昆明市七年级上册数学期末试题及答案解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昆明市七年级上册数学期末试题及答案解答
一、选择题
1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103
B .3.84×104
C .3.84×105
D .3.84×106
2.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )
A .30分钟
B .35分钟
C .
42011
分钟 D .360
11分钟
3.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所
列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=-
D .()2121826x x ⨯=-
4.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )
A .1
212∠-∠
B .132122
∠-∠
C .1
2()12
∠-∠
D .21∠-∠
5.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查 D .对某品牌灯管寿命的调查 6.若多项式229x mx ++是完全平方式,则常数m 的值为()
A .3
B .-3
C .±3
D .+6
7.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM
的长( ) A .7cm B .3cm C .3cm 或 7cm D .7cm 或 9cm 8.如果a ﹣3b =2,那么2a ﹣6b 的值是( )
A .4
B .﹣4
C .1
D .﹣1 9.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1) B .(3,3) C .(2,3) D .(3,2) 10.如果+5米表示一个物体向东运动5米,那么-3米表示( ).
A .向西走3米
B .向北走3米
C .向东走3米
D .向南走3米
11.已知∠A =60°,则∠A 的补角是( ) A .30° B .60°
C .120°
D .180°
12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为
( )
A .8
B .12
C .18
D .20
二、填空题
13.一个角的余角等于这个角的1
3
,这个角的度数为________. 14.已知x =3是方程
(1)21343
x m x -++=的解,则m 的值为_____. 15.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
17.把53°24′用度表示为_____.
18.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.
19.已知23,9n m
n a
a -==,则m a =___________.
20.计算:()
2
22a -=____;()23
23x x ⋅-=_____.
21.计算
221b a a b a b ⎛
⎫÷- ⎪-+⎝⎭
的结果是______ 22.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示). 23.计算7a 2b ﹣5ba 2=_____.
24.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.
三、解答题
25.(1)化简:3x 2﹣
2
2762
x x +; (2)先化简,再求值:2(a 2﹣ab ﹣3.5)﹣(a 2﹣4ab ﹣9),其中a =﹣5,b =32
. 26.计算:
(1)23(1)27|2|-+-+- (2)2
3
11(6)()232
-⨯-- 27.如图,在平面内有,,A B C 三点.
(1)请按要求作图:画直线AC ,射线BA ,线段BC ,取BC 的中点D ,过点D 作
DE AC ⊥于点E .
(2)在完成第(1)小题的作图后,图中以,,,,A B C D E 这些点为端点的线段共有 条.
28.滴滴快车是一种便捷的出行工具,其计价规则如图:
(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)
(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费元;
(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?
(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?
29.如图所示,∠AOB=∠AOC=90°,∠DOE=90°,OF平分∠AOD,∠AOE=36°.
(1)求∠COD的度数;
(2)求∠BOF的度数.
30.已知,数轴上点A 、C 对应的数分别为a 、c ,且满足()2020
710a c ++-=,点B
对应点的数为-3.
(1)a =______,c =______;
(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点
Q 的速度为1个单位长度/秒,求经过多长时间P 、Q 两点的距离为
43
; (3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.
四、压轴题
31.结合数轴与绝对值的知识解决下列问题:
探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;
结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.
直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:
(1)如果∣a+1∣=3,那么a=____;
(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:
已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.
(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
(2)求运动几秒后甲到A 、B 、C 三点的距离和为40个单位长度?
32.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?
33.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以
3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动. 设它们同时出发,运动时间为s t. 当点P与点Q 、两点停止运动.
第二次重合时,P Q
(1)求AC,BC;
=;
(2)当t为何值时,AP PQ
(3)当t为何值时,P与Q第一次相遇;
PQ=.
(4)当t为何值时,1cm
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
试题分析:384 000=3.84×105.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2.D
解析:D
【解析】
【分析】
由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.
设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.
【详解】
分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.
