Matlab笔记-模糊聚类分析原理及实现

合集下载

kmeans和cmeans matlab代码

kmeans和cmeans matlab代码

K-means和c-means算法是聚类分析中常用的两种算法,在MATLAB软件中可以通过编写相应的代码来实现这两种算法。

下面将分别介绍K-means算法和c-means算法的原理以及在MATLAB中的实现代码。

一、K-means算法原理及MATLAB代码实现K-means算法是一种基于距离的聚类算法,其原理主要包括初始化聚类中心、计算样本点到各个聚类中心的距离、更新聚类中心和迭代等步骤。

以下是K-means算法在MATLAB中的实现代码:1. 初始化聚类中心```matlabfunction [centers] = initCenters(data, k)centers = data(randperm(size(data, 1), k), :);end```2. 计算样本点到各个聚类中心的距离```matlabfunction [distances] = calculateDistances(data, centers)distances = pdist2(data, centers, 'euclidean');end```3. 更新聚类中心```matlabfunction [newCenters] = updateCenters(data, labels, k) newCenters = zeros(k, size(data, 2));for i = 1:knewCenters(i, :) = mean(data(labels == i, :));endend```4. 迭代```matlabfunction [labels, centers] = kMeans(data, k, maxIter) centers = initCenters(data, k);for iter = 1:maxIterdistances = calculateDistances(data, centers);[~, labels] = min(distances, [], 2);newCenters = updateCenters(data, labels, k);if isequal(newCenters, centers)break;endcenters = newCenters;endend```以上即是K-means算法在MATLAB中的实现代码,可以根据实际需求调用相应的函数来进行聚类分析。

聚类分析MATLAB

聚类分析MATLAB

聚类分析MATLAB§8.利⽤Matlab和SPSS软件实现聚类分析1. ⽤Matlab编程实现运⽤Matlab中的⼀些基本矩阵计算⽅法,通过⾃⼰编程实现聚类算法,在此只讨论根据最短距离规则聚类的⽅法。

调⽤函数:min1.m——求矩阵最⼩值,返回最⼩值所在⾏和列以及值的⼤⼩min2.m——⽐较两数⼤⼩,返回较⼩值std1.m——⽤极差标准化法标准化矩阵ds1.m——⽤绝对值距离法求距离矩阵cluster.m——应⽤最短距离聚类法进⾏聚类分析print1.m——调⽤各⼦函数,显⽰聚类结果聚类分析算法假设距离矩阵为vector,a阶,矩阵中最⼤值为max,令矩阵上三⾓元素等于max聚类次数=a-1,以下步骤作a-1次循环:求改变后矩阵的阶数,计作c求矩阵最⼩值,返回最⼩值所在⾏e和列f以及值的⼤⼩gfor l=1:c,为vector(c+1,l)赋值,产⽣新类令第c+1列元素,第e⾏和第f⾏所有元素为,第e列和第f列所有元素为max源程序如下:%std1.m,⽤极差标准化法标准化矩阵function std=std1(vector)max=max(vector); %对列求最⼤值min=min(vector);[a,b]=size(vector); %矩阵⼤⼩,a为⾏数,b为列数for i=1:afor j=1:bstd(i,j)= (vector(i,j)-min(j))/(max(j)-min(j));endend%ds1.m,⽤绝对值法求距离function d=ds1(vector);[a,b]=size(vector);d=zeros(a);for i=1:afor j=1:afor k=1:bd(i,j)=d(i,j)+abs(vector(i,k)-vector(j,k));endendendfprintf('绝对值距离矩阵如下:\n');disp(d)%min1.m,求矩阵中最⼩值,并返回⾏列数及其值function [v1,v2,v3]=min1(vector);%v1为⾏数,v2为列数,v3为其值[v,v2]=min(min(vector'));[v,v1]=min(min(vector));v3=min(min(vector));%min2.m,⽐较两数⼤⼩,返回较⼩的值function v1=min(v2,v3);if v2>v3v1=v3;elsev1=v2;end%cluster.m,最短距离聚类法function result=cluster(vector);[a,b]=size(vector);max=max(max(vector));for i=1:afor j=i:bvector(i,j)=max;endend;for k=1:(b-1)[c,d]=size(vector);fprintf('第%g次聚类:\n',k);[e,f,g]=min1(vector);fprintf('最⼩值=%g,将第%g区和第%g区并为⼀类,记作G%g\n\n',g,e,f,c+1); for l=1:cif l<=min2(e,f)vector(c+1,l)=min2(vector(e,l),vector(f,l));elsevector(c+1,l)=min2(vector(l,e),vector(l,f));endend;vector(1:c+1,c+1)=max;vector(1:c+1,e)=max;vector(1:c+1,f)=max;vector(e,1:c+1)=max;vector(f,1:c+1)=max;end%print1,调⽤各⼦函数function print=print1(filename,a,b); %a为地区个数,b为指标数fid=fopen(filename,'r')vector=fscanf(fid,'%g',[a b]);fprintf('标准化结果如下:\n')v1=std1(vector)v2=ds1(v1);cluster(v2);%输出结果print1('fname',9,7)2.直接调⽤Matlab函数实现2.1调⽤函数层次聚类法(Hierarchical Clustering)的计算步骤:①计算n个样本两两间的距离{d ij},记D②构造n个类,每个类只包含⼀个样本;③合并距离最近的两类为⼀新类;④计算新类与当前各类的距离;若类的个数等于1,转到5);否则回3);⑤画聚类图;⑥决定类的个数和类;Matlab软件对系统聚类法的实现(调⽤函数说明):cluster 从连接输出(linkage)中创建聚类clusterdata 从数据集合(x)中创建聚类dendrogram 画系统树状图linkage 连接数据集中的⽬标为⼆元群的层次树pdist 计算数据集合中两两元素间的距离(向量) squareform 将距离的输出向量形式定格为矩阵形式zscore 对数据矩阵 X 进⾏标准化处理各种命令解释1、T = clusterdata(X, cutoff)其中X为数据矩阵,cutoff是创建聚类的临界值。

