高一数学公式大全
高一数学必修一公式大全
高一数学必修一公式大全1. 代数篇1.1 代数基本性质•加法交换律:$\\displaystyle a+b=b+a$;•加法结合律:$\\displaystyle (a+b)+c=a+(b+c)$;•加法单位元:$\\displaystyle a+0=a$;•加法逆元:$\\displaystyle a+(-a)=0$;•乘法交换律:$\\displaystyle a\\cdot b=b\\cdot a$;•乘法结合律:$\\displaystyle (a\\cdot b)\\cdot c=a\\cdot (b\\cdot c)$;•乘法单位元:$\\displaystyle a\\cdot 1=a$;•乘法逆元:$\\displaystyle a\\cdot \\frac{1}{a}=1$。
1.2 一次函数•一次函数的一般式:$\\displaystyle y=ax+b$;•一次函数的斜率:$\\displaystyle a$;•一次函数的截距:$\\displaystyle b$;•一次函数的图像为直线。
1.3 二次函数•二次函数的一般式:$\\displaystyle y=ax^2+bx+c$;•二次函数的顶点坐标:$\\displaystyle \\left( -\\frac{b}{2a},-\\frac{D}{4a}\\right)$,其中$\\displaystyle D=b^2-4ac$;•二次函数的对称轴方程为$\\displaystyle x=-\\frac{b}{2a}$;•二次函数的图像为抛物线。
1.4 指数与对数•指数运算的基本性质:–$\\displaystyle a^m\\cdot a^n=a^{m+n}$;–$\\displaystyle (a^m)^n=a^{mn}$;–$\\displaystyle \\left( \\frac{a}{b}\\right)^n=\\frac{a^n}{b^n}$;–$\\displaystyle \\left( ab\\right) ^n=a^nb^n$;–$\\displaystyle (a^n)^m=a^{nm}$;–$\\displaystyle a^{0}=1$;–$\\displaystyle a^{-n}=\\frac{1}{a^n}$。
高一数学公式大全有哪些
高一数学公式大全有哪些在高一数学的学习中,掌握各类公式是解题的关键。
下面就为大家详细梳理一下高一数学中常见且重要的公式。
一、集合相关公式1、子集:若集合 A 的所有元素都属于集合 B,则称 A 是 B 的子集,记作 A ⊆ B。
2、并集:A∪B ={x | x∈A 或 x∈B}3、交集:A∩B ={x | x∈A 且 x∈B}4、补集:若全集为 U,集合 A 的补集记作∁UA ={x | x∈U 且x∉A}二、函数相关公式1、函数的单调性对于函数 f(x)的定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1 < x2 时,都有 f(x1) < f(x2)(f(x1) > f(x2)),则称函数 f(x)在区间 D 上是增函数(减函数)。
2、函数的奇偶性对于函数 f(x)的定义域内任意一个 x,都有 f(x) = f(x),则称函数f(x)为偶函数;对于函数 f(x)的定义域内任意一个 x,都有 f(x) = f(x),则称函数 f(x)为奇函数。
三、指数函数与对数函数相关公式1、指数函数:y = ax(a > 0 且a ≠ 1)当 a > 1 时,函数单调递增;当 0 < a < 1 时,函数单调递减。
指数运算性质:am × an = am + n;(am)n = amn;(ab)m =ambm2、对数函数:y = logax(a > 0 且a ≠ 1)对数运算性质:logam + logan = logamn;logam logan = loga(m / n);logamn = nlogam换底公式:logab = logcb / logca四、幂函数相关公式一般形式为 y =xα,其中α为常数。
五、三角函数相关公式1、同角三角函数基本关系平方关系:sin²α +cos²α = 1商数关系:tanα =sinα /cosα2、诱导公式sin(α) =sinα,cos(α) =cosα,tan(α) =tanαsin(π α) =sinα,cos(π α) =cosα,tan(π α) =tanαsin(π +α) =sinα,cos(π +α) =cosα,tan(π +α) =tanαsin(2π α) =sinα,cos(2π α) =cosα,tan(2π α) =tanα3、两角和与差的三角函数公式sin(α +β) =sinαcosβ +cosαsinβsin(α β) =sinαcosβ cosαsinβcos(α +β) =cosαcosβ sinαsinβcos(α β) =cosαcosβ +sinαsinβtan(α +β) =(tanα +tanβ) /(1 tanαtanβ)tan(α β) =(tanα tanβ) /(1 +tanαtanβ)4、二倍角公式sin2α =2sinαcosαcos2α =cos²α sin²α =2cos²α 1 =1 2sin²αtan2α =2tanα /(1 tan²α)六、向量相关公式1、向量的加法:a + b =(x1 + x2, y1 + y2)(设 a =(x1, y1),b =(x2, y2))2、向量的减法:a b =(x1 x2, y1 y2)3、向量的数量积:a·b =|a|×|b|×cosθ(其中θ为 a 与 b 的夹角)七、数列相关公式1、等差数列通项公式:an = a1 +(n 1)d前 n 项和公式:Sn = n(a1 + an) / 2 = na1 + n(n 1)d / 22、等比数列通项公式:an = a1×q^(n 1)前 n 项和公式:当q ≠ 1 时,Sn = a1(1 q^n) /(1 q);当 q = 1 时,Sn = na1。
