4乘4矩阵键盘检测
4×4矩阵键盘控制实验
4×4矩阵键盘控制实验一、实验内容摘要设计一个4×4键盘接口控制器,在QuartusII软件上实现基设计,将其与开发板连接,实现电路功能。
当按下某一键时,4位LED上显示对应的键值,以二进制代码形式从0至F显示。
二、实验源代码LIBRARY ieee;USE ieee.std_logic_1164.ALL;USE ieee.std_logic_unsigned.ALL;ENTITY DEBOUNCING ISPORT(clk, key:IN STD_LOGIC ;clr: IN STD_LOGIC;dly_out, dif_out: OUT STD_LOGIC);END DEBOUNCING;ARCHITECTURE a OF DEBOUNCING ISSIGNAL sample,dly,diff: STD_LOGIC;BEGINfree_counter:blocksignal QQ:std_logic_vector(4 downto 0);signal d0:std_logic;beginprocess (CLR,clk)beginif clr='0' thend0<='0';QQ<=(OTHERS=>'0');ELSif clk'event and clk='1' thend0<=QQ(4); --QQ的最高位同时作为d0信号,即d0的周期为2的5次方个clk.QQ<=QQ+1;end if;end process;sample<=not(QQ(4) and (not d0));--当d0为0,QQ(4)为1时,sample产生采样脉冲,低电平时间为1个clkend block free_counter;debunce:blocksignal d0,d1,s,r:std_logic;beginprocess(clk,clr)beginif clr='0' thendly<='0';elsif rising_edge(clk) thenif sample='1' thend1<=d0;d0<=key;s<=d0 and d1;r<=not d0 and not d1;if s<='0' and r<='0' thendly<=dly;elsif s<='0' and r<='1' thendly<='0';elsif s<='1' and r<='0' thendly<='1';elsedly<='0';end if;end if;end if;end process;dly_out<=dly;end block debunce;differential:blocksignal d1,d0:std_logic;beginprocess(clk,clr)beginif clr='0' thend0<='0';d1<='0';elsif rising_edge(clk) thend1<=d0;d0<=dly;end if;diff<=d0 and not d1;end process;dif_out<=diff;end block differential;END a;--****************************************************************** --* 4x4标准键盘板读取并点亮实验箱底板上的L1-L4--* Filename: keyboard4_4--* 扫描键盘,译码并点亮实验箱底板上的L1-L4--* 已加入去抖程序--****************************************************************** library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity keyboard4_4 isport(rst : in std_logic;clk_in : in std_logic;keyin : in std_logic_vector(3 downto 0);scan : out std_logic_vector(3 downto 0);leds : out std_logic_vector(3 downto 0);state : out std_logic;M : out std_logic_vector(3 downto 0));end keyboard4_4;architecture keyboard4_4_arch of keyboard4_4 is----********************************************* component debouncingport( key : IN STD_LOGIC ;clk,clr : IN STD_LOGIC ;dly_out : OUT STD_LOGIC ) ;end component ;--*********************************************--signal clkfrq : std_logic;signal cntscn : std_logic_vector(1 downto 0);signal scnlin : std_logic_vector(3 downto 0);signal cntfrq : std_logic_vector(14 downto 0);signal lednum : std_logic_vector(7 downto 0);signal key_tmp : std_logic_vector(3 downto 0);signal clk : std_logic;signal cntfrq1 : std_logic_vector(5 downto 0); beginM <= "0101"; --键盘功能选择scan <= not scnlin;lednum <= scnlin & (not key_tmp);-- key_tmp <= keyin;--debounuing cktdebounuing : blockbeginU1: debouncing PORT MAP (KEY => keyin(0) ,DLY_OUT => key_tmp(0) ,clr=>rst,clk => CLK);U2: debouncing PORT MAP (KEY => keyin(1) ,dly_out => key_tmp(1) ,clr=>rst,clk => CLK);U3: debouncing PORT MAP (key => keyin(2) ,dly_out => key_tmp(2) ,clr=>rst,clk => CLK);U4: debouncing PORT MAP (key => keyin(3) ,dly_out => key_tmp(3) ,clr=>rst,clk => CLK);END block debounuing ;--******************************************************--process(rst,clk_in) -- 晶振为40MHz,进行40000分频产生去抖时钟(1000Hz)beginif rst = '0' thencntfrq <= (others => '0');elsif rising_edge(clk_in) thenif (cntfrq = "100111000011111" or not (key_tmp="1110" or key_tmp="1101" or key_tmp="1011" or key_tmp="0111") ) then--if (cntfrq = "100111000011111" or key_tmp="1111" ) then--if cntfrq = "1111" thencntfrq <= (others => '0');clk <= not clk;--去抖时钟elsecntfrq <= cntfrq + 1;end if;end if;end process;process(rst,clk) --去抖时钟,50分频,形成扫描时钟beginif rst = '0' thenclkfrq <= '0';cntfrq1 <= (others => '0');elsif rising_edge(clk) thenif cntfrq1 = "11000" thencntfrq1 <= (others => '0');clkfrq <= not clkfrq;elsecntfrq1 <= cntfrq1 + 1;end if;end if;end process;process(rst,clkfrq) -- 根据扫描时钟产生扫描线beginif rst = '0' thencntscn <= "00";elsif rising_edge(clkfrq) thenif cntscn = "11" thencntscn <= "00";elsecntscn <= cntscn+1;end if;case cntscn iswhen "00" => scnlin <= "0001";when "01" => scnlin <= "0010";when "10" => scnlin <= "0100";when "11" => scnlin <= "1000";when others => null;end case;end if;end process;process(rst, clkfrq) -- 根据按键点亮相应的ledsbeginif(rst = '0' ) thenleds <= "0000";elsif clkfrq'event and clkfrq = '0' thencase lednum iswhen "10001000" =>leds <= "0001"; --1when "01001000" =>leds <= "0010"; --2when "00101000" =>leds <= "0011"; --3when "00011000" =>leds <= "1010"; --Awhen "10000100" =>leds <= "0100"; --4when "01000100" =>leds <= "0101"; --5when "00100100" =>leds <= "0110"; --6when "00010100" =>leds <= "1011"; --Bwhen "10000010" =>leds <= "0111"; --7when "01000010" =>leds <= "1000"; --8when "00100010" =>leds <= "1001"; --9when "00010010" =>leds <= "1100"; --Cwhen "10000001" =>leds <= "1110"; --*when "01000001" =>leds <= "0000"; --0when "00100001" =>leds <= "1111"; --#when "00010001" =>leds <= "1101"; --Dwhen others =>null;end case;end if;end process;process(rst,key_tmp)beginif(rst = '0' ) thenstate <= '1';elsif (key_tmp="1110" or key_tmp="1101" or key_tmp="1011" or key_tmp="0111") thenstate <= '0';elsif (key_tmp="1111") thenstate <= '1';end if;end process;end keyboard4_4_arch;三、实验工具软件的选用以及实验过程1、打开QuartusII软件。