利用Matlab进行数据聚类与分类的方法

利用Matlab进行数据聚类与分类的方法

利用Matlab进行数据聚类与分类的方法导言在当今大数据时代,处理和分析庞大的数据成为许多领域的重要任务,而数据聚类与分类是其中重要的一环。

Matlab作为一种功能强大的编程语言和工具,在数据聚类与分类方面具有广泛的应用。

本文将介绍利用Matlab进行数据聚类与分类的常用方法和技巧。

一、数据聚类的概念与方法1.1 数据聚类的定义数据聚类是指将具有相似特征的数据对象自动分成若干组的过程,旨在将相似的数据归为一类,不相似的数据分开。

1.2 常用的数据聚类方法- K-means聚类算法:K-means是一种常见且简单的数据聚类方法,通过迭代优化的方式将数据划分成K个簇。

- 层次聚类算法:层次聚类是一种基于树形结构的聚类方法,它将数据逐步合并或分裂,直到得到最终的聚类结果。

- 密度聚类算法:密度聚类根据数据点的密度特征进行聚类,能够有效地发现任意形状和大小的聚类簇。

- 谱聚类算法:谱聚类结合图论的思想,通过计算数据的拉普拉斯矩阵特征向量,将数据聚类成多个划分。

二、利用Matlab进行数据聚类2.1 准备工作在使用Matlab进行数据聚类之前,需要准备好数据集。

通常,数据集需要进行预处理,包括数据清洗、特征选择和降维等步骤。

2.2 K-means聚类利用Matlab的统计工具箱,可以轻松实现K-means聚类算法。

首先,将数据集读入Matlab并进行必要的归一化处理。

然后,使用kmeans函数运行K-means聚类算法,指定聚类的簇数K和迭代次数等参数。

最后,根据聚类结果进行数据可视化或进一步的分析。

2.3 层次聚类Matlab中的cluster函数提供了层次聚类的功能。

将数据集转换为距离矩阵,然后调用cluster函数即可实现层次聚类。

该函数支持不同的聚类算法和距离度量方法,用户可以根据具体需求进行调整。

2.4 密度聚类实现密度聚类可以使用Matlab中的DBSCAN函数。

DBSCAN是一种基于密度的聚类算法,它通过确定数据点的领域密度来判定是否为核心对象,并通过核心对象的连接性将数据点分为不同的簇。

模糊C均值聚类

模糊C均值聚类
模糊C均值聚类
主 单
讲:周润景 教授 位:电子信息工程学院
目 录
模糊C均值聚类应用背景 模糊C均值算法 模糊C均值聚类的MATLAB实现 模糊C均值聚类结果分析
一.模糊C均值聚类应用背景
传统的聚类分析是一种硬划分(Crisp Partition),它把每个待辨识的对 象严格地划分到某类中,具有“非此即彼”的性质,因此这种类别划分的界限 是分明的。然而实际上大多数对象并没有严格的属性,它们在性质和类属方面 存在着中介性,具有“亦此亦彼”的性质,因此适合进行软划分。Zadeh提出 的模糊集理论为这种软划分提供了有力的分析工具,人们开始用模糊方法来处 理聚类问题,并称之为模糊聚类分析。模糊聚类得到了样本属于各个类别的不 确定性程度,表达了样本类属的中介性,建立起了样本对于类别的不确定性的
三.模糊C均值聚类的MATLAB实现
426.31 3105.29 2057.8 1507.13 1556.89 1954.51 343.07 3271.72 2036.94 2201.94 3196.22 935.53 2232.43 3077.87 1298.87 1580.1 1752.07 2463.04 1962.4 1594.97 1835.95 1495.18 1957.44 3498.02 1125.17 1594.39 2937.73 24.22 3447.31 2145.01 1269.07 1910.72 2701.97 1802.07 1725.81 1966.35 1817.36 1927.4 2328.79 1860.45 1782.88 1875.13]; [center,U,obj_fcn] = fcm(data,4); plot3(data(:,1),data(:,2),data(:,3),'o');

模糊聚类分析实验报告

模糊聚类分析实验报告

专业:信息与计算科学 姓名: 学号:实验一 模糊聚类分析实验目的:掌握数据文件的标准化,模糊相似矩阵的建立方法,会求传递闭包矩阵;会使用数学软件MATLAB 进行模糊矩阵的有关运算实验学时:4学时实验内容:⑴ 根据已知数据进行数据标准化.⑵ 根据已知数据建立模糊相似矩阵,并求出其传递闭包矩阵.⑶ (可选做)根据模糊等价矩阵绘制动态聚类图.⑷ (可选做)根据原始数据或标准化后的数据和⑶的结果确定最佳分类. 实验日期:20017年12月02日实验步骤:1 问题描述:设有8种产品,它们的指标如下:x 1 = (37,38,12,16,13,12)x 2 = (69,73,74,22,64,17)x 3 = (73,86,49,27,68,39)x 4 = (57,58,64,84,63,28)x 5 = (38,56,65,85,62,27)x 6 = (65,55,64,15,26,48)x 7 = (65,56,15,42,65,35)x 8 = (66,45,65,55,34,32)建立相似矩阵,并用传递闭包法进行模糊聚类。

2 解决步骤:2.1 建立原始数据矩阵设论域},,{21n x x x X 为被分类对象,每个对象又有m 个指标表示其性状, im i i i x x x x ,,,21 ,n i ,,2,1 由此可得原始数据矩阵。

于是,得到原始数据矩阵为323455654566356542155665482615645565276285655638286384645857396827498673176422747369121316123837X 其中nm x 表示第n 个分类对象的第m 个指标的原始数据,其中m = 6,n = 8。

2.2 样本数据标准化2.2.1 对上述矩阵进行如下变化,将数据压缩到[0,1],使用方法为平移极差变换和最大值规格化方法。

(1)平移极差变换:111min{}max{}min{}ik ik i n ik ik ik i n i n x x x x x ,(1,2,,)k m L显然有01ikx ,而且也消除了量纲的影响。