设小强做数学作业花了x分钟,由题意得
6x-0.5x=180,
x= 360 11
.
故选D.
【点睛】
本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
3.D
解析:D
【解析】
【分析】
设分配x名工人生产螺栓,则(26-x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.
【详解】
解:设分配x名工人生产螺栓,则(26-x)名生产螺母,
∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个,
∴可得2×12x=18(26-x).
故选:D.
【点睛】
本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.
4.C
解析:C
【解析】
【分析】
由图知:∠1和∠2互补,可得∠1+∠2=180°,即1
2
(∠1+∠2)=90°①;而∠1的余角
为90°-∠1②,可将①中的90°所表示的1
2
(∠1+∠2)代入②中,即可求得结果.
【详解】
解:由图知:∠1+∠2=180°,
∴1
2
(∠1+∠2)=90°,
∴90°-∠1=1
2
(∠1+∠2)-∠1=
1
2
(∠2-∠1).
故选:C.
【点睛】
此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.
解析:B 【解析】 【分析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查. 【详解】
解:A 、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误; B 、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确; C 、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误; D 、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误. 故选:B . 【点睛】
本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.
6.C
解析:C 【解析】 【分析】
利用完全平方式的结构特征即可求出m 的值. 【详解】
解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】
此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.
7.C
解析:C 【解析】 【分析】
应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论. 【详解】
①如图1所示,当点C 在点A 与B 之间时,
∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.
∵M是线段AC的中点,
∴AM=1
2
AC=3cm,
②如图2,当点C在点B的右侧时,∵BC=4cm,
∴AC=14cm
M是线段AC的中点,
∴AM=1
2
AC=7cm.
综上所述,线段AM的长为3cm或7cm.
故选C.
【点睛】
本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.8.A
解析:A
【解析】
【分析】
将a﹣3b=2整体代入即可求出所求的结果.
【详解】
解:当a﹣3b=2时,
∴2a﹣6b
=2(a﹣3b)
=4,
故选:A.
【点睛】
本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.
9.C
解析:C
【解析】
【分析】
根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.
【详解】
∵(1,2)表示教室里第1列第2排的位置,
∴教室里第2列第3排的位置表示为(2,3),
故选C.
【点睛】
本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 10.A
解析:A
【解析】
∵+5米表示一个物体向东运动5米,
∴-3米表示向西走3米,
故选A.
11.C
解析:C
【解析】
【分析】
两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.
【详解】
设∠A的补角为∠β,则∠β=180°﹣∠A=120°.
故选:C.
【点睛】
本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.12.A
解析:A
【解析】
【分析】
根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.
【详解】
解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,
长方体的容积是4×2×1=8,
故选:A.
【点睛】
本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.
二、填空题
13.【解析】
【分析】
设这个角度的度数为x度,根据题意列出方程即可求解.
【详解】
设这个角度的度数为x度,依题意得90-x=
解得x=67.5
故填
【点睛】
此题主要考查角度的求解,解题的关键是
解析:67.5
【解析】
【分析】
设这个角度的度数为x度,根据题意列出方程即可求解.【详解】
设这个角度的度数为x度,依题意得90-x=1 3 x
解得x=67.5
故填67.5
【点睛】
此题主要考查角度的求解,解题的关键是熟知补角的性质. 14.﹣.
【解析】
【分析】
把x=3代入方程得到关于m的方程,求得m的值即可.【详解】
解:把x=3代入方程得1+1+=,
解得:m=﹣.
故答案为:﹣.
【点睛】
本题考查一元一次方程的解,解题的
解析:﹣8
3
.
【解析】
【分析】
把x=3代入方程得到关于m的方程,求得m的值即可.【详解】
解:把x=3代入方程得1+1+mx(31)
4
=
2
3
,
解得:m=﹣8
3
.
故答案为:﹣8
3
.
【点睛】
本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.
15.两点确定一条直线.
将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.
故答案为两点确定一条直线.
解析:两点确定一条直线.