高一数学公式大全
高一数学公式大全高中一年级数学公式大全:1. 一元二次方程的求根公式:对于一元二次方程ax^2 + bx + c = 0,求根公式为x = (-b ± √(b^2 - 4ac)) / (2a);2. 等差数列的通项公式:对于等差数列an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差,通项公式为an = a1 + (n-1)d;3. 等比数列的通项公式:对于等比数列an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比,通项公式为an = a1 * r^(n-1);4. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2;5. 二次三项式的因式分解公式:a^2 - b^2 = (a+b)(a-b);6. 两点之间的距离公式:对于平面上两点A(x1, y1)和B(x2, y2),两点之间的距离公式为AB = √((x2-x1)^2 + (y2-y1)^2);7. 余弦定理:对于任意三角形ABC,AB^2 = BC^2 + AC^2 -2BC·AC·cos∠BAC;8. 正弦定理:对于任意三角形ABC,a/sin∠A = b/sin∠B =c/sin∠C;9. 高度公式:对于任意三角形ABC,三角形的高h_a可表示为h_a =2A/b,其中A表示三角形ABC的面积,b表示BC边的长度;10. 余角公式:sin(90-θ) = cosθ;11. 诱导公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB;12. 乘法公式:sin(A + B) = sinAcosB + cosAsinB,sin(A - B) = sinAcosB - cosAsinB;13. 三角函数基本关系式:tanθ = sinθ/cosθ;14. 对数的换底公式:loga(b) = logc(b) / logc(a);15. 组合公式:C(n, m) = n! / (m!(n-m)!),其中C(n, m)表示从n个元素中取m个元素的组合数;16. 回文数判断公式:若一个n位数的各个数位上的数字自左至右和自右至左读都相同,则称其为回文数;17. 两平行线之间的距离公式:对于平行线L1和L2及点P,垂直于L1的线段PM与L2相交于点M,线段PM即为L1与L2之间的距离;18. 二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +C(n,2)a^(n-2)b^2 + ... + C(n,n)b^n,其中C(n,m)表示从n个元素中取m个元素的组合数;19. 勾股定理:直角三角形的斜边c的平方等于两直角边a和b的平方和;20. 平行线与三角形相交的性质:若一条直线与两条平行线相交,则所形成的三角形内部的对应角相等。
高一数学公式大全
高一数学公式大全1. 代数公式1.1 二次方程根公式对于二次方程ax^2 + bx + c = 0,可以使用以下公式求解其根:x = (-b ± √(b^2 - 4ac)) / (2a)1.2 因式分解公式对于二次多项式的因式分解,可以使用以下公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^2a^2 - b^2 = (a + b)(a - b)等等。
2. 几何公式2.1 直角三角形对于直角三角形,可以使用以下公式:勾股定理:c^2 = a^2 + b^2正弦定理:a / sinA = b / sinB = c / sinC 余弦定理:c^2 = a^2 + b^2 - 2ab cosC2.2 圆对于圆,可以使用以下公式:圆的周长:C = 2πr圆的面积:A = πr^2等等。
3. 概率与统计公式3.1 概率对于概率计算,可以使用以下公式:概率 P(A) = n(A) / n(S)互斥事件概率:P(A ∪ B) = P(A) + P(B)独立事件概率:P(A ∩ B) = P(A) * P(B)3.2 统计对于统计分析,可以使用以下公式:平均值:mean = (x1 + x2 + ... + xn) / n方差:variance = ((x1 - mean)^2 + (x2 - mean)^2 + ... + (xn - mean)^2) / n标准差:standard deviation = √variance等等。
4. 其他重要公式4.1 指数与对数对于指数与对数运算,可以使用以下公式:指数公式:a^m * a^n = a^(m + n)对数公式:loga(xy) = loga(x) + loga(y)4.2 排列与组合对于排列与组合计算,可以使用以下公式:排列数:P(n, r) = n! / (n - r)!组合数:C(n, r) = n! / (r! * (n - r)!)等等。
高一数学所有公式归纳
高一数学所有公式归纳一、代数部分1. 二项式定理:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + ... + C(n,n-1)a^1 b^(n-1) + C(n,n)a^0 b^n2. 因式分解公式:a^2 - b^2 = (a+b)(a-b)3. 奇偶性公式:(-1)^n = 1 (n为偶数), (-1)^n = -1 (n为奇数)4. 平方差公式:a^2 - b^2 = (a+b)(a-b)5. 一元二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)6. 二次根式化简公式:√(a ± √b) = √[(a + √b) / 2] ± √[(a - √b) / 2]二、几何部分1. 直角三角形勾股定理:a^2 + b^2 = c^2 (c为斜边,a、b为直角边)2. 