模糊聚类分析方法

模糊聚类分析方法

模糊聚类分析方法对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统 计“物以类聚”的一种分类方法。

载科学技术、经济管理中常常要按一定的标准 (相似程度或亲疏关系)进行分类。

例如,根据生物的某些性状可对生物分类, 根据土壤的性质可对土壤分类等。

由于科学技术、经济管理中的分类界限往往不 分明,因此采用模糊聚类方法通常比较符合实际。

一、模糊聚类分析的一般步骤1、第一步:数据标准化[9](1)数据矩阵设论域U ={X i ,X 2,||l,X n }为被分类对象,每个对象又有m 个指标表示其性状,于是,得到原始数据矩阵为Xm 1X m2bI-Xnm」其中X nm 表示第n 个分类对象的第m 个指标的原始数据(2)数据标准化在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行 比较,通常需要对数据做适当的变换。

但是,即使这样,得到的数据也不一定在 区间[0,1]上。

因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据 压缩到区间[0,1]上。

通常有以下几种变换: ① 平移•标准差变换X i = {x i1, X i2,川,X m }X i 1X2 1X n2 IHxik -(i 一 1,21 n, k_;HL 2mS k其中-1 n1 n_ 2xkxi , 2(xik~'兀)。

n i 4: n i 4经过变换后,每个变量的均值为 0,标准差为1,且消除了量纲的影响。

但是,再用得到的x k 还不一定在区间[0,1]上。

② 平移•极差变换显然有0乞x ik 乞1,而且也消除了量纲的影响 ③ 对数变换xk- lg x ik (i = 1,n , k; l [L 2 m取对数以缩小变量间的数量级。

2、第二步:标定(建立模糊相似矩阵)设论域U ={为公2,川,人} , X i ={为1必2,川,心},依照传统聚类方法确定相似 系数,建立模糊相似矩阵,x i 与X j 的相似程度用=R(X j ,X j )。

在Matlab中使用模糊C均值聚类进行图像分析的技巧

在Matlab中使用模糊C均值聚类进行图像分析的技巧

在Matlab中使用模糊C均值聚类进行图像分析的技巧在图像分析领域,模糊C均值聚类(FCM)是一种常用的工具,它可以帮助我们发现图像中隐藏的信息和模式。

通过使用Matlab中的模糊逻辑工具箱,我们可以轻松地实现FCM算法,并进行图像分析。

本文将介绍在Matlab中使用FCM进行图像分析的技巧。

首先,让我们简要了解一下FCM算法。

FCM是一种基于聚类的图像分割方法,它将图像的像素分为不同的聚类,每个聚类代表一类像素。

与传统的C均值聚类算法不同,FCM允许像素属于多个聚类,因此能够更好地处理图像中的模糊边界。

在Matlab中使用FCM进行图像分析的第一步是加载图像。

可以使用imread函数将图像加载到Matlab的工作区中。

例如,我们可以加载一张名为“image.jpg”的图像:```matlabimage = imread('image.jpg');```加载图像后,可以使用imshow函数显示图像。

这可以帮助我们对图像有一个直观的了解:```matlabimshow(image);```接下来,我们需要将图像转换为灰度图像。

这是因为FCM算法通常用于灰度图像分析。

可以使用rgb2gray函数将彩色图像转换为灰度图像:```matlabgrayImage = rgb2gray(image);```在使用FCM算法之前,我们需要对图像进行预处理。

预处理的目的是消除图像中的噪声和不必要的细节,从而更好地提取图像中的特征。

常用的图像预处理方法包括平滑、锐化和边缘检测等。

Matlab中提供了许多图像预处理函数。

例如,可以使用imnoise函数向图像中添加高斯噪声:```matlabnoisyImage = imnoise(grayImage, 'gaussian', 0, 0.01);```还可以使用imfilter函数对图像进行平滑处理。

常见的平滑方法包括均值滤波和高斯滤波:```matlabsmoothImage = imfilter(noisyImage, fspecial('average', 3));```一旦完成预处理步骤,我们就可以使用模糊逻辑工具箱中的fcm函数执行FCM算法。