4×4键盘扫描程序开启原理及实例(精心整理)
4×4键盘扫描程序开启原理及实例(精心整理)单片机4*4键盘扫描程序时如何开启的?按照行顺序,一行一行的开启,如下图:4*4共16键,假设P0.0-P0.3为H0-H3,P0.4-P0.7为L0-L3(列) L0 L1 L2 L3(行) H0 0 1 2 3H1 4 5 6 7H2 8 9 A BH3 C D E F首先让H0 = 0,然后依次检测L0-L3,看那个键按下了,则对应的L0-L3为0,这样第一行检测结束。
比如扫描H0行时第一个键按下了,则L0=0,获得的P0=0xee,你也可以返回一个值,比如就是0,来代表第一个键(0)被按下,这样依次检测就扫描满16个键就行了。
4*4键盘扫描程序#include //包含头文件#define uchar unsigned char#define uint unsigned intunsigned char const dofly[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71};//0-Fuchar keyscan(void);void delay(uint i);void main(){uchar key;P2=0x00;//1数码管亮按相应的按键,会显示按键上的字符while(1){key=keyscan();//调用键盘扫描,switch(key){case 0x7e:P0=dofly[0];break;//0 按下相应的键显示相对应的码值case 0x7d:P0=dofly[1];break;//1case 0x7b:P0=dofly[2];break;//2case 0x77:P0=dofly[3];break;//3case 0xbe:P0=dofly[4];break;//4case 0xbd:P0=dofly[5];break;//5case 0xbb:P0=dofly[6];break;//6case 0xb7:P0=dofly[7];break;//7case 0xde:P0=dofly[8];break;//8case 0xdd:P0=dofly[9];break;//9case 0xdb:P0=dofly[10];break;//acase 0xd7:P0=dofly[11];break;//bcase 0xee:P0=dofly[12];break;//ccase 0xed:P0=dofly[13];break;//dcase 0xeb:P0=dofly[14];break;//ecase 0xe7:P0=dofly[15];break;//f}}}uchar keyscan(void)//键盘扫描函数,使用行列反转扫描法{uchar cord_h,cord_l;//行列值P3=0x0f; //行线输出全为0cord_h=P3&0x0f; //读入列线值if(cord_h!=0x0f) //先检测有无按键按下{delay(100); //去抖if(cord_h!=0x0f){cord_h=P3&0x0f; //读入列线值P3=cord_h|0xf0; //输出当前列线值cord_l=P3&0xf0; //读入行线值return(cord_h+cord_l);//键盘最后组合码值}}return(0xff); //返回该值}void delay(uint i)//延时函数{while(i--);}以下为详细解释:假设按下的是S1键进行如下检测(4*4键盘)先在P3口输出p3 00001111低四位行会有变化cord_h =00001111&00001110 =00001110if !=00001111延时0.1uscord_h=00001110&00001111=00001110if !=00001111P3再输出11111110P3 =00001110|11110000=11111110输出高四位cord_l=P3&0xf0 //此时P3口就是输入值01111110 而不是上面的11111110cord_l=01111110&11110000=01110000cord_h+cord_l=00001110+01110000=01111110=0x7e //此编码即为S1的编码#include //包含头文件#define uchar unsigned char#define uint unsigned intunsigned char const table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71};//0-Fuchar keyscan(void);void delay(uint i);void main(){uchar key;P2=0x00;//1数码管亮按相应的按键,会显示按键上的字符while(1){key=keyscan();//调用键盘扫描,switch(key){case 0x7e:P0=table[0];break;//0 按下相应的键显示相对应的码值case 0x7d:P0=table[1];break;//1case 0x7b:P0=table[2];break;//2case 0x77:P0=table[3];break;//3case 0xbe:P0=table[4];break;//4case 0xbd:P0=table[5];break;//5case 0xbb:P0=table[6];break;//6case 0xb7:P0=table[7];break;//7case 0xde:P0=table[8];break;//8case 0xdd:P0=table[9];break;//9case 0xdb:P0=table[10];break;//acase 0xd7:P0=table[11];break;//bcase 0xee:P0=table[12];break;//ccase 0xed:P0=table[13];break;//dcase 0xeb:P0=table[14];break;//ecase 0xe7:P0=table[15];break;//f}}}uchar keyscan(void)//键盘扫描函数,使用行列反转扫描法{ uchar cord_h,cord_l;//行列值P3=0x0f; //行线输出全为0cord_h=P3&0x0f; //读入列线值if(cord_h!=0x0f) //先检测有无按键按下{delay(100); //去抖cord_h=P3&0x0f; //读入列线值if(cord_h!=0x0f){P3=cord_h|0xf0; //输出当前列线值cord_l=P3&0xf0; //读入行线值return(cord_h+cord_l);//键盘最后组合码值}}return(0xff); //返回该值}void delay(uint i)//延时函数{while(i--);}在P3口做的键盘你的去抖检测没有做好通过电平输入来引发中断,必须是由P3.2或P3.3引脚输入,这样才能触发中断。
单片机课程设计---4×4矩阵式键盘识别显示电路的设计
《单片机原理及应用》课程设计题目:4×4矩阵式键盘与单片机连接与编程专业:测控技术与仪器班级:机电082-1 姓名:学号:指导老师:组员:( 2011.7 .13)目录第1节引言 (2)1.1 4*4矩阵式键盘系统概述 (2)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (4)2.1 单片机控制系统原理 (4)2.2 单片机主机系统电路 (5)2.2.1 时钟电路 (8)2.2.2 复位电路 (8)2.2.3 矩阵式键盘电路 (8)2.3 译码显示电路 (9)第3节系统软件设计 (13)3.1 软件流程图 (13)3.2 系统程序设计 (14)第4节结束语 (17)参考文献 (18)第一节引言矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,即时在LED数码管上。
单片机控制的据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。
1.1 4*4矩阵式键盘识别显示系统概述矩阵式键盘模式以N个端口连接控制N*N个按键,实时在LED数码管上显示按键信息。
显示按键信息,既降低了成本,又提高了精确度,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。
并且在实际应用中经常要用到输入数字、字母、符号等操作功能,如电子密码锁、电话机键盘、计算器按键等,至少都需要12到16个按键,在这种情况下如果用独立式按键的话,显然太浪费I/O端口资源,为了解决这一问题,我们使用矩阵式键盘。
矩阵式键盘简介:矩阵式键盘又称行列键盘,它是用N条I/O线作为行线,N条I/O线作为列线组成的键盘。
在行线和列线的每个交叉点上设置一个按键。
这样键盘上按键的个数就为N*N个。
这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。
实验四4×4键盘输入
实验四: 4 × 4键盘输入实验一、实验目的:1.学习非编码键盘的工作原理和键盘的扫描方式。
2.学习键盘的去抖方法和键盘应用程序的设计。
二、实验原理:键盘是单片机应用系统接受用户命令的重要方式。
单片机应用系统一般采用非编码键4*4矩阵盘,需要由软件根据键扫描得到的信息产生键值编码,以识别不同的键。
本板采用键盘,行信号分别为P1.0-P1.3 ,列信号分别为P1.4-P1.7 。
具体电路连接见下图对于键的识别一般采用逐行(列)扫描查询法,判断键盘有无键按下,由单片机I/O口向键盘送全扫描字,然后读入列线状态来判断。
程序及流程图:ORG 0000HAJMP MAINORG 0000HAJMP MAINORG 0030HMAIN:MOV P2,#0F7HMOV P1,#0F0HMOV R7,#100DJNZ R7,$MOV A,P1ANL A,#0F0HXRL A,#0F0HJZ MAINLCALL D10MSMOV A,#00HMOV R0,AMOV R1,AMOV R2,#0FEH SKEY0:MOV A,R2MOVP1,AMOVR7,#10DJNZ R7,$MOVA,P1ANLA,#0F0HXRLA,#0F0HJNZ LKEYINC R0MOVA,R2RL AMOVR2,AMOVA,R0CJNE A,#04H,SKEY0AJMP MAIN LKEY:JNB ACC,4,NEXT1MOVA,#00HMOVR1,AAJMP DKEYNEXT1:JNB ACC.5,NEXT2MOVA,#01HMOVR1,AAJMP DKEYNEXT2:JNB ACC.6,NEXT3MOVA,#02HMOVR1,AAJMP DKEYNEXT3:JNB ACC.7,MAINMOVA,#03HMOVR1,AAJMP DKEY DKEY:MOV A,R0MOVB,#04HMULABADDA,R1AJMP SQRSQR:MOVDPTR,#TABMOVC A,@A+DPTRMOVP0,AAJMP MAINTAB:DB0C0H,0F9H,0A4H,0B0H,99H, 92H, 82H, 0F8H DB 80H, 90H, 88H, 83H, 0C6H,0A1H,86H, 8EH D10MS:MOV R6,#10L1:MOV R5,#248DJNZ R5,$DJNZ R6,L1RETEND流程图:结束三、思考题:总结 FPGA是如何识别按键的?与单片机读取键值有何不同?答:FPGA的所有 I/O 控制块允许每个 I/O 引脚单独配置为输入口 , 不过这种配置是系统自动完成的。