正弦定理:a/sinA = b/sinB = c/sinC (a、b、c为三角形的边长,A、B、C为对应的角度)3. 余弦定理:c^2 = a^2 + b^2 - 2abcosC (a、b、c为三角形的边长,C为对应的角度)4. 正切定理:tanA = a/b (a、b为直角三角形的边长,A为对应的角度)5. 相似三角形比例公式:a/b = c/d = e/f (a、b、c、d、e、f为相似三角形的对应边长)6. 圆的面积公式:S = πr^2 (r为圆的半径)7. 圆的周长公式:C = 2πr (r为圆的半径)8. 扇形面积公式:S = θ/360° * πr^2 (θ为扇形的角度,r为半径)三、概率统计部分1. 排列公式:A(n, m) = n! / (n-m)! (n为总数,m为选取的个数)2. 组合公式:C(n, m) = n! / (m! * (n-m)!) (n为总数,m为选取的个数)3. 期望公式:E(X) = Σx * P(x) (X为随机变量,x为可能的取值,P(x)为概率)4. 方差公式:Var(X) = Σ(x-E(X))^2 * P(x) (X为随机变量,x为可能的取值,P(x)为概率,E(X)为期望)5. 标准差公式:SD(X) = √Var(X) (X为随机变量)四、微积分部分1. 导数定义公式:f'(x) = lim(h→0) [f(x+h) - f(x)] / h (f(x)为函数,f'(x)为导数)2. 导数四则运算法则:(cf(x))' = cf'(x), (f(x)±g(x))' = f'(x)±g'(x), (f(x)g(x))' = f'(x)g(x) + f(x)g'(x), (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / g^2(x)3. 积分定义公式:∫f(x)dx = F(x) + C (f(x)为函数,F(x)为其原函数,C为常数)4. 不定积分法则:∫(f(x)±g(x))dx = ∫f(x)dx ± ∫g(x)dx, ∫cf(x)dx =c∫f(x)dx (c为常数)5. 定积分公式:∫[a,b] f(x)dx = F(b) - F(a) (f(x)为函数,F(x)为其原函数,[a,b]表示积分区间)五、数列部分1. 等差数列通项公式:a(n) = a(1) + (n-1)d (a(n)为第n项,a(1)为首项,d为公差)2. 等差数列前n项和公式:S(n) = n/2 * (a(1) + a(n)) (S(n)为前n 项和,a(1)为首项,a(n)为第n项)3. 等比数列通项公式:a(n) = a(1) * r^(n-1) (a(n)为第n项,a(1)为首项,r为公比)4. 等比数列前n项和公式:S(n) = a(1) * (1 - r^n) / (1 - r) (S(n)为前n项和,a(1)为首项,r为公比)这些公式是高一数学中常见的公式,通过运用它们,可以解决各种代数、几何、概率统计、微积分和数列的问题。
高一数学公式总结
高一数学公式总结1500字高一数学公式总结一、代数公式1. 二次根式公式:(a+b)² = a² + 2ab + b²2. 二次根式方差公式:(a-b)² = a² - 2ab + b²3. 二次根式与一次根式乘法公式:a√b · c√d = (a · c)√(b · d)4. 一次根式除法公式:a√b / c√d = (a / c)√(b / d)5. 两个一次根式相加时的简化公式:a√b ± c√b = (a ± c)√b6. 两个一次根式相减时的简化公式:a√b ± c√b = (a ± c)√b7. 复数加法公式:(a+bi) + (c+di) = (a+c) + (b+d)i8. 复数减法公式:(a+bi) - (c+di) = (a-c) + (b-d)i9. 复数乘法公式:(a+bi) · (c+di) = (ac-bd) + (ad+bc)i10. 复数除法公式:(a+bi) / (c+di) = [(ac+bd)/(c²+d²)] + [(bc-ad)/(c²+d²)]i二、三角公式1. 正弦定理:a/sinA = b/sinB = c/sinC = 2R (其中a、b、c为三角形的边长,A、B、C为对应的角度,R为外接圆半径)2. 余弦定理:c² = a² + b² - 2abcosC (其中c为三角形的边长,a、b为其他两边的长度,C为它们的夹角)3. 正弦函数和余弦函数的和差公式:sin(x ± y) = sinx·cosy ± cosx·siny和cos(x ± y) = cosx·cosy ∓ sinx·siny4. 三角函数和差公式:sin(x ± y) = sinx·cosy ± cosx·siny和cos(x ± y) = cosx·cosy ∓sinx·siny5. 三角函数积化和差公式:sinx·siny = (1/2)(cos(x-y) - cos(x+y))和cosx·cosy = (1/2)(cos(x-y) + cos(x+y))6. 二倍角公式:sin2x = 2sinx·cosx和cos2x = cos²x - sin²x三、解析几何公式1. 点与直线的距离公式:d = |Ax0 + By0 + C| / √(A² + B²)2. 点到平面的距离公式:d = |Ax0 + By0 + Cz0 + D| / √(A² + B² + C²)3. 直线斜率公式:k = (y₂ - y₁) / (x₂ - x₁)4. 平面斜率公式:k = (z₂ - z₁) / (x₂ - x₁)5. 两点间距离公式:d = √[(x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²]6. 两点间中点坐标公式:(x, y) = (x₁ + x₂) / 2, (y₁ + y₂) / 2, (z₁ + z₂) / 27. 点到直线的距离公式:d = |Ax₀ + By₀ - C| / √(A² + B²)8. 点到平面的距离公式:d = |Ax₀ + By₀ + Cz₀ + D| / √(A² + B² + C²)9. 平面一般方程:Ax + By + Cz + D = 0四、概率统计公式1. 计数原理:设一个操作共有m种可能,第一步有n₁种选择,第二步有n₂种选择,...,则共有n₁n₂...种可能。