Matlab中的时间序列分类和聚类分析技术

Matlab中的时间序列分类和聚类分析技术

Matlab中的时间序列分类和聚类分析技术时间序列分析是一种用于处理以时间为基准的数据的统计学方法。

通过对时间序列数据进行分类和聚类分析,可以帮助我们发现数据之间的模式、趋势和关联,从而提供对未来趋势的预测和决策支持。

在Matlab中,我们可以利用丰富的时间序列分析工具包来进行这些分析,如金融时间序列分析、信号处理、天气预测等。

一、时间序列分类分析时间序列分类分析是将时间序列数据按照一定的规则分类到不同的类别中。

这可以帮助我们识别不同时间序列之间的差异和相似性,进而在分类、预测和决策等应用中发挥作用。

1. 特征提取在进行时间序列分类之前,首先需要从原始数据中提取出一些有意义的特征。

常用的特征提取方法包括傅里叶变换、小波变换、自回归模型参数等。

在Matlab 中,我们可以使用fft函数进行傅里叶变换,cwt函数进行连续小波变换,arima函数进行自回归模型估计等。

提取出的特征可以用来表征时间序列的统计性质、频谱信息以及自相关性等。

2. 数据预处理在进行时间序列分类之前,通常需要对数据进行预处理,以消除噪声、缺失值和异常值等对分类结果的影响。

这可以通过平滑、插值、滤波等方法实现。

在Matlab中,我们可以使用smooth函数进行平滑处理,interp1函数进行插值处理,filter函数进行滤波处理等。

3. 分类模型建立在特征提取和数据预处理之后,我们可以利用已有的分类算法或建立自己的分类模型来进行时间序列分类。

常用的分类算法包括支持向量机、最近邻、决策树等。

在Matlab中,我们可以使用fitcsvm函数进行支持向量机分类,fitcknn函数进行最近邻分类,fitctree函数进行决策树分类等。

二、时间序列聚类分析时间序列聚类分析是将时间序列数据按照相似度进行分组。

不同于分类分析,聚类分析不需要提前指定类别,而是根据数据的相似性自动进行分组。

1. 相似度度量在时间序列聚类分析中,选择合适的相似度度量方法对数据进行比较是非常重要的。

如何在Matlab中进行模糊聚类分析

如何在Matlab中进行模糊聚类分析

如何在Matlab中进行模糊聚类分析在数据分析领域,模糊聚类分析是一种常用的技术,它可以应用于各种领域的数据处理和模式识别问题。

而Matlab作为一种功能强大的数据分析工具,也提供了丰富的函数和工具箱,以支持模糊聚类分析的实施。

1. 引言模糊聚类分析是一种基于模糊集理论的聚类方法,与传统的硬聚类方法不同,它允许样本属于多个聚类中心。

这种方法的优势在于可以更好地应对数据中的不确定性和复杂性,对于某些模糊或模糊边界问题具有更好的解释能力。

2. 模糊聚类算法概述Matlab提供了多种模糊聚类算法的实现,其中最常用的是基于模糊C均值(Fuzzy C-Means,FCM)算法。

FCM算法的基本思想是通过最小化聚类后的模糊划分矩阵与原始数据之间的距离来确定每个样本所属的聚类中心。

3. 数据预处理与特征提取在进行模糊聚类分析之前,需要对原始数据进行预处理和特征提取。

预处理包括数据清洗、缺失值处理和异常值处理等;特征提取则是从原始数据中抽取出具有代表性和区分性的特征,用于模糊聚类分析。

4. 模糊聚类分析步骤在Matlab中,进行模糊聚类分析通常包括以下步骤:(1) 初始化聚类中心:通过随机选择或基于某种准则的方法初始化聚类中心。

(2) 计算模糊划分矩阵:根据当前的聚类中心,计算每个样本属于各个聚类中心的隶属度。

(3) 更新聚类中心:根据当前的模糊划分矩阵,更新聚类中心的位置。

(4) 判断终止条件:通过设置一定的终止条件,判断是否达到停止迭代的条件。

(5) 输出最终结果:得到最终的聚类结果和每个样本所属的隶属度。

5. 模糊聚类结果评估在进行模糊聚类分析后,需要对聚类结果进行评估以验证其有效性和可解释性。

常用的评估指标包括模糊划分矩阵的聚类有效性指标、外部指标和内部指标等。

通过这些指标的比较和分析,可以选择合适的模糊聚类算法和参数设置。

6. 模糊聚类的应用模糊聚类分析在诸多领域中都有广泛的应用。

例如,在图像处理中,可以利用模糊聚类方法对图像进行分割和识别;在生物信息学中,可以应用于基因表达数据的分类和模式识别等。

用matlab做聚类分析

用matlab做聚类分析

用matlab做聚类分析MATLAB提供了两种方法进行聚类分析:一、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;二、步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenet函数评价聚类信息;(4)用cluster函数进行聚类。

下边详细介绍两种方法:1、一次聚类Clusterdata函数可以视为pdist、linkage与cluster的综合,即Clusterdata函数调用了pdist、linkage和cluster,用来由原始样本数据矩阵X创建系统聚类,一般比较简单。

clusterdata函数的调用格式:T=clusterdata(X,cutoff)输出参数T是一个包含n个元素的列向量,其元素为相应观测所属类的类序号。

输入 的矩阵,矩阵的每一行对应一个观测(样品),每一列对应一个变量。

Cutoff 参数X是n p为阈值。

(1)当0<cutoff<2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,’cutoff’,cutoff) ;(‘cutoff’指定不一致系数或距离的阈值,参数值为正实数)(2)Cutoff>>2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z, ‘maxclust’,cutoff) ;(‘maxclust’指定最大类数,参数值为正整数)2、分步聚类(1)求出变量之间的相似性用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化【pdist函数:调用格式:Y=pdist(X,’metric’)说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集‘seuclidean’:metirc取值为:’euclidean’:欧氏距离(默认)标准化欧氏距离;‘mahalanobis’:马氏距离;闵科夫斯基距离:‘ minkowski’;绝对值距离:‘ cityblock’…】pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。

用matlab做聚类分析

用matlab做聚类分析

用matlab做聚类分析MATLAB提供了两种方法进行聚类分析:一、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;二、步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenet函数评价聚类信息;(4)用cluster函数进行聚类。

下边详细介绍两种方法:1、一次聚类Clusterdata函数可以视为pdist、linkage与cluster的综合,即Clusterdata函数调用了pdist、linkage和cluster,用来由原始样本数据矩阵X创建系统聚类,一般比较简单。

clusterdata函数的调用格式:T=clusterdata(X,cutoff)输出参数T是一个包含n个元素的列向量,其元素为相应观测所属类的类序号。

输入 的矩阵,矩阵的每一行对应一个观测(样品),每一列对应一个变量。

Cutoff 参数X是n p为阈值。

(1)当0<cutoff<2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,’cutoff’,cutoff) ;(‘cutoff’指定不一致系数或距离的阈值,参数值为正实数)(2)Cutoff>>2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z, ‘maxclust’,cutoff) ;(‘maxclust’指定最大类数,参数值为正整数)2、分步聚类(1)求出变量之间的相似性用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化【pdist函数:调用格式:Y=pdist(X,’metric’)说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集‘seuclidean’:metirc取值为:’euclidean’:欧氏距离(默认)标准化欧氏距离;‘mahalanobis’:马氏距离;闵科夫斯基距离:‘ minkowski’;绝对值距离:‘ cityblock’…】pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。

聚类分析及MATLAB实现

聚类分析及MATLAB实现

2
设有n个样品的p元观测数据组成一个数据矩阵 其中每一行表示一个样品,每一列表示一个指标,xij表示第i个样品关于第j项指标的观测值,聚类分析的基本思想就是在样品之间定义距离,在指标之间定义相似系数,样品之间距离表明样品之间的相似度,指标之间的相似系数刻画指标之间的相似度。将样品(或变量)按相似度的大小逐一归类,关系密切的聚集到较小的一类,关系疏远的聚集到较大的一类,聚类分析通常有:谱系聚类、快速聚类,我们主要介绍谱系聚类的方法与MATLAB实现
4.2 谱系聚类法 谱系聚类法是目前应用较为广泛的一种聚类法。谱系聚类是根据生物分类学的思想对研究对象进行分类的方法。在生物分类学中,分类的单位是:门、纲、目、科、属、种。其中种是分类的基本单位,分类单位越小,它所包含的生物就越少,生物之间的共同特征就越多。利用这种思想,谱系聚类首先将各样品自成一类,然后把最相似(距离最近或相似系数最大)的样品聚为小类,再将已聚合的小类按各类之间的相似性(用类间距离度量)进行再聚合,随着相似性的减弱,最后将一切子类都聚为一大类,从而得到一个按相似性大小聚结起来的一个谱系图。
clusterdata
根据数据创建分类
inconsistent
计算聚类树的不连续系数
研究对样品或指标进行分类的一种多元统计方法,是依据研究对象的个体的特征进行分类的方法。
01
聚类分析把分类对象按一定规则分成若干类,这些类非事先给定的,而是根据数据特征确定的。在同一类中这些对象在某种意义上趋向于彼此相似,而在不同类中趋向于不相似。
1382.68
1462.08
5
法国
1546.55
1501.77
1525.95
6
德国
1656.52
1630.52