【解析】
将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线. 故答案为两点确定一条直线.
16.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,
共用去:(2a+3b)元
解析:(23)a b
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 17.4°.
【解析】
【分析】
根据度分秒之间60进制的关系计算.
【详解】
解:53°24′用度表示为53.4°,
故答案为:53.4°.
【点睛】
此题考查度分秒的换算,由度化分应乘以60,由分化度
解析:4°.
【解析】
根据度分秒之间60进制的关系计算.
【详解】
解:53°24′用度表示为53.4°,
故答案为:53.4°.
【点睛】
此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.
18.20
【解析】
【分析】
根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.
【详解】
解:如图,
∵∠ACB=90°,
∴∠2+∠3=90°.
解析:20
【解析】
【分析】
根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.
【详解】
解:如图,
∵∠ACB=90°,
∴∠2+∠3=90°.
∴∠3=90°−∠2.
∵a∥b,∠2=2∠1,
∴∠3=∠1+∠CAB,
∴∠1+30°=90°−2∠1,
∴∠1=20°.
故答案为:20.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.
19.27
【解析】
【分析】
首先根据an =9,求出a2n =81,然后用它除以a2n −m ,即可求出am 的值.
【详解】
解:∵an=9,
∴a2n=92=81,
∴am=a2n÷a2n −m =81÷3=2
解析:27
【解析】
【分析】
首先根据a n =9,求出a 2n =81,然后用它除以a 2n−m ,即可求出a m 的值.
【详解】
解:∵a n =9,
∴a 2n =92=81,
∴a m =a 2n ÷a 2n−m =81÷3=27.
故答案为:27.
【点睛】
此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.
20.【解析】
【分析】
根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答
【详解】
【点睛】
此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x
【解析】
【分析】
根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答
()2
22a -=44a ()2323x x ⋅-=56x -
【点睛】
此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键
21.【解析】
【分析】
先将括号内进行通分计算,再将除法变乘法约分即可.
【详解】
解:原式=
=
=
故答案为:.
【点睛】
本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b
- 【解析】
【分析】
先将括号内进行通分计算,再将除法变乘法约分即可.
【详解】
解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭
b a b a a b a b a b a b =
()()+⋅-+b a b a b a b b
=1a b - 故答案为:
1a b
-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.
22.(5a+10b ).
【解析】
【分析】
由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.
解:小何总花费:,
故答案为:.
【点睛】
此题主要考查了列代数
解析:(5a +10b ).
【解析】
【分析】
由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.
【详解】
解:小何总花费:510a b +,
故答案为:(510)a b +.
【点睛】
此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.
23.2a2b
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】
故答案为:
【点睛】
本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.
解析:2a 2b
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】
()22227a b 5ba =75a b=2a b ﹣﹣.
故答案为:22a b
【点睛】
本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 24.5.
【解析】
【分析】
利用有理数的减法运算即可求得答案.
【详解】
解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.
故答案为:﹣1.
解析:5.
【解析】
【分析】
利用有理数的减法运算即可求得答案.
【详解】
解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.
故答案为:﹣1.5.
【点睛】
本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.
三、解答题
25.(1)11
2
x2;(2)a2+2ab+2,12.
【解析】
【分析】
(1)根据合并同类项法则计算;
(2)根据去括号法则、合并同类项法则把原式化简,代入计算得到答案.【详解】
解:(1)原式=(3﹣7
2
+6)x2=
11
2
x2;
(2)原式=2a2﹣2ab﹣7﹣a2+4ab+9=a2+2ab+2,
当a=﹣5,b=3
2
时,原式=(﹣5)2+2×(﹣5)×
3
2
+2=12.
【点睛】
本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.26.(1)0;(2)-14
【解析】
【分析】
(1)根据平方、立方根及绝对值的运算法则计算即可;
(2)根据有理数的混合运算法则计算即可.