高一数学公式及知识点总结
高一数学公式及知识点总结对于高一学生来说, 想要学好中学数学就要先驾驭好数学公式。
下面是我给大家带来的高一数学公式, 盼望能协助到大家!高一数学公式1【两角和公式】sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)【倍角公式】tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a【半角公式】sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))高一数学公式2等差数列1、等差数列的通项公式为:an=a1+(n-1)d(1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且随意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}假设m,n,p,q∈N_,且m+n=p+q,那么有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)_项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等比数列1、等比数列的通项公式是:An=A1_q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且随意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、假设m,n,p,q∈N_,那么有:ap·aq=am·an,等比中项:aq·ap=2arar那么为ap,aq等比中项.记πn=a1·a2…an,那么有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,那么是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①假设m、n、p、q∈N,且m+n=p+q,那么am·an=ap_aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.高一数学公式3三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb高一数学公式及学问点总结。
高一知识点归纳数学公式总结大全
高一知识点归纳数学公式总结大全一、代数与函数1. 二次方程的解法:- 一元二次方程 ax²+bx+c=0 的解法为:x = (-b±√(b²-4ac))/(2a)。
- 当 b²-4ac = 0 时,方程有一个重根;当 b²-4ac > 0 时,方程有两个不等实根;当 b²-4ac < 0 时,方程有两个共轭复根。
2. 一次函数的斜率与截距:- 一次函数的标准方程为 y = kx + b,其中 k 为直线的斜率,b 为直线与 y 轴的截距。
- 两点 (x₁, y₁) 和 (x₂, y₂) 间的斜率 k = (y₂-y₁)/(x₂-x₁)。
3. 二次函数的顶点和轴对称:- 二次函数的标准方程为 y = ax²+bx+c,其中 (h, k) 表示顶点的坐标。
- 顶点的 x 坐标为 h = -b/(2a),y 坐标为 k = ah²+bh+c。
- 二次函数的图像关于直线 x = -b/(2a) 对称。
4. 绝对值函数的性质:- 绝对值函数 f(x) = |x| 分两段定义,当 x>=0 时,f(x) = x;当 x<0 时,f(x) = -x。
- 绝对值函数的图像为以原点为对称中心的 V 字形曲线。
- 绝对值函数是奇函数,即 f(x) = -f(-x)。
5. 指数函数的运算性质:- 指数函数aⁿ⁽⁻ᵐ⁾= aⁿ/aᵐ,aⁿ⋅aᵐ= aⁿ⁺ᵐ。
- 指数函数aⁿ/aⁿ⁽⁻ᵐ⁾ = aᵐ。
- 指数函数(aⁿ)ᵐ= aⁿ⁻ᵐ。
二、数列与数学归纳法1. 等差数列的通项公式:- 等差数列的通项公式为 an = a₁+(n-1)d,其中 a₁为首项,d 为公差,an 表示第 n 项。
2. 等差数列的前 n 项和公式:- 等差数列的前 n 项和公式为 Sn = (a₁+an)n/2,其中 Sₙ 表示前 n 项和。
3. 等比数列的通项公式:- 等比数列的通项公式为 an = a₁⋅r⁽ⁿ⁻¹⁾,其中 a₁为首项,r 为公比,an 表示第 n 项。
高中高一数学公式大全
高中高一数学公式大全一、代数1. 二次方程求根公式:根据二次方程 ax^2 + bx + c = 0 的系数 a、b、c 求解方程的根 x 的公式为 x = (-b ± √(b^2 - 4ac)) / (2a)。
2. 因式分解公式:对于多项式,如 a^2 - b^2 ,可以利用差平方公式将其因式分解为 (a - b)(a + b)。
3. 二项式定理:根据二项式 (a + b)^n 的展开式,可以得到每一项的系数,公式为 (a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + ... + C(n, n)a^0 b^n ,其中 C(n, k) 表示从 n 个元素中取出 k 个元素的组合数。
二、几何1. 直角三角形的勾股定理:在直角三角形中,设直角边的长为a,另外两边的长分别为 b 和 c,满足条件 a^2 + b^2 = c^2。
2. 圆的周长和面积公式:圆的周长公式为C = 2πr ,面积公式为A = πr^2 ,其中 r 表示圆的半径。
3. 相似三角形的边长比例:对于相似三角形 ABC 和 DEF ,它们对应的边长之比满足 AB/DE = BC/EF = AC/DF 。