模糊聚类分析例子1

模糊聚类分析例子1

1. 模糊聚类分析模型环境区域的污染情况由污染物在4个要素中的含量超标程度来衡量。

设这5个环境区域的污染数据为1x =(80, 10, 6, 2), 2x =(50, 1, 6, 4), 3x =(90, 6, 4, 6), 4x =(40, 5, 7, 3), 5x =(10, 1, 2, 4). 试用模糊传递闭包法对X 进行分类。

解 :由题设知特性指标矩阵为: *80106250164906464057310124X ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦数据规格化:最大规格化'ij ijjx x M =其中: 12max(,,...,)j j j nj M x x x =00.8910.860.330.560.10.860.6710.60.5710.440.510.50.110.10.290.67X ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦构造模糊相似矩阵: 采用最大最小法来构造模糊相似矩阵55()ij R r ⨯=,10.540.620.630.240.5410.550.700.530.620.5510.560.370.630.700.5610.380.240.530.370.381R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦利用平方自合成方法求传递闭包t (R )依次计算248,,R R R , 由于84R R =,所以4()t R R =210.630.620.630.530.6310.560.700.530.620.5610.620.530.630.700.6210.530.530.530.530.531R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,410.630.620.630.530.6310.620.700.530.620.6210.620.530.630.700.6210.530.530.530.530.531R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦=8R选取适当的置信水平值[0,1]λ∈, 按λ截矩阵进行动态聚类。

模糊聚类分析及matlab程序实现

模糊聚类分析及matlab程序实现

模糊聚类分析及matlab程序实现采用模糊数学语言对按一定的要求进行描述和分类的数学方法称为模糊聚类分析。

聚类分析主要经过标定和聚类两步骤。

【111标定(建立模糊相似矩阵)城市居民食品零售价格,第t时刻第i种食品的零售价记为x(i,t)。

相似矩阵R的构建方法:NTV法设时间序列A(i,j)表示食品i在时间t的价格,其中i=1 , 2...42; t=1 , 2 (39)mX x ik - X jkR(i,j)"-严(其中i,j,k=1,2 …42,m=39)' max( X ik ,X jk )k 土R = R (i , j )42 * 422聚类2.1计算R的传递闭包:t对模糊相似矩阵R,依次用平方法计算,R2, R4,…,R2,…,当第一次出现R k*R k=R k时,则称R k为传递闭包。

【112.2开始聚类:【21(1)令T={1,2,3 …42},取xi • T(1),令X、Q为空集;(2)令j =0 ;(3)若R(xi, j)二’且x j ■' X,则令x = X _. { j},Q =Q 一{ j};(4)j 二j • 1 ;(5)若j <n,返回(1);(6)若Q为空集,怎输出聚类x, T =T -X ;(7)xi =Q(1) , Q =Q -{xi},返回(2)。

设置不同的置信水平'值,就可以得到不同的分类。

Matlab程序实现:A=data;[N M] = size(A);for i = 1:Nfor j = 1:NR(i,j)=abs(1-sum(abs(A(i,:)-A(j,:)))/sum(max([A(i,:);A(j,:)])));end endfor j=1:42for i=1:42y(i,j)=0;for k=1:42mn(k)=min(R(i,k),R(k,j));endy(i,j)=max(mn);endendnumda=[1 0.9 0.95 0.85 0.8 0.75 0.55 0.7 0.655 0.65 0.6 0.55 0.5 0.45 0.454 0.4 0.45 0.3 0.35 0.255 0.25 0.2 0.15 0.1];for i=1:42TT(i)=i;endfor i=1:length(numda)disp (' 当分类系数是');disp(numda(i));a=numda(i);T=TT;disp (' 分类为');while 1if ~isempty(T)xi=T(1);endX=[];Q=[];while 1for j=1:42if (y(xi,j)>=a)&isempty(intersect(X,j))X=union(X,j);Q(length(Q)+1)=j;endendif isempty(Q)disp(X);breakelsexi=Q(1);Q(1)=[];endendT=setdiff(T,X); if isempty(T) break end end end。

在Matlab中实现模糊聚类和模糊决策的方法

在Matlab中实现模糊聚类和模糊决策的方法

在Matlab中实现模糊聚类和模糊决策的方法引言:模糊聚类和模糊决策作为模糊理论的重要应用分支,已经在各个领域得到了广泛的研究与应用。

在实际问题中,常常会面临到数据具有模糊性、不确定性等挑战。

而模糊聚类和模糊决策方法能够有效地处理这些问题,为解决实际问题提供了有力的工具。

本文将介绍在Matlab中实现模糊聚类和模糊决策的方法,详细介绍模糊聚类和模糊决策的基本原理和常用方法,并以实例进行说明。

一、模糊聚类方法的基本原理模糊聚类方法是在传统的聚类算法的基础上引入了模糊理论的思想,将每个样本与各个聚类中心之间的关系表示为隶属度,从而实现对模糊数据的聚类。

在Matlab中,常用的模糊聚类方法有模糊C均值聚类(FCM)和模糊谱聚类(FSC)等。

(1)模糊C均值聚类(FCM):模糊C均值聚类是模糊聚类方法中最常用的一种方法。

其基本原理是通过迭代的方式,更新样本的隶属度和聚类中心,直至收敛。

在Matlab中,可以使用fcm函数来实现模糊C均值聚类。

下面是一个示例代码:```matlabdata = load('data.mat'); % 导入数据[U, centroids] = fcm(data, k); % 调用fcm函数进行聚类,k是聚类的类别数```(2)模糊谱聚类(FSC):模糊谱聚类是一种基于图论的聚类方法,它通过建立样本的相似度矩阵,然后通过对相似度矩阵进行模糊化处理,进而得到聚类结果。

