错角

C.同旁内角

D.对顶角

2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为()°°°°

1 2 3

3.如图,AB∥EC,下列说法不正确的是()

A. ∠B=∠ECD

B. ∠A=∠ECD

C. ∠B+∠ECB=180°

D. ∠A+∠B+∠ACB=180°

4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平

移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行

的操作为()

A.向右平移1格再向下

B.向右平移3格再向下

$

C.向右平移2格再向下

D.以上答案均可

5.如图所示,3块相同的三角尺拼成一个图形,图中有很多

对平行线,其中不能由下面的根据得出两直线平行的是

()

A.同位角相等,两直线平行

B.内错角相等,两直线平行

C.平行于同一直线的两直线平行

D.垂直于同一直线的两直线平行

6.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()

°°°°

7.同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是()

∥d ⊥c ⊥d ⊥d

#

8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()

9.如图,AD是∠EAC的平分线,AD∥BC,∠

B=30°,则∠C为()

°°°°

10.如图,把一块含有45°角的直角三角尺

的两个顶点放在直尺的对边上.如果∠

1=20°,那么∠2的度数是()

°°°°

(

6 8 9 10

二、填空题(每题3分,共21分)

11.如图所示,某地一条小河的两岸都是直的,小明和小亮分别在河的两岸,他们拉紧了一根细绳,当测出∠1和∠2满足关系________时,河岸的两边才是平行的.

12.同一个平面内的三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=________.

13.在测量跳远成绩时,从落地点到起跳线所拉的皮尺应当与起跳线________.

14.如图,在三角形ABC中,BC=5 cm,将三角形ABC沿BC方向平移至三角形A'B'C'的位置时,B'C=3 cm,则三角形ABC平移的距离

为cm.

}

11 14 15

15.如图是我们常用的折叠式小刀,刀柄外形是一个长方形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图所示的∠1与∠2,则∠1与∠2的度数和是度.

16.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=°.

17.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2015个图案中有白色六边形地面砖块.

三、解答题(22~24题每题9分,其余每题8

分,共59分)

18.如图,在一条公路l的两侧有A,B两个村庄.

(1)现在镇政府为民服务,沿公路开通公共汽车,同时修建A,B两个村庄到公路的道路,要使两个村庄村民乘车最为方便,请你设计道路路线,在图中画出(标明①),并标出公共汽车停靠点的位置,说出你这样设计的理由;

(2)为方便两村物流互通,A,B两村计划合资修建一条由A村到达B村的道路,要使两个村庄物流、通行最为方便,请你设计道路路线,在图中画出(标明②),说出你这样设计的理由.

19.如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.

;

20.如图,CD⊥AB,EF⊥AB,∠E=∠EMC,说明:CD是∠ACB的平分线.

!

21.如图,已知点A,O,B在同一直线上,OC是从点O出发的任意一条射线,OD是∠AOC的平分线,OE是∠COB的平分线,试确定OD和OE的位置关系,并说明理由.

22.如图,∠E=∠3,∠1=∠2,试说明:∠4+∠BAP =180°.

@

23.如图所示,潜望镜中的两个镜子是互相平行放置的,光

线经过镜子反射时,入射光线与平面镜的夹角等于反射

光线与平面镜的夹角(∠1=∠2,∠3=∠4).请说明为什么

进入潜望镜的光线和离开潜望镜的光线是平行的.

]

24.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.

(1)当动点P落在第①部分时,如图①,试说明:∠APB=∠PAC+∠PBD;

(2)当动点P落在第②部分时,如图②,∠APB=∠PAC+∠PBD是否成立若不成立,请说明理由.

}

|

#

一、1.【答案】B 2.【答案】C

3.【答案】B

解:根据两直线平行,同位角相等,得出A正确;根据两直线平行,同旁内角互补,得出C正确;根据两直线平行,内错角相等,得出∠A=∠ACE,而∠ACE+∠B+∠ACB=180°,则∠A+∠B+∠ACB=180°.得出D正确.故选B.

4.【答案】C

5.【答案】C

6.【答案】B

7.【答案】C8.【答案】C9.【答案】A10.【答案】B

二、11.【答案】∠1=∠2

12.【答案】4

解:a=3,b=1.

13.【答案】垂直14.【答案】215.【答案】90

16.【答案】14017.【答案】8062

三、18.解:(1)画图如图,P,Q即为公共汽车停靠点的位置垂线段最短;(2)画图如图,两点之间,线段最短.

19.解:因为AB∥CD,所以∠ECD=∠A=37°,又因为DE⊥AE,所以∠CED=90°,所以∠D=180°-90°-37°=53°.

20.解:因为CD⊥AB,EF⊥AB,所以CD∥EF(垂直于同一直线的两直线平行).

所以∠E=∠BCD(两直线平行,同位角相等),∠EMC=∠ACD(两直线平行,内错角相等),又因为∠E=∠EMC,

所以∠BCD=∠ACD(等量代换).

所以CD是∠ACB的平分线(角平分线定义).

%

21.解:OD和OE互相垂直,即OD⊥OE.

理由如下:因为点A,O,B在同一直线上,所以∠AOB=180°.又因为OD是∠AOC的平分线,OE是∠COB的平分线,所以∠DOC=∠AOC,∠COE=∠COB.所以∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=∠AOB=×180°=90°,所以OD⊥OE.

22.解:因为∠ENM=∠3(对顶角相等),∠E=∠3(已知),

所以∠ENM=∠E(等量代换),

所以AE∥HM(内错角相等,两直线平行).

所以∠EAM=∠AMH(两直线平行,内错角相等).

又因为∠1=∠2,

相关文档
最新文档