三、函数1. 直线的斜率公式:设直线上两个点的坐标分别为 (x1, y1) 和(x2, y2),那么直线的斜率 k = (y2 - y1) / (x2 - x1)。
2. 一次函数的图像方程:一次函数的图像方程为 y = kx + b ,其中 k 表示斜率,b 表示截距。
3. 幂函数的性质:幂函数 y = x^a 其中 a 是常数,当 a > 0 时,函数是递增的,当 a = 0 时,函数是常数函数,当 a < 0 时,函数是递减的。
以上只是高中高一数学公式的一部分,希望能对您的学习有所帮助。
高一数学知识点归纳总结公式
高一数学知识点归纳总结公式数学是一门基础学科,对于高中学生来说,掌握好数学知识点和公式是非常重要的。
以下是高一数学知识点的归纳总结公式:1. 代数部分1.1 一元一次方程:ax + b = 0解的公式:x = -b/a1.2 一元二次方程:ax^2 + bx + c = 0解的公式:x = (-b ± √(b^2 - 4ac))/2a1.3 因式分解公式:- 平方差公式:a^2 - b^2 = (a + b)(a - b)- 二次三项式公式:x^2 + (a + b)x + ab = (x + a)(x + b)1.4 指数与对数公式:- a^m * a^n = a^(m+n)- a^m / a^n = a^(m-n)- (a^m)^n = a^(mn)- loga(m * n) = loga(m) + loga(n)2. 几何部分2.1 直线方程:- 点斜式:y - y1 = k(x - x1)- 两点式:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1) - 截距式:y = kx + b2.2 圆的方程:- 一般式:(x - a)^2 + (y - b)^2 = r^2- 标准式:(x - h)^2 + (y - k)^2 = r^22.3 三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc * cosA- 正切定理:tanA = a/b2.4 三角函数的和差化积公式:- sin(A ± B) = sinA * cosB ± cosA * sinB- cos(A ± B) = cosA * cosB ∓ sinA * sinB- tan(A ± B) = (tanA ± tanB) / (1∓ tanA * tanB) 3. 概率与统计部分3.1 排列与组合公式:- 排列公式:A(n, m) = n! / (n - m)!- 组合公式:C(n, m) = n! / (m! * (n - m)!)3.2 乘法原理与加法原理:- 乘法原理:若一个事件可分成k个独立的步骤,则该事件发生的总数为这k个步骤发生事件次数的乘积。
高一数学知识点公式大全总结
高一数学知识点公式大全总结一、代数部分1. 二次根式求解法设$\sqrt{a}=b$,则$a=b^2$2. 平方差公式$(a+b)(a-b)=a^2-b^2$3. 平方和公式$(a+b)^2=a^2+2ab+b^2$4. 方程组解法联立两个方程,可以使用消元法或代入法等方式求解。
5. 一次函数的斜率$y=kx+b$中,斜率$k$的计算公式为$k=\frac{y_2-y_1}{x_2-x_1}$6. 一次函数的截距$y=kx+b$中,截距$b$的计算公式为$b=y-kx$7. 一元一次方程求解方法对于形如$ax+b=0$的方程,解为$x=-\frac{b}{a}$8. 一元二次方程求解方法对于形如$ax^2+bx+c=0$的方程,求解公式为$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$9. 分式的运算法则加减法:通分后相加或相减,分母相同。
乘法:相乘后约分。
除法:转换为乘法,分子乘以倒数。
10. 根式的运算法则加减法:合并同类项,并进行化简。
乘法:相乘后合并同类项,并进行化简。
除法:转换为乘法,除数的倒数乘以被除数。
二、几何部分1. 三角形内角和定理三角形的内角之和等于180度,即$\angle A+\angle B+\angle C=180^\circ$2. 直线与平行线的夹角当两条直线平行时,与这两条直线相交的直线与其中任一条直线的夹角相等,即$\angle A=\angle B$3. 三角形的面积公式设三角形的底为$b$,高为$h$,则三角形的面积$S=\frac{1}{2}bh$4. 直角三角形的勾股定理设直角三角形的两个直角边分别为$a$和$b$,斜边为$c$,则$a^2+b^2=c^2$5. 等腰三角形的性质等腰三角形的两边边长相等,底角也相等。
6. 正方形的性质正方形的四条边相等,四个内角都为90度。
7. 平行四边形的性质平行四边形的对边相等且平行,相邻两个内角互补。
高一数学公式总结大全
高一数学公式总结大全数学公式总结大全数学是一门抽象的学科,公式是其中的重要组成部分,也是我们解题的重要工具。
以下是一些高一数学常用的公式总结大全,供大家参考:1. 一元一次方程的基本公式一元一次方程的一般形式为ax + b = 0,其中a、b为已知数,x为未知数。
解一元一次方程的基本公式为:x = -b/a2. 一元一次方程组的解法一元一次方程组的一般形式为:a1x + b1y = c1a2x + b2y = c2解一元一次方程组的方法有:(1)代入法:将其中一个方程的未知数表示成另一个方程的未知数的代数式,代入另一个方程,解得另一个未知数,然后带入原方程解得第一个未知数。
(2)消元法:通过将两个方程相乘或相加来消去一个未知数的系数,得到另一个未知数的值,再代入其中一个方程解得另一个未知数的值。
3. 二次方程的求根公式二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为已知数,a≠0。