在Matlab中,可以使用fuzzy_spectral_clustering函数来实现模糊谱聚类。

下面是一个示例代码:```matlabdata = load('data.mat'); % 导入数据[U, V] = fuzzy_spectral_clustering(data, k); % 调用fuzzy_spectral_clustering函数进行聚类,k是聚类的类别数```二、模糊决策方法的基本原理模糊决策方法是一种基于模糊理论的决策方法,它通过将问题中的模糊性和不确定性转化为数学上的隶属度,从而实现对决策问题的处理。

在Matlab中进行聚类分析的基本步骤

在Matlab中进行聚类分析的基本步骤

在Matlab中进行聚类分析的基本步骤聚类分析是一种常用的数据分析方法,它可以将相似的数据点划分成不同的组别或簇。

Matlab作为一种常用的科学计算软件,在聚类分析方面提供了丰富而强大的工具。

本文将介绍在Matlab中进行聚类分析的基本步骤。

一、数据准备在进行聚类分析之前,首先需要准备好待分析的数据。

数据可以是一组观测值的集合,每个观测值可以包含多个特征或属性。

在Matlab中,通常将数据存储在一个矩阵中,其中每一行表示一个观测值,每一列表示一个特征。

二、数据标准化在进行聚类分析之前,需要对数据进行标准化。

标准化可以保证不同特征的量纲一致,避免某些特征对聚类结果的影响过大。

常用的标准化方法包括Z-score标准化和min-max标准化。

在Matlab中,可以使用内置的函数实现标准化操作。

例如,使用zscore函数可以对数据进行Z-score标准化,使用mapminmax函数可以进行min-max标准化。

三、选择合适的聚类算法选择合适的聚类算法是进行聚类分析的关键步骤。

常用的聚类算法包括K-means聚类、层次聚类和密度聚类等。

在Matlab中,提供了丰富的聚类算法实现。

例如,可以使用kmeans函数进行K-means聚类,使用linkage函数进行层次聚类,使用DBSCAN函数进行密度聚类。

四、确定聚类数目在进行聚类分析时,需要确定聚类的数目。

聚类数目的选择是一个具有挑战性的问题,需要根据具体的应用情况和领域知识来判断。

Matlab中提供了一些方法来确定聚类数目,例如肘部法则和轮廓系数。

肘部法则通过绘制聚类数目与聚类误差的关系曲线,选择出肘部对应的聚类数目作为最佳的聚类数目。

轮廓系数通过计算每个数据点的轮廓系数,选择轮廓系数达到最大值对应的聚类数目作为最佳的聚类数目。

五、进行聚类分析在确定了聚类数目之后,可以开始进行聚类分析。

在Matlab中,可以使用相应的聚类算法函数进行聚类操作。

以K-means聚类为例,可以使用kmeans函数进行聚类分析。

matlab模糊c均值聚类算法

matlab模糊c均值聚类算法

matlab模糊c均值聚类算法Matlab是广泛应用的数学计算软件,其中模糊c均值聚类算法是一种常用的无监督聚类算法。

本文将围绕此算法,介绍其原理、实现步骤以及应用场景。

1.算法原理模糊c均值聚类算法是继普通k均值聚类算法之后的一种改进算法。

通常情况下,k均值聚类算法的核心是将数据集分成k个不同的类簇,使得每个数据点与其所属的类簇中心点距离最小。

而对于模糊c均值聚类算法,每个数据点并不是强制归属于某一个特定的类簇,而是存在一个隶属度矩阵,代表该数据点属于各个类簇的概率。

同时,每个类簇中心也不是单一的一个坐标点,而是一个多维向量。

算法的基本步骤为:先随机初始化隶属度矩阵和各个类簇中心,然后按照一定的迭代公式不断更新隶属度矩阵和类簇中心,直到达到一定的收敛准则(如最大迭代次数、误差值小于某一阈值等)。

2.算法实现在Matlab中实现模糊c均值聚类算法,需要先安装fuzzy工具包。

以下是实现的三个主要步骤:①初始化隶属度矩阵和类簇中心。

可以使用rand()函数生成一定范围内均匀分布的随机数,将其归一化为各维总和为1的隶属度矩阵。

类簇中心可以在数据集范围内随机选择。

②迭代更新隶属度矩阵和类簇中心。

根据迭代公式,先计算各数据点与各类簇中心的距离(可以使用欧几里得距离),得到距离矩阵。

然后根据距离矩阵和一个模糊参数,更新隶属度矩阵。

根据隶属度矩阵和原始数据,权重加权计算每个类簇的中心坐标,得到新的类簇中心。

③判断是否达到收敛准则,如果满足收敛准则则停止迭代,否则回到第②步。

常见的收敛准则包括最大迭代次数、前后两次迭代误差小于某一阈值等。

3.应用场景模糊c均值聚类算法可以用于统计学、图像处理、生物信息学等领域中的无监督聚类问题。

例如,在图像处理中,可以将像素点看作数据点,使用模糊c均值聚类算法对图像进行分割处理,将像素点划分为不同的颜色区域。

模糊c均值聚类算法还可以用于人工智能领域的模糊推理问题,在模糊控制领域有广泛的应用。

基于matlab的模糊聚类分析81805研究特选

基于matlab的模糊聚类分析81805研究特选

( i =1,2,…,n )
x11 x12 ... x1m
x21 x22 ... x2m
... xn1
... xn 2
... ...
... xnm
13
2.2 数据标准化处理
描述事物特征的量纲是各种各样的, 为了便于分析和比 较,从而在计算的过程中消除这种干扰。 因此要对矩阵进 行标准化处理, 这可以有各种类型的方法, 如平移-标准差 变换和平移-标准差变换,从而可以把矩阵尽量转化为标 准化矩阵。
Contents
1
预备知识 2 基于MATLAB的模糊聚
类分析的传递方法
3
实例应用
1
2
1.预备知识
聚类分析和模糊聚类分析 模糊相似矩阵 模糊等价矩阵
模糊矩阵的 - 截矩阵
模糊传递闭包和等价闭包
3
定义一:(模糊)聚类分析 在科学技术,经济管理中常常需要按一定的标准(相似程
度或亲疏关系)进行分类。对所研究的事物按一定标准进行 分类的数学方法称为聚类分析。
R R′ t(R) R′, 即 R 的传递闭包t(R)是包含 R 的最小的传递关系。
9
定义六:模糊等价闭包
设 RF ( X X ),称 e(R) 为 R 的等价闭包,若 e(R) 满
足下述条件:
(1) 等价性:e(R) 是 X 上的模糊等价关系。 (2) 包容性:R e(R)。 (3) 最小性:若 R’ 是 X 上的模糊等价关系,且

