高三文科数学公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1·集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;
非空的真子集有2n –2个.
2.二次函数的解析式的三种形式
(1)一般式2
()(0)f x ax bx c a =++≠; (2)顶点式2
()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠ 3.真值表
4.
5 (1)充分条件:若p q ⇒,则p 是q 充分条件.
(2)必要条件:若q p ⇒,则p 是q 必要条件.
(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 6.函数的单调性
(1)设[]2121,,x x b a x x ≠∈⋅那么
[]1212()()()0x x f x f x -->⇔
[]b a x f x x x f x f ,)(0)
()(2
121在⇔>--上是增函数;
[]1212()()()0x x f x f x --<⇔
[]b a x f x x x f x f ,)(0)
()(2
121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.
7·)()(x f x f =-则)(x f 是偶函数;)()(x f x f -=-,则)(x f 是奇函数
8·对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数
2
b a x +=
9.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2
(a
对称; 若
)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数. 10 .函数()y f x =的图象的对称性
(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.
(2)函数()y f x =的图象关于直线2
a b
x +=
对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.
11. 函数的导数
①'
C 0=;②1
')(-=n n nx
x ; ③x x cos )(sin '
=;④x x sin )(cos '
-=;
⑤a a a x
x ln )('
=;⑥x x e e =')(; ⑦a x x a ln 1)(log '
=
;⑧x
x 1)(ln '
= 导数的运算法则
(1)'
'
'
()u v u v ±=±. (2)'
'
'
()uv u v uv =+. (3)''
'2
()(0)u u v uv v v v -=
≠ 函数()y f x =的极值,()0f x '=.当()00f x '=时:
(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.
12 .若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. 13.互为反函数的两个函数的关系
a b f b a f =⇔=-)()(1
14.几个常见的函数方程
(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.
(2)指数函数()x
f x a =,()()(),(1)0f x y f x f y f a +==≠.
(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.
(4)幂函数()f x x α
=,'
()()(),(1)f xy f x f y f α==.
(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,
()
(0)1,lim
1x g x f x
→==. 15.分数指数幂
(1)m n
a =
(0,,a m n N *
>∈,且1n >). (2)1
m n
m n
a
a
-
=
(0,,a m n N *
>∈且1n >).
根式的性质
(1
)n
a =.
(2)当n
a =;
当n
,0
||,0a a a a a ≥⎧==⎨-<⎩
有理指数幂的运算 1) (0,,)r
s
r s
a a a
a r s Q +⋅=>∈.