【详解】
(1)23(1)27|2|-+-+-
132=-+
0=
(2)23
11
(6)()232-⨯-- 113636832
=⨯-⨯- 12188=--
14=-
【点睛】
本题考查实数的运算,熟练掌握运算法则是解题关键.
27.(1)见解析;(2)8.
【解析】
【分析】
(1)根据直线是向两方无限延伸的,线段有两个端点,射线是向一方无限延伸的画出直线AC 、射线BA 、线段BC ,根据中点的定义找出BC 中点D ,利用网格的特点连接小正方形对角线并延长交AC 于E 即可得DE AC ⊥.
【详解】
(1)答案如图所示:
(2)图中以A 、B 、C 、D 、E 为端点的线段有:AB 、AE 、AC 、EC 、BD 、BC 、DC 、DE ,共8条,
故答案为:8
【点睛】
本题考查了基本作图,直线、射线、线段的定义,是基础题,主要训练了同学们把几何文字语言转化为几何图形语言的能力.
28.(1)10,20.5,(2)需付车费65元;(3)行驶的里程为13公里
【解析】
【分析】
(1)根据计价规则,列式计算,即可得到答案,
(2)根据计价规则,列式计算,即可得到答案,
(3)若行驶的里程为10公里,计算所需要付的车费,得出行驶的里程大于10公里,设行驶的里程为x公里,根据计价规则,列出关于x的一元一次方程,解之即可.
【详解】
解:(1)根据题意得:
2.5×2+0.45×8=7.6<10,
即小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费10元,
2.3×5+0.3×20+0.3×(20﹣10)
=11.5+6+3
=20.5(元),
即傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费20.5元,
故答案为:10,20.5,
(2)20×2.4+40×0.35+(20﹣10)×0.3
=48+14+3
=65(元),
答:需付车费65元,
(3)若行驶的里程为10公里,需要付车费:2.3×10+0.3×30=29<39.8,
即行驶的里程大于10公里,
设行驶的里程为x公里,
根据题意得:
2.3x+0.3×30+0.3(x﹣10)=39.8,
解得:x=13,
答:行驶的里程为13公里.
【点睛】
本题考查了一元一次方程的应用和有理数的混合运算,解题的关键:(1)正确掌握有理数的混合运算法则,(2)正确掌握有理数的混合运算法则,(3)正确找出等量关系,列出一元一次方程.
29.(1)144°;(2)63°
【解析】
【分析】
(1)先根据互余的关系求出∠COE=54°,然后利用∠COD=∠DOE+∠COE计算即可;
(2)先根据互余的关系求出∠AOD=54°,再求出∠BOD和∠DOF,利用角的和差关系即可求出∠BOF.
【详解】
(1)∵∠AOC=90°,
∴∠COE=90°﹣AOE=90°﹣36°=54°,
∴∠COD=∠DOE+∠COE=90°+54°=144°;
(2)∵∠DOE=90°,∠AOE=36°,
∴∠AOD=90°﹣36°=54°,
∵∠AOB=90°,
∴∠BOD=90°﹣54°=36°,
∵OF 平分∠AOD ,
∴∠DOF=
12
∠AOD=27°, ∴∠BOF=36°+27°=63°. 考点:1.余角和补角;2.角平分线的定义.
30.(1)-7,1.(2)经过43秒或83秒P ,Q 两点的距离为43
.(3)在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.
【解析】
【分析】
(1)由绝对值和偶次方的非负性列方程组可解;
(2)设经过t 秒两点的距离为43
,根据题意列绝对值方程求解即可; (3)分类讨论:点P 未运动到点C 时;点P 运动到点C 返回时;当点P 返回到点A 时.分别求出不同阶段的运动时间,进而求出相关点所表示的数即可.