4×4矩阵式键盘识别
4×4矩阵式键盘识别[实验任务]用AT89S51的并行口P3接4×4矩阵键盘,以P3.0-P3.3作输入线,以P3.4-P3.7作输出线;在每一个数码管上显示每个按键的“0-F”序号。
[硬件电路]备注:P2.7-P2.4作为输入线,P2.3-2.0作为输出线。
[DPY-1实验板连接]用排线把JP-CODE连到JP8是,注意:a接P0.0;b接P0.1;c接P0.3……把JP-CS连到JP14上,注意:4H接P2.4;3H接P2.5;2H接P2.6;1H接P2.7;用排线把JP-KEY连到JP12上,注意1,2,3,4,5,6,7,8,分别对应P3.0,P3.1,P3.3,P3.4……[实验原理]每个按键有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么;还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
[C语言源程序]#include <reg52.h>unsigned char code seg7code[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; unsigned char k;void delay10ms(void) //延时程序{unsigned char i,j;for(i=20;i>0;i--)for(j=248;j>0;j--);}void Getch ( ){ unsigned char X,Y,Z;P2=0xff;P2=0xf0; //先对P2置数行扫描if(P2!=0xf0) //判断是否有键按下{delay10ms(); //延时,软件去干扰if(P2!=0xf0) //确认按键按下X = P2;{X=P2; //保存行扫描时有键按下时状态P2=0x0f; //列扫描Y=P2; //保存列扫描时有键按下时状态Z=X|Y; //取出键值switch ( Z ) //判断键值(那一个键按下){case 0x77: k=0; break; //对键值赋值case 0x7b: k=1; break;case 0x7d: k=2; break;case 0x7e: k=3; break;case 0xb7: k=4; break;case 0xbb: k=5; break;case 0xbd: k=6; break;case 0xbe: k=7; break;case 0xd7: k=8; break;case 0xdb: k=9; break;case 0xdd: k=10;break;case 0xde: k=11;break;case 0xe7: k=12;break;case 0xeb: k=13;break;case 0xed: k=14;break;case 0xee: k=15;break;}}}}void main(void){while(1){ P2=0xff;Getch();P0=seg7code[k]; //查表LED输出P1=0xf0; //输出相同的四位数据。
stm32控制4乘4矩阵键盘程序带松手检测
stm32控制4乘4矩阵键盘程序带松手检测#include "stm32f10x.h"#include "delay.h"/*本文件的函数,主要实现矩阵键盘的功能。
矩阵键盘使用PA0到PA7引脚,其中,PA0到PA3固定为推挽输出,PA4到PA7固定为下拉输入。
即,无键按下时,对应PA4到PA7为0,有键按下时,PA4到PA7中,对应的引脚为高。
此程序有一点要注意:要用到的IO口,必须是PX0-PX7,,不能是其他连续的数字。
如果非要改。
如:已经没有连续的0-7的IO口,需要在几个地方修改,请注意~~此程序带有松手检测。
*/void InitKey(void) //初始化矩阵键盘要使用的GPIO口。
{GPIO_InitTypeDef GPIOStru;GPIOStru.GPIO_Mode = GPIO_Mode_Out_PP; //定义PA0到PA3为推挽输出。
GPIOStru.GPIO_Speed = GPIO_Speed_50MHz;GPIOStru.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);GPIO_Init(GPIOA,&GPIOStru);GPIOStru.GPIO_Mode = GPIO_Mode_IPD; //定义PA4到PA7为下拉输入。
GPIOStru.GPIO_Speed = GPIO_Speed_50MHz;GPIOStru.GPIO_Pin = GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//因为上面定义引脚为输出时,已经打开整个GPIOA的时钟了,所以此处不再需要函数RCC_APB2PeriphClockCmd()来打开时钟了。
矩阵键盘扫描汇编程序
4*4矩阵键盘扫描汇编程序(基于51单片机)// 程序名称:4-4keyscan.asm;// 程序用途:4*4矩阵键盘扫描检测;// 功能描述:扫描键盘,确定按键值。
程序不支持双键同时按下,;// 如果发生双键同时按下时,程序将只识别其中先扫描的按键;// 程序入口:void;// 程序出口:KEYNAME,包含按键信息、按键有效信息、当前按键状态;//================================================================== ====PROC KEYCHKKEYNAME DATA 40H ;按键名称存储单元;(b7-b5纪录按键状态,b4位为有效位,;b3-b0纪录按键)KEYRTIME DATA 43H ;重复按键时间间隔SIGNAL DATA 50H ;提示信号时间存储单元KEY EQU P3 ;键盘接口(必须完整I/O口) KEYPL EQU P0.6 ;指示灯接口RTIME EQU 30 ;重复按键输入等待时间KEYCHK:;//=============按键检测程序========================================= ====MOV KEY,#0FH ;送扫描信号MOV A,KEY ;读按键状态CJNE A,#0FH,NEXT1 ;ACC<=0FH; CLR C ;Acc等于0FH,则CY为0,无须置0NEXT1:; SETB C ;Acc不等于0FH,则ACC必小于0 FH,;CY为1,无须置1MOV A,KEYNAMEANL KEYNAME,#1FH ;按键名称屏蔽高三位RRC A ;ACC带CY右移一位,纪录当前按键状态ANL A,#0E0H ;屏蔽低五位ORL KEYNAME,A ;保留按键状态;//=============判别按键状态,决定是否执行按键扫描=================== =====CJNE A,#0C0H,NEXT2 ;110按键稳定闭合,调用按键检测子程序SJMP KEYSCANNEXT2:CJNE A,#0E0H,NEXT3 ;111按键长闭合,重复输入允许判断SJMP WAITNEXT3:CJNE A,#0A0H,EXIT ;101干扰,当111长闭合处理ORL KEYNAME,#0E0HWAIT:MOV A,KEYRTIMEJNZ EXIT ;时间没到,退出;//=============键盘扫描程序========================================= =====KEYSCAN:MOV R1,#0 ;初始化列地址MOV R3,#11110111B ;初始化扫描码LOOP:MOV A,R3RL AMOV R3,A ;保留扫描码MOV KEY,A ;送扫描码MOV A,KEY ;读键盘ORL A,#0F0H ;屏蔽高四位CJNE A,#0FFH,NEXT31 ;A不等于FFH,说明该列有按键动作INC R1 ;列地址加1,准备扫描下一列CJNE R1,#4,LOOP ;列地址不等于4,扫描下一列SJMP EXIT ;没有按键,退出;//=============按键判断对应位等于零,说明该行有按键按下============= =====NEXT31:JB ACC.0,NEXT32MOV R2,#0 ;第0行有按键SJMP NEXT5NEXT32:JB ACC.1,NEXT33MOV R2,#1 ;第1行有按键SJMP NEXT5NEXT33:JB ACC.2,NEXT34MOV R2,#2 ;第2行有按键SJMP NEXT5NEXT34:MOV R2,#3 ;第3行有按键NEXT5: ;计算按键地址MOV A,R1RL ARL A ;列地址乘4(每列对应4行)ADD A,R2 ;加行地址MOV DPTR,#KEYTABMOVC A,@A+DPTRANL KEYNAME,#0E0HORL KEYNAME,A ;送按键(送值的时候已经置按键有效)MOV KEYRTIME,#RTIME ;送重复按键等待时间CLR KEYPL ;打开指示灯MOV SIGNAL,#10 ;送信号提示时间(每次按键闪10 0ms)EXIT:MOV KEY,#0FFH ;置键盘接口高电平RET ;退出;//=============按键名称表=========================================== =====KEYTAB:DB 1AH ;扫描码0,对应A ************************************ ******DB 1BH ;扫描码1,对应B ** **DB 1CH ;扫描码2,对应C ** I/O口 PX.4 PX.5 PX.6 PX.7 **DB 1DH ;扫描码3,对应D ** **DB 11H ;扫描码4,对应1 ** PX.0 A(0) 1(4) 2(8) 3 (C) **DB 14H ;扫描码5,对应4 ** **DB 17H ;扫描码6,对应7 ** PX.1 B(1) 4(5) 5(9) 6 (D) **DB 1EH ;扫描码7,对应E ** **DB 12H ;扫描码8,对应2 ** PX.2 C(2) 7(6) 8(A) 9 (E) **DB 15H ;扫描码9,对应5 ** **DB 18H ;扫描码A,对应8 ** PX.3 D(3) E(7) 0(B) F(F) **DB 10H ;扫描码B,对应0 ** **DB 13H ;扫描码C,对应3 ************************************ ******DB 16H ;扫描码D,对应6DB 19H ;扫描码E,对应9DB 1FH ;扫描码F,对应FEND第二种解法ORG 0000HSTART: MOV R0,#00H ;初始化程序,开始的延时是为了使硬件能够准备好DJNZ R0,$LOOP: MOV SP,#60HCALL KEYDISPLAY:MOV A,R4MOV DPTR,#TABLE ;定义字形表的起始地址MOVC A,@A+DPTR ;TABLE为表的起始地址MOV P2,ASJMP LOOP;子程序内容,P1口的低四位为行线,高四位为列线KEY: PUSH PSWPUSH ACCMOV P1,#0F0H ;令所有的行为低电平,全扫描字-P1.0-P1.3,列为输入方式;这一段只是验证有键按下,并不能判断是哪一行MOV R7,#0FFH ;设置计数常数,作为延时KEY1: DJNZ R7, KEY1MOV A,P1 ;读取P1口的列值ANL A,#0F0H ;判别有键值按下吗(当有键按下时,P1口的高四位就不全为1了,底四位还是都为0的);这个地方进行相或的原因,是因为要把底四位的0000变成1111,以便下一步进行求反ORL A,#0FH //这个地方原版上没有,这是又加了,如果不加的的话,是不对的********CPL A ;求反后,有高电平就有键按下JZ EKEY;累加器为0则转移(意为求反后本来全为0的,如果有键按下时,求反后高四位就有1了),退出LCALL DEL20ms ;有键按下,进行处理;下面进行行行扫描,1行1行扫SKEY: MOV A,#00HMOV R0,A ;R0作为行计数器,开始初值为0MOV R1,A ;R1作为列计数器,开始初值为0MOV R2,#0FEH ;R2作为扫描暂存字,开始初值为1111 1110,(第四位作为行扫描字)SKEY2: MOV A,R2MOV P1,A ;输出行扫描字,1111 1110NOPNOPNOP ;3个NOP操作使P1口输出稳定MOV A,P1 ;读列值(和开始一样)MOV R1,A ;暂存列值(第一次为**** 1110,既高四位有一位"可能"会为0)ANL A,#0F0H ;取高四位,ORL A,#0FH ;使第四位全部置1CPL ABIAOZHI:JNZ SKEY3 ;累加器为非0则转移指令(意思是判断到按键在这一行),转去处理INC R0 ;如果按键没在这一行,行计数器加1SETB C ;进位标志位加1,为了在左移的时候开始的低位0不在出现在低(循环一圈后)MOV A,R2RLC A ;带进位左移1位(形成下一行扫描字,再次扫描)MOV R2,AMOV A,R0;把加1后的行计数器R0和总共扫描次数(4次比较)CJNE A,#04H,SKEY2 ;(扫描完了么)书本上这个地方也有错误,书本上写的是:SKEY1AJMP EKEY ;如果没有的话,退出;有键按下后行扫描过后,此为确列行SKEY3: MOV A,R1 ;JNB ACC.4,SKEY5 ;直接寻址位为0咋转移指令JNB ACC.5,SKEY6JNB ACC.6,SKEY7JNB ACC.7,SKEY8AJMP EKEY //我自己感觉到这命令没有用处SKEY5: MOV A,#00H ;存0列号MOV R3,AAJMP DKEYSKEY6: MOV A,#01H ;存1列号MOV R3,AAJMP DKEYSKEY7: MOV A,#02H ;存2列号MOV R3,AAJMP DKEYSKEY8: MOV A,#03H ;存3列号MOV R3,AAJMP DKEY;取出具体的行号,再加上列号,最终确认按键的号码DKEY: //MOV R4,#00HMOV A,R0MOV B,#04HMUL AB ;让行号*4,第四位放在A中(总共就4行,相乘后一定<16,也就是只有第四位有值)ADD A,R3 ;让行号和列号相加,最终确认任按键的具体号MOV R4,AEKEY: POP ACCPOP PSWRET ;按键扫描处理函数DEL20ms:MOV R7,#2DL2: MOV R6,#18DL1: MOV R5,#255DJNZ R5,$DJNZ R6,DL1DJNZ R7,DL2RET;此为共阴极数码管的数字表TABLE: DB 3FH ;0DB 06H ;1DB 5BH ;2DB 4FH ;3DB 66H ;4DB 6DH ;5DB 7DH ;6DB 27H ;7DB 7FH ;8DB 6FH ;9DB 77HDB 7CHDB 39HDB 5EHDB 79HDB 71HEND第三种PIC单片机键盘扫描汇编程序;本程序用于PIC外接键盘的识别,通过汇编程序,使按下K1键时第一个数码管显示1,按下K2键时第一;个数码管上显示2,按下K3键时第一个数码管上显示3,按下K4键时第一个数码管上显示4,;汇编程序对键盘的扫描采用查询方式LIST P=18F458INCLUDE "P18F458.INC";所用的寄存器JIANR EQU 0X20FLAG EQU JIANR+1 ;标志寄存器DEYH EQU JIANR+2DEYL EQU JIANR+3F0 EQU 0 ;FLAG的第0位定义为F0ORG 0X00GOTO MAINORG 0X30;*************以下为键盘码值转换表****************** CONVERT ADDWF PCL,1RETLW 0XC0 ;0,显示段码与具体的硬件连接有关RETLW 0XF9 ;1RETLW 0XA4 ;2RETLW 0XB0 ;3RETLW 0X99 ;4RETLW 0X92 ;5RETLW 0X82 ;6RETLW 0XD8 ;7RETLW 0X80 ;8RETLW 0X90 ;9RETLW 0X88 ;ARETLW 0X83 ;BRETLW 0XC6 ;CRETLW 0XA1 ;DRETLW 0X86 ;ERETLW 0X8E ;FRETLW 0X7F ;"."RETLW 0XBF ;"-"RETLW 0X89 ;HRETLW 0XFF ;DARKRETURN;***************PIC键盘扫描汇编程序初始化子程序***************** INITIALBCF TRISA,5 ;置RA5为输出方式,以输出锁存信号BCF TRISB,1BCF TRISA,3BCF TRISE,0BCF TRISE,1BSF TRISB,4 ;设置与键盘有关的各口的输入输出方式BCF TRISC,5BCF TRISC,3 ;设置SCK与SDO为输出方式BCF INTCON,GIE ;关闭所有中断LW 0XC0WF SSPSTAT ;设置SSPSTAT寄存器LW 0X30WF SSPCON1 ;设置SPI的控制方式,允许SSP方式,并且时钟下降;沿发送数据,与"74HC595当其SCLK从低到高电平;跳变时,串行输入数据(DI)移入寄存器"的特点相对应LW 0X01WF JIANR ;显示值寄存器(复用为键值寄存器)赋初值CLRF FLAG ;清除标志寄存器RETURN ;返回;**************显示子程序*****************DISPLAYCLRF PORTAWF SSPBUFAGAINBTFSS PIR1,SSPIFGOTO AGAINNOPBCF PIR1,SSPIFBSF PORTA,5 ;详细的程序语句请参考 pic教程语句部分,可在首页搜索。
51单片机4×4矩阵按键扫描方法
key=0xf0;//低四位为0
if(key==0xf0)//若无变化,证明按键松开
return 0;//返回0
else//否则,按键未松开
return 1;//返回1
}
//*********主函数*********//
int main()
{
key=0xff;//按键初始化
led=0xff;//关闭LED灯
//送至led显示
/*
eg:如果是第三行第二列按键按下
则第3个、第6(2列+4)个LED灯亮
如下图所示(Proteus仿真电路图)
*/
}
}
led_arry[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//数组定义,便于显示
//******检测是否有按键按下*****//
uchar Check_Button()
{
key=0x0f;//高四位为0
if(key==0x0f)//若无变化,证明无按键按下
return 0;//返回0
else//否则
return 1;//返回1
}
//********行检测********//
uchar Line[]={0x0e,0x0d,0x0b,0x07}; //那个按键按下,检测出的状态则对应数组中的第几个数
void Check_Line()
{
uchar i;
key=0x0f;//高四位为0
/*****4×4按键扫描******/
/***编程要点
1.首先检测是否有按键按下
2.若有按键按下,即进行行检测,列检测
3.行检测:高4位设为0,低4位为1,进行检测0x0f
4X4键盘扫描实验
44键盘扫描实验实验目的1、学习HDL程序的基本设计技巧;2、掌握矩阵键盘的扫描原理和使用方法。
Verilog程序:module hex_keypad(Col,Code,show,show1,count,scan,clock,Row); output[3:0] Code,Col,count; //定义列信号Col、行列信号共同决定的输出代码Code、以及计数变量count output[7:0] show,show1; //定义七段显示变量show、show1 input[3:0] Row; //定义输入行信号Rowinput scan; //定义数码管选择信号scaninput clock; //定义时钟信号clockreg[3:0] Col,Code,count; //将输出信号定义为reg型reg[7:0] show,show1;reg[1:0] cn; //定义reg型变量cn,用于计数reg reset,count_up,count_down; //定义变量reset用于计数清零,count_up开始加计数,count_down开始减计数reg[15:0] times1,times2; //定义变量times1、times2用于决定开始计数的时间assign scan=1'b1; //将数码管选择信号赋值为1always@(posedge clock) //产生列信号if(cn==4)cn<=0; elsecn<=cn+1;always@(cn)case(cn)2'b00:Col=4'b1110;2'b01:Col=4'b1101;2'b10:Col=4'b1011;2'b11:Col=4'b0111;endcasealways@(posedge clock) //行列信号共同决定输出代码Code case({Row,Col})8'b1110_1110:Code=4'h0;8'b1110_1101:Code=4'h1;8'b1110_1011:Code=4'h2;8'b1110_0111:Code=4'h3;8'b1101_1110:Code=4'h4;8'b1101_1101:Code=4'h5;8'b1101_1011:Code=4'h6;8'b1101_0111:Code=4'h7;8'b1011_1110:Code=4'h8;8'b1011_1101:Code=4'h9;8'b1011_1011:Code=4'hA;8'b1011_0111:Code=4'hB;8'b0111_1110:Code=4'hC;8'b0111_1101:Code=4'hD;8'b0111_1011:Code=4'hE;8'b0111_0111:Code=4'hF;endcasealways@(posedge clock) //由输出Code决定数码管的显示,七段用十六进制数表示case(Code[3:0])4'h0:show=8'hFC;4'h1:show=8'h60;4'h2:show=8'hDA;4'h3:show=8'hF2;4'h4:show=8'h66;4'h5:show=8'hB6;4'h6:show=8'h3E;4'h7:show=8'hE0;4'h8:show=8'hFE;4'h9:show=8'hE6;4'hA:show=8'hEE;4'hB:show=8'hCE;4'hC:show=8'h9C;4'hD:show=8'h7A;4'hE:show=8'h9E;4'hF:show=8'h8E;endcasealways@(posedge clock) //加减计数case(Code)4'h0:begin reset=1;count_up=0;count_down=0;end //按0键时清零4'hE:begin count_up=1;count_down=0;end //按E键加计数4'hF:begin count_down=1;count_up=0;end //按F键减计数default: begin count_down=0;count_up=0;reset=0; end //按其它键不计数endcasealways@(posedge clock)if(times1==1000) times1<=101; else if (count_up) times1<=times1+1;always@(posedge clock)if(times2==1000) times2<=101; else if (count_down) times2<=times2+1; always@(posedge clock)if(reset)count<=4'h0; elseif (times1>100&&Code==4'hE) //加计数begincount<=count+4'b1;if (count==4'h9) count<=4'h0;endelseif (times2>100&&Code==4'hF) //减计数begincount<=count-4'b1;if (count==4'h0) count<=4'h9;endalways@(posedge clock) //计数显示case(count[3:0])4'h0:show1=8'hFC;4'h1:show1=8'h60;4'h2:show1=8'hDA;4'h3:show1=8'hF2;4'h4:show1=8'h66;4'h5:show1=8'hB6;4'h6:show1=8'h3E;4'h7:show1=8'hE0;4'h8:show1=8'hFE;4'h9:show1=8'hE6;endcaseendmodule仿真波形:Col、Row、Code、show、show[17..10]为十六进制显示,times1、times2、count为十进制显示当Code为F(即按F键)时,show显示8E即F,表明此时按下的是F 键。
数码管显示4×4键盘矩阵按键实验
5、4×4键盘矩阵按键实验一、实验目的及要求键盘实质上是一组按键开关的集合。
通常,键盘开关利用了机械触点的合、断作用。
键的闭合与否,反映在行线输出电压上就是呈高电平或低电平,如果高电平表示键断开,低电平则表示键闭合,反之也可。
通过对行线电平高低状态的检测,便可确认按键按下与否。
为了确保CPU对一次按键动作只确认一次按键有效,还必须消除抖动。
当按键较多时会占用更多的控制器端口,为减少对端口的占用,可以使用行列式键盘接口,本实验中采用的4×4键盘矩阵可以大大减少对单片机的端口占用,但识别按键的代码比独立按键的代码要复杂一些。
在识别按键时使用了不同的扫描程序代码,程序运行时LED灯组会显示相应按键的键值0~15的二进制数。
本实验中P2端口低4位连接是列线,高4位连接的是行线。
二、实验原理(图)三、实验设备(环境):1、电脑一台2、STC-ISP(V6.85I)烧写应用程序3、Keil应用程序四、实验内容(算法、程序、步骤和方法):#include<STC15F2K60S2.h> //此文件中定义了STC15系列的一些特殊功能寄存器#include"intrins.h"#define uint unsigned int#define uchar unsigned charuchar code dsy_code[]={0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0 F,0xff};uchar Pre_keyno=16,keyno=16;void delayMS(char x){uchar i;while(x--)for(i=0;i<120;i++) ;}void keys_scan(){uchar tmp;P2=0x0f;delayMS(5);tmp=P2^0x0f;switch(tmp){case 1:keyno=0;break;case 2:keyno=1;break;case 4:keyno=2;break;case 8:keyno=3;break;default:keyno=16;}P2=0xf0;delayMS(5);tmp=P2>>4^0x0f;switch(tmp){case 1:keyno+=0;break;case 2:keyno+=4;break;case 4:keyno+=8;break;case 8:keyno+=12;break;}}main(){P0=0x00;while(1){P2=0xf0;if(P2!=0xf0)keys_scan();if(Pre_keyno!=keyno){P0=~dsy_code[keyno];Pre_keyno=keyno;}delayMS(50);}}五、实验结论(结果):本实验实现了XXX功能,核心算法采用了XXX的方式,达到了预期目的。
4×4矩阵键盘扫描
矩阵键盘(Verilog)module matrixKeyboard_drive(input i_clk,input i_rst_n,input [3:0] row, // 矩阵键盘行output reg [3:0] col, // 矩阵键盘列output reg [3:0] keyboard_val // 键盘值);//++++++++++++++++++++++++++++++++++++++// 分频部分开始//++++++++++++++++++++++++++++++++++++++reg [19:0] cnt; // 计数子always @ (posedge i_clk, negedge i_rst_n)if (!i_rst_n)cnt <= 0;elsecnt <= cnt + 1'b1;wire key_clk = cnt[19]; // (2^20/50M = 21)ms //--------------------------------------// 分频部分结束//--------------------------------------//++++++++++++++++++++++++++++++++++++++// 状态机部分开始//++++++++++++++++++++++++++++++++++++++// 状态数较少,独热码编码parameter NO_KEY_PRESSED = 6'b000_001; // 没有按键按下parameter SCAN_COL0 = 6'b000_010; // 扫描第0列parameter SCAN_COL1 = 6'b000_100; // 扫描第1列parameter SCAN_COL2 = 6'b001_000; // 扫描第2列parameter SCAN_COL3 = 6'b010_000; // 扫描第3列parameter KEY_PRESSED = 6'b100_000; // 有按键按下reg [5:0] current_state, next_state; // 现态、次态always @ (posedge key_clk, negedge i_rst_n)if (!i_rst_n)current_state <= NO_KEY_PRESSED;elsecurrent_state <= next_state;// 根据条件转移状态always @ *case (current_state)NO_KEY_PRESSED : // 没有按键按下if (row != 4'hF)next_state = SCAN_COL0;elsenext_state = NO_KEY_PRESSED;SCAN_COL0 : // 扫描第0列if (row != 4'hF)next_state = KEY_PRESSED;elsenext_state = SCAN_COL1;SCAN_COL1 : // 扫描第1列if (row != 4'hF)next_state = KEY_PRESSED;elsenext_state = SCAN_COL2;SCAN_COL2 : // 扫描第2列if (row != 4'hF)next_state = KEY_PRESSED;elsenext_state = SCAN_COL3;SCAN_COL3 : // 扫描第3列if (row != 4'hF)next_state = KEY_PRESSED;elsenext_state = NO_KEY_PRESSED;KEY_PRESSED : // 有按键按下if (row != 4'hF)next_state = KEY_PRESSED;elsenext_state = NO_KEY_PRESSED;endcasereg key_pressed_flag; // 键盘按下标志reg [3:0] col_val, row_val; // 列值、行值// 根据次态,给相应寄存器赋值always @ (posedge key_clk, negedge i_rst_n)if (!i_rst_n)begincol <= 4'h0;key_pressed_flag <= 0;endelsecase (next_state)NO_KEY_PRESSED : // 没有按键按下begincol <= 4'h0;key_pressed_flag <= 0; // 清键盘按下标志endSCAN_COL0 : // 扫描第0列col <= 4'b1110;SCAN_COL1 : // 扫描第1列col <= 4'b1101;SCAN_COL2 : // 扫描第2列col <= 4'b1011;SCAN_COL3 : // 扫描第3列col <= 4'b0111;KEY_PRESSED : // 有按键按下begincol_val <= col; // 锁存列值row_val <= row; // 锁存行值 key_pressed_flag <= 1; // 置键盘按下标志endendcase//--------------------------------------// 状态机部分结束//--------------------------------------//++++++++++++++++++++++++++++++++++++++// 扫描行列值部分开始//++++++++++++++++++++++++++++++++++++++always @ (posedge key_clk, negedge i_rst_n)if (!i_rst_n)keyboard_val <= 4'h0;elseif (key_pressed_flag)case ({col_val, row_val})8'b1110_1110 : keyboard_val <= 4'h0;8'b1110_1101 : keyboard_val <= 4'h4;8'b1110_1011 : keyboard_val <= 4'h8;8'b1110_0111 : keyboard_val <= 4'hC;8'b1101_1110 : keyboard_val <= 4'h1;8'b1101_1101 : keyboard_val <= 4'h5;8'b1101_1011 : keyboard_val <= 4'h9;8'b1101_0111 : keyboard_val <= 4'hD;8'b1011_1110 : keyboard_val <= 4'h2;8'b1011_1101 : keyboard_val <= 4'h6;8'b1011_1011 : keyboard_val <= 4'hA;8'b1011_0111 : keyboard_val <= 4'hE;8'b0111_1110 : keyboard_val <= 4'h3;8'b0111_1101 : keyboard_val <= 4'h7;8'b0111_1011 : keyboard_val <= 4'hB;8'b0111_0111 : keyboard_val <= 4'hF;endcase//--------------------------------------// 扫描行列值部分结束//--------------------------------------endmodule。