•function B=cd3(R) •a=size(R); •B=zeros(a); •flag=0; •while flag==0 •for i= 1: a • for j= 1: a • for k=1:a • B( i , j ) = max(min( R( i , k) , R( k, j) ) , B( i , j ) ) ;%R与R内 积,先取小再取大 • end • end •end •if B==R • flag=1; •else • R=B;%循环计算R传递闭包 •end •end
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23. 模糊聚类分析原理及实现聚类分析,就是用数学方法研究和处理所给定对象,按照事物间的相似性进行区分和分类的过程。

传统的聚类分析是一种硬划分,它把每个待识别的对象严格地划分到某个类中,具有非此即彼的性质,这种分类的类别界限是分明的。

随着模糊理论的建立,人们开始用模糊的方法来处理聚类问题,称为模糊聚类分析。

由于模糊聚类得到了样本数与各个类别的不确定性程度,表达了样本类属的中介性,即建立起了样本对于类别的不确定性的描述,能更客观地反映现实世界。

本篇先介绍传统的两种(适合数据量较小情形,及理解模糊聚类原理):基于择近原则、模糊等价关系的模糊聚类方法。

(一)预备知识一、模糊等价矩阵定义1设R=(r ij )n ×n 为模糊矩阵,I 为n 阶单位矩阵,若R 满足 i) 自反性:I ≤R (等价于r ii =1); ii) 对称性:R T =R;则称R 为模糊相似矩阵,若再满足iii) 传递性:R 2≤R (等价于1()nik kj ij k r r r =∨∧≤)则称R 为模糊等价矩阵。

定理1设R 为n 阶模糊相似矩阵,则存在一个最小的自然数k(k <n ), 使得R k 为模糊等价矩阵,且对一切大于k 的自然数l ,恒有R l =R k . R k 称为R 的传递闭包矩阵,记为t(R). 二、模糊矩阵的λ-截矩阵定义2设A =(a ij )n ×m 为模糊矩阵,对任意的λ∈[0,1], 作矩阵()()ij n mA a λλ⨯=其中,()1, 0, ij ijij a aa λλλ≥⎧=⎨<⎩称为模糊矩阵A 的λ-截矩阵。

显然,A λ为布尔矩阵,且其等价性与与A 一致。

意义:将模糊等价矩阵转化为等价的布尔矩阵,可以得到有限论域上的普通等价关系,而等价关系是可以分类的。

因此,当λ在[0,1]上变动时,由A λ得到不同的分类。

若λ1<λ2, 则A λ1≥A λ2, 从而由A λ2确定的分类是由A λ1确定的分类的加细。

当λ从1递减变化到0时,A λ的分类由细变粗,逐渐归并,形成一个分级聚类树。

例1设U={u 1, u 2, u 3, u 4, u 5}, 对给定的U 上的模糊等价关系让λ从1到0变化,观察分类过程。

(1) 当λ=1时,110000 01000 00100 00010 00001R⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦分类结果为5类:(每行代表一类,1代表对应元素在该类){u1}, {u2}, {u3}, {u4}, {u5}(2) 当λ=0.8时,0.810100 01000 10100 00010 00001R⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦分类结果为4类:{u1, u3}, {u2}, {u4}, {u5}(3) 当λ=0.6时,0.610100 01000 10100 00011 00011R⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦分类结果为3类:{u1, u3}, {u2}, {u4, u5}(4) 当λ=0.5时,0.510111 01000 10111 10111 10111R⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦分类结果为2类:{u1, u3, u4, u5}, {u2}(4) 当λ=0.4(R 中的最小值)时,0.41111111111111111111111111R ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦分类结果为1类:{u 1, u 2, u 3, u 4, u 5}整个动态分类过程如下:(二)基于择近原则的模糊聚类择近原则就是利用贴近度来实现分类操作,贴近度用来衡量两个模糊集A 和B 的接近程度,用N (A ,B )表示。

贴近度越大,表明二者越接近。

设论域有限或者在一定区间,即U={u 1, u 2, …, u n }或U=[a,b], 常用的贴近度有以下三种: (1) 海明贴近度11(,)1|()()|ni i i N A B A u B u n ==--∑1(,)1|()()|d bi i a N A B A u B u u b a=---⎰ (2) 欧氏贴近度1221(,)1[()()]ni iiN A B A u B u=⎫=--⎪⎭∑)122(,)1[()()]dbi iaN A B A u B u u=--⎰(3) 格贴近度(,)()()c cN A B A B A B=∧其中,()1()()ni iiA B A u B u==∨∧.Matlab实现:格贴近度的实现函数fuz_closing.mfunction y=fuz_closing(A,B,type)%要求A与B列数相同的行向量[m,n]=size(A);switch typecase 1 %海明贴近度y=1-sum(abs(A-B))/n;case 2 %欧氏贴近度y=1-(sum(A-B).^2)^(1/2)/sqrt(n);case 3 %格贴近度y1=max(min(ones(m,n)-A,ones(m,n)-B));%ones(m,n)-A等于A^cy2=max(min(A,B));y=min(y1,y2);end例2设某产品的质量等级分为5级,其中一级有5种评判因素u1, u2, u3, u4, u5. 每一等级的模糊集为B1={0.5 0.5 0.6 0.4 0.3}B2={0.3 0.3 0.4 0.2 0.2}B3={0.2 0.2 0.3 0.1 0.1}B4={0.1 0.1 0.2 0.1 0}B5={0.1 0.1 0.1 0.1 0}假设某产品各评判因素的值为A={0.4 0.3 0.2 0.1 0.2}, 问该产品属于哪个等级?代码:A=[0.4 0.3 0.2 0.1 0.2];B=[0.5 0.5 0.6 0.4 0.3;0.3 0.3 0.4 0.2 0.2;0.2 0.2 0.3 0.1 0.1;0.1 0.1 0.2 0.1 0;0.1 0.1 0.1 0.1 0];for i=1:5haiming(i)=fuz_closing(A,B(i,:),1);oushi(i)=fuz_closing(A,B(i,:),2);ge(i)=fuz_closing(A,B(i,:),3);endhaimingoushige运行结果:haiming = 0.7800 0.9200 0.9000 0.8600 0.8400 oushi = 0.5081 0.9106 0.8658 0.6870 0.6422ge = 0.4000 0.3000 0.2000 0.2000 0.1000可见样本A与各等级的格贴近度分别为0.4, 0.3, 0.2, 0.2, 0.1, 故可认为该产品属于B1等级。