【详解】
(1)由非负数的性质可得:7010a c +=⎧⎨-=⎩
, ∴7a =-,1c =,
故答案为:-7,1;
(2)设经过t 秒两点的距离为
43, 由题意得:41433t t ⨯+-=
, 解得43t =或83, 答:经过43秒或83秒P ,Q 两点的距离为43
; (3)点P 未运动到点C 时,设经过x 秒P ,Q 相遇,
由题意得:34x x =+,
∴2x =,
表示的数为:7321-+⨯=-,
点P 运动到点C 返回时,设经过y 秒P ,Q 相過,
由题意得:()34217y y ++=--⎡⎤⎣⎦,
∴3y =,
表示的数是:()331710⨯----=⎡⎤⎣⎦,
当点P 返回到点A 时,用时
163秒,此时点Q 所在位置表示的数是13-, 设再经过z 秒相遇, 由题意得:()1373z z +=-
--, ∴53
z =, 表示的数是:57323-+
⨯=-, 答:在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.
【点睛】
本题综合考查了绝对值和偶次方的非负性、利用方程来解决动点问题与行程问题,本题难度较大.
四、压轴题
31.探究:3;5;直接应用:∣a-2∣,∣a+4∣;灵活应用(1)2或-4;(2)6;(3)-6或4;实际应用:(1)甲、乙数轴上相遇时的点表示的数是-10.4;(2)运动2秒或5秒后甲到A 、B 、C 三点的距离和为40个单位长度.
【解析】
【分析】
利用数轴上两点间的距离公式、绝对值的意义、行程问题的基本数量关系,以及数轴直观解决问题即可.
【详解】
探究:4-1=3;2-(-3)=5.
直接应用:∣a -2∣,∣a +4∣;
灵活应用:
(1)a +1=±3,a =3-1=2或a =-3-1=-4,∴a =2或-4;
(2)∵数轴上表示数a 的点位于-4与2之间,∴a -2<0,a +4>0,∴原式=2-a +a +4=6; (3)由(2)可知,a <-4或a >2.分两种情况讨论:
①当a <-4时,方程变为:2-a -(a +4)=10,解得:a =-6;
②当a >2时,方程变为:a -2+(a +4)=10,解得:a =4;
综上所述:a 的值为-6或4.
实际应用:
(1)设x 秒后甲与乙相遇,则:
4x +6x =34
解得:x =3.4,4×3.4=13.6,﹣24+13.6=﹣10.4.
故甲、乙数轴上相遇时的点表示的数是﹣10.4;
(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为
14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.
①AB之间时:4y+(14﹣4y)+(14﹣4y+20)=40
解得:y=2;
②BC之间时:4y+(4y﹣14)+(34﹣4y)=40
解得:y=5.
答:运动2秒或5秒后甲到A、B、C三点的距离和为40个单位长度.
【点睛】
本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
32.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【解析】
【分析】
(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;
(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;
②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.
【详解】
解:(1)∵数轴上点A表示的数为6,
∴OA=6,
则OB=AB﹣OA=4,
点B在原点左边,
∴数轴上点B所表示的数为﹣4;
点P运动t秒的长度为5t,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,
∴P所表示的数为:6﹣5t,
故答案为﹣4,6﹣5t;
(2)①点P运动t秒时追上点Q,
根据题意得5t=10+3t,
解得t=5,
答:当点P运动5秒时,点P与点Q相遇;
②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,
当P不超过Q,则10+3a﹣5a=8,解得a=1;
当P超过Q,则10+3a+8=5a,解得a=9;
答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【点睛】
在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.
33.(1)AC=4cm, BC=8cm ;(2)当45
t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)3519
1cm.224t PQ =当为,,时, 【解析】
【分析】
(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;
(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;
(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.
【详解】
(1)AC=4cm, BC=8cm.
(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,
即3t 43t t =-+,解得4t 5=
. 所以当4t 5
=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.
所以当t 2=时,P 与Q 第一次相遇.
(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,
35t t 22
解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,
193t 4t 1122,t 4
+++=⨯=则解得, 3519t PQ 1cm.224
所以当为,,时,= 【点睛】
此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.。