4×4矩阵键盘识别技术
实验课题:4×4矩阵键盘识别技术一实验目的1.熟悉和掌握AT89S51单片机相关的功能2.了解矩阵式键盘的内部结构,掌握至少一种常用的按键识别的方法3.利用AT89S51单片机和设计一个4×4矩阵键盘控制。
4.掌握子程序结构和子程序实际的基本知识。
二实验原理1. 4×4矩阵键盘的序列排列如图1-1,图1-12.如图1-2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0―P1.3作输入线,以p1.4-P1.7作输出线,在数码管上显示每个按键的“0-F”序号.每个按键有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
每个按键的状态同样需变成数字量“0”和“1”,开关的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么;还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
3.程序框图三实验原理图四实验代码#include<AT89X51.H> unsignedcharcodetable[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; unsignedchartemp;unsignedcharkey;unsignedchari,j;voidmain(void){while(1){P3=0xff;P3_4=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp&0x0f;if(temp!=0x0f) {temp=P3;temp=temp&0x0f;switch(temp){case0x0e:key=7;break;case0x0d:key=8;break;case0x0b:key=9;break;case0x07:key=10;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp&0x0f;while(temp!=0x0f){temp=P3;temp=temp&0x0f;}}}P3=0xff;P3_5=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3; temp=temp&0x0f; switch(temp){case0x0e:key=4;break;case0x0d:key=5;break;case0x0b:key=6;break;case0x07:key=11;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp&0x0f;while(temp!=0x0f){temp=P3;temp=temp&0x0f;}}}P3=0xff;P3_6=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp&0x0f; if(temp!=0x0f) {temp=P3;temp=temp&0x0f; switch(temp){ case0x0e:key=1;break;case0x0d:key=2;break;case0x0b:key=3;break;case0x07:key=12;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp&0x0f; while(temp!=0x0f) {temp=P3;temp=temp&0x0f; }}}P3=0xff;P3_7=0;temp=P3;temp=temp&0x0f; if(temp!=0x0f) {for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f;switch(temp){case0x0e:key=0;break; case0x0d:key=13;break;case0x0b:key=14;break;case0x07:key=15;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp&0x0f;while(temp!=0x0f){temp=P3;temp=temp&0x0f;}}}}}五实验小结1.通过本次试验熟练的掌握了AT89S51单片机相关的功能。
单片机课程设计---4×4矩阵式键盘识别显示电路的设计
数理与信息工程学院《单片机原理及应用》期末课程设计题目:4×4矩阵式键盘识别显示电路的设计专业:电子信息工程班级:电信061班*名:***学号:********指导老师:***成绩:( 2008.12 )目录第1节引言 (2)1.1 4*4矩阵式键盘系统概述 (2)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (4)2.1 单片机控制系统原理 (4)2.2 单片机主机系统电路 (5)2.2.1 时钟电路 (4)2.2.2 复位电路 (5)2.2.3 矩阵式键盘电路 (5)2.3 译码显示电路 (6)第3节系统软件设计 (11)3.1 软件流程图 (8)3.2 系统程序设计 (9)第4节结束语 (12)参考文献 (13)4*4矩阵式键盘识别显示电路的设计数理与信息工程学院电信061 姜铮铮指导教师:余水宝第一节引言矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,即时在LED数码管上。
单片机控制的据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。
4*4矩阵式键盘采用AT89S51单片机为核心,主要由矩阵式键盘电路、译码电路、显示电路等组成,软件选用汇编语言编程。
单片机将检测到的按键信号转换成数字量,显示于LED显示器上。
该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。
1.1 4*4矩阵式键盘识别显示系统概述矩阵式键盘模式以N个端口连接控制N*N个按键,实时在LED数码管上显示按键信息。
显示按键信息,既降低了成本,又提高了精确度,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。
并且在实际应用中经常要用到输入数字、字母、符号等操作功能,如电子密码锁、电话机键盘、计算器按键等,至少都需要12到16个按键,在这种情况下如果用独立式按键的话,显然太浪费I/O端口资源,为了解决这一问题,我们使用矩阵式键盘。
4x4矩阵键盘扫描原理
4x4矩阵键盘扫描原理
4x4矩阵键盘扫描原理是一种常用的键盘扫描方法,也称为矩阵键盘扫描。
它可以将多个按键连接在一起并使用较少的引脚来检测按键的状态。
4x4矩阵键盘由4行和4列组成,共有16个按键。
通常使用单片机或电路来进行扫描,以下是简要的原理:
1. 行扫描:首先,将行引脚设置为输出,同时将列引脚设置为输入,并将其上拉或下拉。
所有行引脚中只有一个为低电平,其余为高电平。
然后逐行检测按键状态。
2. 列检测:对于每一行,将对应的行引脚置为低电平后,检测列引脚的电平状态。
如果有按键按下,则相应的列引脚会变为低电平。
通过读取列引脚的状态,可以确定按键的位置。
3. 组合键:由于只能一次检测一行,因此当同时按下多个按键时,可能会导致误检。
为了解决这个问题,可以在检测到按键按下时,延迟一段时间,并再次检测按键的状态。
如果在第二次检测时仍然检测到按键按下,则确认按键有效。
4. 反向扫描:为了检测按键的释放状态,可以将行引脚设置为输入,列引脚设置为输出,并将其置为低电平。
然后逐列检测行引脚的电平状态,如果有按键释放,则相应的行引脚会变为高电平。
通过不断地循环扫描所有的行和列,可以实时检测按键的状态,并根据需要进行相应的处理。
4×4矩阵式键盘识别技术
14.4×4矩阵式键盘识别技术1.实验任务如图4.14.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。
对应的按键的序号排列如图4.14.1所示错误!48C159D26AE37BF图4.14.12.硬件电路原理图图4.14.23.系统板上硬件连线(1.把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式键盘”区域中的C1-C4 R1-R4端口上;(2.把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,P0.1/AD1对应着b,……,P0.7/AD7对应着h。
4.程序设计内容(1.4×4矩阵键盘识别处理(2.每个按键有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
每个按键的状态同样需变成数字量“0”和“1”,,而接地是通过程序输出数开关的一端(列线)通过电阻接VCC字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么;还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5.程序框图错误!P3=FFH,P3.0=0有键按下吗?延时10ms真得有键按下吗?根据当前状态识别按键P3=FFH,P3.1=0有键按下吗?延时10ms真得有键按下吗?根据当前状态识别按键P3=FFH,P3.2=0有键按下吗?延时10ms真得有键按下吗?根据当前状态识别按键P3=FFH,P3.3=0有键按下吗?延时10ms真得有键按下吗?根据当前状态识别按键图4.14.3 6.