二次方程的求根公式为:x1 = (-b + √(b^2 - 4ac))/(2a)x2 = (-b - √(b^2 - 4ac))/(2a)4. 二次函数的顶点坐标公式二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为已知数,a≠0。
二次函数的顶点坐标公式为:x = -b/(2a)y = -Δ/(4a),其中Δ = b^2 - 4ac为判别式。
5. 等差数列的通项公式等差数列的通项公式为:an = a1 + (n - 1)d,其中an为第n项,a1为首项,d为公差。
6. 等差数列的前n项和公式等差数列的前n项和公式为:Sn = (a1 + an)n/2,其中Sn为前n项和,a1为首项,an为第n 项。
7. 等比数列的通项公式等比数列的通项公式为:an = a1 * q^(n - 1),其中an为第n项,a1为首项,q为公比。
8. 等比数列的前n项和公式等比数列的前n项和公式为:Sn = a1(q^n - 1)/(q - 1),其中Sn为前n项和,a1为首项,q为公比。
数学高一知识点及公式
数学高一知识点及公式高中数学知识点及公式一、函数与方程1. 一次函数一次函数的标准方程为:y = kx + b,其中k为斜率,b为常数。
斜率公式:k = (y₂ - y₁) / (x₂ - x₁),其中(x₁, y₁)和(x₂, y₂)为直线上两点的坐标。
2. 二次函数二次函数的标准方程为:y = ax² + bx + c,其中a、b、c为常数且a ≠ 0。
顶点坐标公式:顶点的横坐标为x = -b / (2a),纵坐标为y = -Δ / (4a),其中Δ为判别式,Δ = b² - 4ac。
3. 指数函数指数函数的标准方程为:y = a^x,其中a为底数,a > 0且a ≠ 1。
公式:a^m * a^n = a^(m+n),a^m / a^n = a^(m-n),(a^m)^n = a^(mn),(ab)^n = a^n * b^n。
4. 对数函数对数函数的标准方程为:y = logₐx,其中a为底数,a > 0且a ≠ 1。
公式:logₐ(mn) = logₐm + logₐn,logₐ(m/n) = logₐm - logₐn,logₐ(m^n) = n * logₐm。
5. 三角函数常见三角函数有正弦函数、余弦函数和正切函数。
正弦函数的定义:y = sin(x),取值范围为[-1, 1]。
余弦函数的定义:y = cos(x),取值范围为[-1, 1]。
正切函数的定义:y = tan(x),取值范围为实数。
二、平面几何1. 直线直线的一般方程为:Ax + By + C = 0,其中A、B、C为实数且A² + B² ≠ 0。
直线的斜率公式:k = -A / B。
2. 平面平面的一般方程为:Ax + By + Cz + D = 0,其中A、B、C、D为实数且A² + B² + C² ≠ 0。
平面的法向量:平面的法向量为(A, B, C)。
高一数学所有公式大全
高一数学所有公式大全1. 代数1.1 一次方程- 一次方程的定义:- 形如 $ax + b = 0$ 的方程,其中 $a \neq 0$,$x$ 是未知数,$b$ 是常数。
- 一次方程的解法:- 将方程转化为标准形式,即 $x = \frac{-b}{a}$。
1.2 二次方程- 二次方程的定义:- 形如 $ax^2 + bx + c = 0$ 的方程,其中 $a \neq 0$,$x$ 是未知数,$b$ 和 $c$ 是常数。
- 二次方程的解法:- 使用公式 $x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$ 计算方程的根。
1.3 等差数列- 等差数列的定义:- 一个数列,其中任意两个相邻的项之差都相等。
- 等差数列的通项公式:- $a_n = a_1 + (n-1)d$,其中 $a_n$ 是第 $n$ 项,$a_1$ 是首项,$d$ 是公差,$n$ 是项数。
1.4 等比数列- 等比数列的定义:- 一个数列,其中任意两个相邻的项之比都相等。
- 等比数列的通项公式:- $a_n = a_1 \cdot r^{(n-1)}$,其中 $a_n$ 是第 $n$ 项,$a_1$ 是首项,$r$ 是公比,$n$ 是项数。
2. 几何2.1 直线与角- 直线与角的定义:- 直线是一个无限延伸的曲线,两个非相邻点可以唯一确定一条直线。
- 角是由两条相交的直线所形成的两个射线之间的空间部分。
- 直线与角的性质:- 两条相交直线所形成的相邻内角互补,即它们之和等于$180^\circ$。
2.2 三角形- 三角形的定义:- 有三条边和三个角的图形。
- 三角形的性质:- 三角形的内角和等于 $180^\circ$。
- 根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。
2.3 圆- 圆的定义:- 由与圆心距离相等的所有点组成的图形。
- 圆的性质:- 圆上的任意弧所对的圆心角等于该圆上的任意两条切线所夹的角。
高一知识点归纳数学公式总结
高一知识点归纳数学公式总结一、代数1.二次方程:对于二次方程ax²+bx+c=0,解可以用以下公式表示:x = (-b ± √(b²-4ac))/(2a)2.因式分解:通过找到一个或多个公因子,将多项式表示为乘法形式。