若按令两种贴近度判断,该产品属于B2等级。

(三)基于模糊等价关系的模糊聚类一、算法步骤1. 样本数据归一化设X={x 1, x 2, …, x n }为要分类的n 个样本,每个样本有m 个指标,即x i ={ x i 1, x i 2, …, x im }, i =1,2,..,n得到原始数据矩阵X=(x ij )n ×m .由于不同指标的数据量纲不同,为了使数据能够比较,要先对X 做归一化处理。

2. 建立模糊相似矩阵R先建立样本x i 与x j 相似程度r ij , 进而构造模糊相似矩阵R=(r ij )n ×n建立r ij 常用的方法有:(1) 相似系数法①夹角余弦法:mikjkij xx r ⋅=∑②相关系数法:||||miki jk j ij xx x x r -⋅-=∑(2)距离法一般取r ij =1-c (d (x i ,x j ))α, 其中c 和α为适当选取的参数,使得 0≤r ij ≤1. 常用的距离有:①海明距离:1(,)||mi j ik jk k d x x x x ==-∑②欧氏距离:(,)i j d x x =③切比雪夫距离:1(,)max ||i j ik jk k md x x x x ≤≤=- (3) 贴近度法①最大最小法:11()()mikjk k ij mikjk k x x r xx ==∧=∨∑∑②算术平均最小法:11()1()2mikjk k ij m ik jk k xx r x x ==∧=+∑∑③几何平均最小法:11()mikjk k ij mk xx r ==∧=∑3. 求出R 的传递闭包t(R)即改造相似关系为等价关系:令2R R R =, 再令422R R R =, …, 直到满足2l l l R R R =与R l 相等,即为t(R), 仍记为R.4. 选取合适的λ, 利用λ-截矩阵R λ进行分类(参考例1)。

二、Matlab 实现求模糊相似矩阵R 的函数:fuz_distance.mfunction R=fuz_distance(x,type)%x 为归一化的数据矩阵, type 选择计算相似程度的方法 %返回模糊相似矩阵R[n,m]=size(x);%距离法的选择参数c和a, 需要根据具体情况修改以保证R(i,j)属于[0,1]c=0.1;a=1;for i=1:nfor j=1:nswitch typecase 1 %夹角余弦法R(i,j)=(x(i,:)*x(j,:)')/(norm(x(i,:),2)*norm(x(j,:),2));case 2 %相关系数法Dxi=abs(x(i,:)-mean(x(i,:)));Dxj=abs(x(j,:)-mean(x(j,:)));R(i,j)=(Dxi*Dxj')/(norm(Dxi,2)*norm(Dxj,2));case 3 %海明距离法d=sum(abs(x(i,:)-x(j,:)));R(i,j)=1-c*d^a;case 4 %欧氏距离法d=norm(x(i,:)-x(j,:),2);R(i,j)=1-c*d^a;case 5 %切比雪夫距离法d=max(abs(x(i,:)-x(j,:)));R(i,j)=1-c*d^a;case 6 最大最小(贴近度)法R(i,j)=sum(min([x(i,:);x(j,:)]))/sum(max([x(i,:);x(j,:)]));case 7 算术平均最小(贴近度)法R(i,j)=2*sum(min([x(i,:);x(j,:)]))/sum(x(i,:)+x(j,:));case 8 %几何平均最小(贴近度)法R(i,j)=sum(min([x(i,:);x(j,:)]))/sum(sqrt(x(i,:).*x(j,:)));endendend求R的传递闭包t(R)的函数:tran_R.mfunction [B,k]=tran_R(R)%R为模糊相似矩阵, 循环构造满足传递性的t(R)%k为满足R^2k = R^k的最小的自然数kn=length(R);B=zeros(n,n);flag=0;k=1/2;while flag==0B=fco(R,R); %做模糊合成运算k=2*k;if B==Rflag=1;elseR=B; %循环计算R传递闭包endend上面的函数tran_R.m调用函数矩阵模糊合成算子函数:fco.m function B=fco(Q,R)%实现模糊合成算子的计算, 要求Q的列数等于R的行数[n,m]=size(Q);[m,l]=size(R);B=zeros(n,l);for i=1:nfor k=1:lB(i,k)=max(min([Q(i,:);R(:,k)'])); endend求t(R)的λ-截矩阵的函数:fuz_lamda.mfunction y=fuz_lamda(X,m)%用λ-截矩阵将样本分成m类, m≤总样本数lamda=unique(X)'; %根据R中的值取λ值%unique函数取矩阵不重复元素组成向量并从小到大排好序X(find(X<lamda(m)))=0;X(find(X>=lamda(m)))=1;y=X;例3某地区设有11个雨量站,其分布如图所示:10年来各雨量站测得的年降雨量表如下:现因经费问题,希望撤销几个雨量站,问撤销哪些雨量站而不会太多地减少降雨信息?分析:对11个雨量站进行模糊聚类,同一类的只需保留一个即可。

相关文档
最新文档