汇编源程序KEYBUF EQU 30HORG 00HSTART: MOV KEYBUF,#2WAIT:MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHXRL A,#0FHLCALL DELY10MS MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY1MOV A,P3ANL A,#0FHCJNE A,#0EH,NK1 MOV KEYBUF,#0 LJMP DK1NK1: CJNE A,#0DH,NK2 MOV KEYBUF,#1 LJMP DK1NK2: CJNE A,#0BH,NK3 MOV KEYBUF,#2 LJMP DK1NK3: CJNE A,#07H,NK4 MOV KEYBUF,#3 LJMP DK1NK4: NOPDK1:MOV A,KEYBUFMOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,ADK1A: MOV A,P3ANL A,#0FHJNZ DK1A NOKEY1:MOV P3,#0FFHCLR P3.5MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY2LCALL DELY10MS MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY2MOV A,P3ANL A,#0FHCJNE A,#0EH,NK5 MOV KEYBUF,#4 LJMP DK2NK5: CJNE A,#0DH,NK6 MOV KEYBUF,#5 LJMP DK2NK6: CJNE A,#0BH,NK7 MOV KEYBUF,#6 LJMP DK2NK7: CJNE A,#07H,NK8 MOV KEYBUF,#7 LJMP DK2NK8: NOPDK2:MOV A,KEYBUFMOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,ADK2A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK2ANOKEY2:MOV P3,#0FFHCLR P3.6MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY3LCALL DELY10MS MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY3MOV A,P3ANL A,#0FHCJNE A,#0EH,NK9 MOV KEYBUF,#8LJMP DK3NK9: CJNE A,#0DH,NK10 MOV KEYBUF,#9LJMP DK3NK10: CJNE A,#0BH,NK11 MOV KEYBUF,#10 LJMP DK3NK11: CJNE A,#07H,NK12 MOV KEYBUF,#11 LJMP DK3NK12: NOPDK3:MOV A,KEYBUFMOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,ADK3A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK3ANOKEY3:MOV P3,#0FFHCLR P3.7MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY4LCALL DELY10MS MOV A,P3ANL A,#0FHXRL A,#0FHMOV A,P3ANL A,#0FHCJNE A,#0EH,NK13 MOV KEYBUF,#12 LJMP DK4NK13: CJNE A,#0DH,NK14 MOV KEYBUF,#13 LJMP DK4NK14: CJNE A,#0BH,NK15 MOV KEYBUF,#14 LJMP DK4NK15: CJNE A,#07H,NK16 MOV KEYBUF,#15 LJMP DK4NK16: NOPDK4:MOV A,KEYBUFMOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,ADK4A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK4ANOKEY4:LJMP WAITDELY10MS:D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RETTABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07HDB 7FH,6FH,77H,7CH,39H,5EH,79H,71HEND7.C语言源程序#include <AT89X51.H>unsigned char code table[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; unsigned char temp;unsigned char key;unsigned char i,j;void main(void){while(1){P3=0xff;P3_4=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f; switch(temp){case 0x0e:key=7;break;case 0x0d:key=8;break;case 0x0b:key=9;break;case 0x07:key=10;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f; }}}P3=0xff;P3_5=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=11;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f; }}}P3=0xff;P3_6=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f; switch(temp){case 0x0e:key=1;break;case 0x0d:key=2;break;case 0x0b:key=3;break;case 0x07:key=12;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp & 0x0f; while(temp!=0x0f){temp=temp & 0x0f; }}}P3=0xff;P3_7=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=0;break;case 0x0d:key=13;break;key=14;break;case 0x07:key=15;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f; }}}}}。
013、4×4矩阵式键盘识别技术
13.4×4矩阵式键盘识别技术1.实验任务如图4.13.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。
对应的按键的序号排列如图4.13.1所示图4.13.12.硬件电路原理图图4.13.23.系统板上硬件连线(1.把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式键盘”区域中的C1-C4 R1-R4端口上;(2.把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,P0.1/AD1对应着b,……,P0.7/AD7对应着h。
4.程序设计内容(1.4×4矩阵键盘识别处理(2.每个按键有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
每个按键的状态同样需变成数字量“0”和“1”,开关的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么;还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5.程序框图图4.13.36.汇编源程序KEYBUFEQU30HORG00HSTART:MOVKEYBUF,#2 WAIT:MOVP3,#0FFHCLRP3.4MOVA,P3ANLA,#0FHXRLA,#0FH JZNOKEY1 LCALLDELY10MS MOVA,P3ANLA,#0FHXRLA,#0FH JZNOKEY1MOVA,P3ANLA,#0FH CJNEA,#0EH,NK1 MOVKEYBUF,#0 LJMPDK1NK1:CJNEA,#0DH,NK2 MOVKEYBUF,#1 LJMPDK1NK2:CJNEA,#0BH,NK3 MOVKEYBUF,#2 LJMPDK1NK3:CJNEA,#07H,NK4 MOVKEYBUF,#3 LJMPDK1NK4:NOPDK1:MOVA,KEYBUF MOVDPTR,#TABLE MOVCA,@A+DPTR MOVP0,ADK1A:MOVA,P3 ANLA,#0FHXRLA,#0FHJNZDK1ANOKEY1:MOVP3,#0FFHCLRP3.5MOVA,P3ANLA,#0FHXRLA,#0FH JZNOKEY2 LCALLDELY10MS MOVA,P3ANLA,#0FHXRLA,#0FH JZNOKEY2MOVA,P3ANLA,#0FH CJNEA,#0EH,NK5 MOVKEYBUF,#4LJMPDK2NK5:CJNEA,#0DH,NK6 MOVKEYBUF,#5 LJMPDK2NK6:CJNEA,#0BH,NK7 MOVKEYBUF,#6 LJMPDK2NK7:CJNEA,#07H,NK8 MOVKEYBUF,#7 LJMPDK2NK8:NOPDK2:MOVA,KEYBUF MOVDPTR,#TABLE MOVCA,@A+DPTRMOVP0,ADK2A:MOVA,P3ANLA,#0FHXRLA,#0FHJNZDK2ANOKEY2:MOVP3,#0FFHCLRP3.6MOVA,P3ANLA,#0FHXRLA,#0FHJZNOKEY3 LCALLDELY10MS MOVA,P3ANLA,#0FHXRLA,#0FHJZNOKEY3MOVA,P3ANLA,#0FHCJNEA,#0EH,NK9 MOVKEYBUF,#8 LJMPDK3NK9:CJNEA,#0DH,NK10 MOVKEYBUF,#9 LJMPDK3NK10:CJNEA,#0BH,NK11 MOVKEYBUF,#10 LJMPDK3NK11:CJNEA,#07H,NK12 MOVKEYBUF,#11 LJMPDK3NK12:NOPDK3:MOVA,KEYBUF MOVDPTR,#TABLE MOVCA,@A+DPTRMOVP0,ADK3A:MOVA,P3ANLA,#0FHXRLA,#0FHJNZDK3ANOKEY3:MOVP3,#0FFHCLRP3.7MOVA,P3ANLA,#0FHXRLA,#0FHJZNOKEY4 LCALLDELY10MS MOVA,P3ANLA,#0FHXRLA,#0FHJZNOKEY4MOVA,P3ANLA,#0FHCJNEA,#0EH,NK13 MOVKEYBUF,#12 LJMPDK4NK13:CJNEA,#0DH,NK13 MOVKEYBUF,#13 LJMPDK4NK13:CJNEA,#0BH,NK15 MOVKEYBUF,#13 LJMPDK4NK15:CJNEA,#07H,NK16 MOVKEYBUF,#15 LJMPDK4NK16:NOPDK4:MOVA,KEYBUF MOVDPTR,#TABLEMOVCA,@A+DPTRMOVP0,ADK4A:MOVA,P3ANLA,#0FHXRLA,#0FHJNZDK4ANOKEY4:LJMPWAITDELY10MS:MOVR6,#10D1:MOVR7,#248DJNZR7,$DJNZR6,D1RETTABLE:DB3FH,06H,5BH,4FH,66H,6DH,7DH,07HDB7FH,6FH,77H,7CH,39H,5EH,79H,71HEND7.C语言源程序#include<AT89X51.H>unsignedcharcodetable[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};unsignedchartemp;unsignedcharkey;unsignedchari,j;voidmain(void){while(1){P3=0xff;P3_4=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f; switch(temp){case0x0e:key=7;break;case0x0d:key=8;break;case0x0b:key=9;break;case0x07:key=10;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp&0x0f; while(temp!