3.二项式定理:二项式定理用于展开一个二项式的幂:(a + b)^n = C(n,0) * a^n + C(n,1) * a^(n-1) * b + ... + C(n,r) * a^(n-r) * b^r + ... + C(n,n) * b^n4.指数和对数:(a^m) * (a^n) = a^(m+n)(a^m) / (a^n) = a^(m-n)(a^m)^n = a^(m*n)loga(m*n) = loga(m) + loga(n)loga(m/n) = loga(m) - loga(n)loga(m^n) = n*loga(m)5.等差数列公式:第n个数:an = a1 + (n-1)d数列总和:Sn = (n/2)*(a1 + an)6.等比数列公式:第n个数:an = a1 * r^(n-1)数列总和:Sn = (a1 * (r^n - 1))/(r - 1)7.排列与组合:n个元素中取r个元素的排列数:A(n,r) = n!/(n-r)!n个元素中取r个元素的组合数:C(n,r) = n!/(r!(n-r)!)二、几何1.正弦定理:在任意三角形ABC中,边长分别为a、b、c:a/sinA = b/sinB = c/sinC2.余弦定理:在任意三角形ABC中,边长分别为a、b、c:c² = a² + b² - 2ab*cosC3.正切定理:在任意三角形ABC中,边长分别为a、b、c:(a+b)/(a-b) = (tan((A+B)/2))/(tan((A-B)/2))4.勾股定理:直角三角形斜边的平方等于两直角边平方和:c² = a² + b²5.面积公式:三角形的面积:S = (1/2)*b*h梯形的面积:S = (a+b) * h / 2圆的面积:S = π * r²三、概率与统计1.排列:n个元素的全排列数:P(n) = n!2.组合:n个元素中取r个元素的组合数:C(n,r) = n! / (r! * (n-r)!)3.事件概率:P(A and B) = P(A) * P(B|A)P(A or B) = P(A) + P(B) - P(A and B)4.正态分布:正态分布是一个对称的连续概率分布,由均值和标准差两个参数决定。
高一数学公式大全总结
高一数学公式大全总结在高一数学学习中,数学公式是非常重要的一部分,掌握好数学公式可以帮助我们更好地理解和应用数学知识。
下面就为大家总结一些高一数学常用的公式,希望对大家的学习有所帮助。
一、代数部分。
1. 一次函数的标准方程,y=ax+b。
其中,a为斜率,b为截距。
2. 二次函数的一般式,y=ax^2+bx+c。
其中,a≠0,称为二次项系数;b为一次项系数;c为常数项。
3. 平面直角坐标系中两点间距离公式,AB=√((x2-x1)^2+(y2-y1)^2)。
4. 二次函数顶点坐标公式,顶点坐标为(-b/2a, -Δ/4a)。
其中,Δ=b^2-4ac为判别式。
二、几何部分。
1. 直角三角形中,勾股定理,a^2+b^2=c^2。
其中,a、b为直角边,c为斜边。
2. 圆的面积公式,S=πr^2。
其中,r为半径。
3. 圆的周长公式,C=2πr。
其中,r为半径。
4. 正多边形内角和公式,S=(n-2)×180°。
其中,n为边数。
三、概率统计部分。
1. 事件A的概率公式,P(A)=n(A)/n(S)。
其中,n(A)为事件A的样本点数,n(S)为样本空间的样本点数。
2. 事件A与事件B同时发生的概率公式,P(A∩B)=P(A)×P(B|A)。
其中,P(B|A)为在事件A发生的条件下,事件B发生的概率。
3. 二项分布的概率公式,P(X=k)=C(n,k)×p^k×(1-p)^(n-k)。
其中,C(n,k)为组合数,p为事件发生的概率,n为试验次数,k为成功次数。
四、导数与微分部分。
1. 函数y=f(x)的导数公式,y'=lim(Δx→0)(f(x+Δx)-f(x))/Δx。
其中,y'为导数。
2. 常见函数的导数公式:指数函数的导数,(a^x)'=a^xlna。
对数函数的导数,(loga(x))'=1/(xlna)。
三角函数的导数,(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec^2x。
高一数学必背公式及知识汇总
高一数学必背公式及知识汇总1. 几何公式1.1 三角形•周长公式:三角形的周长等于三条边长之和:C=a+b+c。
•面积公式:三角形的面积可以用底和高计算:$S=\\frac{1}{2}bh$。
1.2 圆•圆的周长公式:圆的周长可以用半径计算:$C=2\\pi r$。
•圆的面积公式:圆的面积可以用半径计算:$S=\\pi r^2$。
1.3 矩形和正方形•矩形的周长公式:矩形的周长可以用长和宽计算:C=2(l+w)。
•矩形的面积公式:矩形的面积可以用长和宽计算:S=lw。
2. 代数公式2.1 一次函数一次函数的一般形式为:y=ax+b,其中a为斜率,b为截距。
2.2 二次函数二次函数的一般形式为:y=ax2+bx+c,其中a为二次项系数,b为一次项系数,c为常数项。
•一元二次方程求根公式:一元二次方程ax2+bx+c=0的根可以通过下式求得:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$。
2.3 指数函数指数函数的一般形式为:y=a x,其中a为底数,x为指数。
•指数函数性质:–对于任意实数a,a0=1。
–对于任意实数a,$a^{-n}=\\frac{1}{a^n}$。
–对于任意实数a和b,$a^n \\cdot a^m = a^{n+m}$。
–对于任意实数a,$a^n \\div a^m = a^{n-m}$。
3. 概率与统计•排列公式:从n个不同元素中取出r个元素按一定次序排列的可能数可以用排列公式计算:$P_n^r = \\frac{n!}{(n-r)!}$。
•组合公式:从n个不同元素中取出r个元素不按次序排列的可能数可以用组合公式计算:$C_n^r = \\frac{n!}{r!(n-r)!}$。
•事件的概率:事件的概率等于有利结果数与总结果数之比:$P(A) = \\frac{N(A)}{N}$。
4. 函数•函数定义:函数是一个由一个或多个输入值得出唯一输出值的规则。
高一数学公式总结
高一数学公式总结数学是一门高级学科,广泛应用于科学、工程、经济等领域。
学好数学需要掌握各种公式,下面是高中一年级的数学公式总结。
一、代数公式1. 同底数幂相乘,底数不变,指数相加:a^m * a^n = a^(m + n)2. 同底数幂相除,底数不变,指数相减:a^m / a^n = a^(m - n)3. 幂的幂,底数不变,指数相乘:(a^m)^n = a^(m * n)4. 零指数等于1:a^0 = 1 (a ≠ 0)5. 负指数等于倒数:a^(-n) = 1 / a^n (a ≠ 0)6. a^m * b^m = (a * b)^m7. a^m / b^m = (a / b)^m (b ≠ 0)8. (a / b)^(-m) = b^m / a^m (a ≠ 0, b ≠ 0)二、三角函数公式1. 正弦定理:a / sinA = b / sinB = c / sinC2. 余弦定理:c^2 = a^2 + b^2 - 2abcosC3. 正弦函数的定义:sinA = 对边 / 斜边4. 余弦函数的定义:cosA = 邻边 / 斜边5. 正切函数的定义:tanA = 对边 / 邻边6. 余切函数的定义:cotA = 邻边 / 对边三、初等几何公式1. 勾股定理:c^2 = a^2 + b^22. 面积公式:三角形面积 = (底边 * 高) / 23. 三角形内角和等于180度:A + B + C = 180°四、排列组合公式1. 排列数公式:A(n, m) = n! / (n-m)!2. 组合数公式:C(n, m) = n! / (m!(n-m)!)五、指数函数公式1. 对数的定义:a^b = c 可以写成 loga(c) = b2. 对数的性质:loga(x * y) = loga(x) + loga(y),loga(x / y) = loga(x) - loga(y),loga(x^r) = r * loga(x)六、等式与不等式公式1. 同底数幂相等,指数相等:a^m = a^n,m = n2. 两边开方,注意正负:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^23. 二次函数顶点坐标:顶点坐标为 (-b / (2a), f(-b / (2a)))4. 一元二次不等式的解法:将不等式转化为等式求解,再通过一些方法确定不等式的解集以上是高一数学公式的部分总结,掌握这些公式对于学好数学至关重要。
高一数学知识点公式大全及答案
高一数学知识点公式大全及答案数学是一门重要且广泛应用于各行各业的学科。
在高一的数学学习中,我们需要掌握并理解各种数学知识点及相关公式。
本文将提供与高一数学相关的知识点公式大全,并同时给出答案以供参考。
一、代数与函数1. 一次函数一次函数的一般形式为 y = kx + b,其中 k 表示斜率,b 表示截距。
斜率 k 可以通过两个点 (x₁, y₁) 和 (x₂, y₂) 的坐标之差来计算:k = (y₂ - y₁) / (x₂ - x₁)。
2. 二次函数二次函数的一般形式为 y = ax² + bx + c,其中 a、b、c 为常数。
二次函数的顶点坐标为 (-b / 2a, f(-b / 2a)),对称轴方程为 x = -b /2a。
3. 幂函数幂函数的一般形式为 y = xᵐ,其中 m 为常数。
当 m > 1 时,函数图像呈现增长趋势;当 0 < m < 1 时,函数图像呈现衰减趋势。
4. 指数函数指数函数的一般形式为 y = aᵇˣ,其中 a > 0 且a ≠ 1。
指数函数在指数 b 为正数时,图像呈现增长趋势;在 b 为负数时,图像呈现衰减趋势。
5. 对数函数对数函数的一般形式为y = logₐx,其中 a > 0 且a ≠ 1,x > 0。
对数函数与指数函数互为反函数,对数函数图像在 x 轴正半轴上递增。
二、几何与三角函数1. 勾股定理勾股定理描述了一个直角三角形中,直角边的平方和等于斜边的平方。
即 a² + b² = c²,其中 a 和 b 表示直角边的长度,c 表示斜边的长度。
2. 三角函数三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)。
其中,对于一个锐角三角形,正弦函数为sinθ = 对边 /斜边,余弦函数为cosθ = 临边 / 斜边,正切函数为tanθ = 对边 / 临边。
3. 平面几何公式- 长方形的面积公式为 S = 长 ×宽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂 (1)m na=(0,,a m n N *>∈,且1n >).(2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,n n co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)22(||||)()OAB S OA OB OA OB ∆=⋅-⋅.54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式 ,A B d=||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ . (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式(1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;80.夹角公式(1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分;111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩. (4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d = d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 其中22B A CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x x E y y x x y y F ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±.。