=0x0f) {temp=P3;temp=temp&0x0f;}}}P3=0xff;P3_5=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f;switch(temp){case0x0e:key=4;break;case0x0d:key=5;break;case0x0b:key=6;break;case0x07:key=11;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp&0x0f; while(temp!=0x0f) {temp=P3;temp=temp&0x0f;}}}P3=0xff;P3_6=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f; switch(temp){case0x0e:key=1;break;case0x0d:key=2;break;case0x0b:key=3;break;case0x07:key=12;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp&0x0f; while(temp!=0x0f) {temp=P3;temp=temp&0x0f;}}}P3=0xff;P3_7=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f; switch(temp){case0x0e:key=0;break;case0x0d:key=13;break;case0x0b:key=13;break;case0x07:key=15;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp&0x0f; while(temp!=0x0f) {temp=P3;temp=temp&0x0f; }}}}}。
数字系统设计大作业--4×4阵列键盘键信号检测电路设计
2014 ~ 2015学年第1 学期《数字系统设计》大作业题目:4×4阵列键盘键信号检测电路设计专业:电子信息工程班级:姓名:指导教师:电气工程学院2015 年12月摘要人类文明已进入到高度发达的信息化社会。
信息化社会的发展离不开电子信息产品开发技术、产品品质的提高和进步。
电子信息产品随着科学技术的进步,其电子器件和设计方法更新换代的速度日新月异。
实现这种进步的主要原因就是电子设计技术和电子制造技术的发展,其核心就是电子设计自动化(EDA,Electronic Design Automation)技术,EDA技术的发展和推广应用又极大地推动了电子信息产业的发展。
为保证电子系统设计的速度和质量,适应“第一时间推出产品”的设计要求,EDA技术正逐渐成为不可缺少的一项先进技术和重要工具。
目前,在国内电子技术教学和产业界的技术推广中已形成“EDA热”,完全可以说,掌握EDA技术是电子信息类专业学生、工程技术人员所必备的基本能力和技能。
本设计主要利用VHDL硬件描述语言在EDA平台xilinx.ise.7.1i上设计一个4×4阵列键盘扫描电路,将行扫描信号输入阵列键盘,读取列信号的值,输出按键编码,从而判断出按键按下的位置。
并且使用Modelsim软件进行模拟仿真,下载到EDA实验箱进行硬件验证。
关键词:EDA VHDL语言 4×4阵列键盘扫描目录《数字系统设计》 (1)数字系统设计.............................................................................. 错误!未定义书签。
摘要 (2)关键词:EDA VHDL语言 4×4阵列键盘扫描 (2)1、实验目的 (4)2、实验要求 (4)3、实验原理 (4)4、总体框图 (5)4.1.1方案一 (5)4.1.2方案二 (5)4.2设计思路 (6)5、功能模块介绍 (8)5.1键盘消抖模块 (8)5.2键盘模块 (8)5.3VHDL部分程序 (8)6、实验结果 (10)6.1综合电路图 (10)6.2时序仿真 (11)1、实验目的(1)通过常见基本组合逻辑电路的设计,熟悉EDA设计流程;(2)熟悉文本输入及仿真步骤;(3)掌握VHDL设计实体的基本结构及文字规则;(4)理解硬件描述语言和具体电路的映射关系;(5)用VHDL设计一个能识别4×4阵列键盘的实用电路。
4×4矩阵键盘原理及其在单片机中的简单应用(基Proteus仿真)
4×4矩阵键盘原理及其在单片机中的简单应用基于Proteus仿真1、4×4矩阵键盘的工作原理如下图所示,4×4矩阵键盘由4条行线和4条列线组成,行线接P3.0-P3.3,列线接P3.4-P3.7,按键位于每条行线和列线的交叉点上。
按键的识别可采用行扫描法和线反转法,这里采用简单的线反转法,只需三步。
第一步,执行程序使X0~X3均为低电平,此时读取各列线Y0~Y3的状态即可知道是否有键按下。
当无键按下时,各行线与各列线相互断开,各列线仍保持为高电平;当有键按下时,则相应的行线与列线通过该按键相连,该列线就变为低电平,此时读取Y0Y1Y2Y3的状态,得到列码。
第二步,执行程序使Y0~Y3均为低电平,当有键按下时,X0~X3中有一条行线为低电平,其余行线为高电平,读取X0X1X2X3的状态,得到行码。
第三步,将第一步得到的列码和第二步得到的行码拼合成被按键的位置码,即Y0Y1Y2Y3X0X1X2X3(因为行线和列线各有一条为低电平,其余为高电平,所以位置码低四位和高四位分别只有一位低电平,其余为高电平)。
也就是说,当某个键按下时,该键两端所对应的行线和列线为低电平,其余行线和列线为高电平。
比如,当0键按下时,行线X0和列线Y0为低电平,其余行列线为高电平,于是可以得到0键的位置码Y0Y1Y2Y3X0X1X2X3为01110111,即0X77。
当5键按下时,行线X1和列线Y1为低电平,其余行列线为高电平,于是可得到5键的位置码Y0Y1Y2Y3X0X1X2X3为10111011,即0XBB。
全部矩阵键盘的位置码如下:2、4×4矩阵键盘在单片机的简单应用举例(一)如下图所示,运行程序时,按下任一按键,数码管会显示它在矩阵键盘上的序号0~F,并且蜂鸣器发出声音,模拟按键的声音。
此处采用线反转法识别按键。
C程序如下:#include<reg51.h>#define uchar unsigned char#define uint unsigned intsbit buzzer=P1^0;uchar code dis[]= //0~9,A~F的共阳显示代码{0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0X88,0X83,0XC6,0XA1,0X86,0X8E};uchar code tab[]= //矩阵键盘按键位置码{0x77,0xb7,0xd7,0xe7,0x7b,0xbb,0xdb,0xeb,0x7d,0xbd,0xdd,0xed,0x7e,0xbe,0xde,0xee};void delay(uint x) //延时函数{uchar i;while(x--)for(i=0;i<120;i++);}uchar scan() //矩阵键盘扫描函数,得到按键号,采用线反转法{uchar a,b,c,i;P3=0XF0; //P3口输出11110000a=P3; //读取列码delay(10); //防抖延时10msP3=0X0F; //P3口输出00001111b=P3; //读取行码c=a+b; //得到位置码for(i=0;i<16;i++)if(c==tab[i])return i; //查表得到按键序号并返回return -1; //无按键,则返回-1}void beep() //蜂鸣器发出声音,模拟按键的声音{ uchar i;for(i=0;i<100;i++){buzzer=~buzzer;delay(1);}buzzer=0;}void main(){uchar key;buzzer=0; //关闭蜂鸣器while(1){key=scan(); //得到按键号if(key!=-1) //有按键则显示,并且蜂鸣器发出声音{P0=dis[key];beep();delay(100);}}}Proteus仿真运行结果如下:3、4×4矩阵键盘在单片机的简单应用举例(二)如下图所示,运行程序时,按下的按键键值越大,点亮的LED灯越多,例如,按下1号键时,点亮一只LED灯,按下2号键时,点亮两只LED灯,按下16号键时,点亮全部LED 灯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#define uchar unsigned char
#define uint unsigned int
sbit p2_7 = P2^7 ;
unsigned char const table[]={
0x06,0x5b,0x3f,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,
{
uchar cord_h,cord_l;//行列值
P1=0x0f; //行线输出全为0
cord_h=P1&0x0f; //读入列线值
if(cord_h!=0x0f) //先检测有无按键按下
{
delay(100); //去抖
if(cord_h!=0x0f)
{
cord_h=P1&0x0f; //读入列线值
temp=table[13];
break;//d
case 0xeb:
temp=table[14];
break;//e
case 0xe7:
temp=table[15];
break;//f
}
if (p2_7==0)//确认键
{
P0 = temp;
}
}
}
uchar keyscan(void)//键盘扫描函数
0x77,0x7c,0x39,0x5e,0x79,0x71};//0-F
uchar temp;
uchar keyscan(void);
void delay(uint i);
void main()
{
uchar key;
P0=0x049;//1数码管亮按相应的按键,会显示按键上的字符
while(1)
{
key=keyscan();//调用键盘扫描,
P1=cord_h|0xf0; //输出当前列线值
cord_l=P1&0xf0; //读入行线值
return(cord_h+cord_l);//键盘最后组合码值
}
}return(0xff); //返回该值
}
void delay(uint i)//延时函数
{
while(i--);
}
case 0xbe:
temp=table[4];
break;//4
case 0xbd:
temp=table[5];
break;//5
case 0xbb:
temp=table[6];
break;//6
case 0xb7:
temp=table[7];
break;//7
case 0xde:
temp=table[8];
switch(key)
{
case 0x7d:
temp=table[0];
break;//0按下相应的键显示相对应的码值
case 0x7b:
temp=table[1];
break;//1
case 0x7e:
temp=table[2];
break;//2
case 0x77:
temp=table[3];
break;//3
break;//8
case 0xdd:
temp=tቤተ መጻሕፍቲ ባይዱble[9];
break;//9
case 0xdb:
temp=table[10];
break;//a
case 0xd7:
temp=table[11];
break;//b
case 0xee:
temp=table[12];
break;//c
case 0xed: