2011—2017年新课标全国卷1理科数学分类汇编——5.平面向量
2011年—2017年新课标全国1卷理科数学题型分类汇编(含答案)
2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编(含答案)说明:2017 年高考中,安徽、湖北、福建、湖南、山西、河北、江西、广东、河南等9 个省份选择使用新课标全国Ⅰ卷.2017 年,除了保留北京、天津、上海、江苏、浙江实行自主命题外(山东省语文、数学卷最后一年使用),大陆其他省区全部使用全国卷.研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.正所谓知己知彼,才能百战不殆,为了方便老师和同学们备考2018 年高考,本人认真研究近7 年新课标高考全国Ⅰ卷理科数学和高考数学考试说明,将2011 年—2017 年新课标全国Ⅰ卷进行了分类整理.2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编1.集合与常用逻辑用语 (2)2.函数与导数 (3)3.三角函数、解三角形 (7)4.平面向量 (10)5.数列 (11)6.不等式、推理与证明 (13)7.立体几何 (14)8.解析几何 (18)9.统计、概率分布列、计数原理 (23)10.复数及其运算 (30)11.程序框图 (31)12.坐标系与参数方程 (33)13.不等式选讲 (36)1.集合与常用逻辑用语一、选择题【2017,1】已知集合A ={x x <1},B ={x 3x <1},则()A.A B = {x | x <0}B.A B =R C.A B = {x | x >1}D.A B=∅【2016,1】设集合A = {x x2 - 4x + 3 <0},B = {x 2x - 3 > 0} ,则A B =()A.(-3,-3)2B.(-3,3)2C.(1,3)2D.(3,3)2【2015,3】设命题p :∃n∈N,n2 > 2n ,则⌝p 为()A.∀n ∈N ,n2 >2n B.∃n∈N,n2 ≤2n C.∀n ∈N ,n2 ≤2n D.∃n∈N ,n2 =2n【2014,1】已知集合A={ x | x2 - 2x - 3 ≥ 0 },B= {x -2 ≤x < 2},则A ⋂B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【2013,1】已知集合A={x|x2-2x>0},B={x|-x<,则( )A.A∩B=B.A∪B=R C.B ⊆A D.A ⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )| x∈A,y ∈A ,x -y ∈A },则B 中包含元素的个数为()A.3 B.6 C.8 D.102.函数与导数一、选择题【2017,5】函数f (x) 在(-∞, +∞) 单调递减,且为奇函数.若f (1) =-1 ,则满足-1 ≤f (x - 2) ≤1的x 的取值范围是()A.[-2, 2]B.[-1,1]C.[0, 4] D.[1, 3]【2017,11】设x, y, z 为正数,且2x = 3y = 5z ,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【2016,7】函数y =2x2 -e x 在[-2,2] 的图像大致为()A.B.C.D.【2016,8】若a >b >1,0 <c <1,则()A.a c <b c B.ab c <ba c C.a logb c <b logac D.logac <logbc【2015,12】设函数f (x) = e x (2x -1) -ax +a ,其中a <1,若存在唯一的整数x ,使得f (x ) < 0 ,00则a 的取值范围是()A.⎡-3,1⎫B.⎡-3,3 ⎫C.⎡3,3 ⎫D.⎡3,1⎫ ⎣⎢2e⎪ ⎢2e 4 ⎪ ⎢2e 4 ⎪ ⎢2e ⎪⎭⎣ ⎭ ⎣⎭⎣ ⎭【2014,3】设函数f (x) ,g(x) 的定义域都为R,且f (x) 是奇函数,g(x) 是偶函数,则下列结论正确的是()A .f (x) g(x) 是偶函数B .| f (x) | g(x) 是奇函数C .f (x) | g(x) |是奇函数D .| f (x) g(x) |是奇函数【2014,11】已知函数f (x) = ax3 - 3x2 +1 ,若f (x) 存在唯一的零点x ,且x >0,则a 的取值范围为0 0A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)⎧-x2 + 2x,x ≤ 0,【2013,11】已知函数f(x)=⎨⎩ln( x+1),x > 0.若|f(x)|≥ax,则a 的取值范围是( ) A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]【2012,10】已知函数f ( x) =1,则y =f (x) 的图像大致为()A.B.D.【2012,12】设点P 在曲线y =1e x 上,点Q 在曲线y = ln(2x) 上,则| PQ |的最小值为()2A.1- ln 2B- ln 2)C.1+ ln 2D+ ln 2)【2011,12】函数y =1x -1的图像与函数y =2s in πx(-2 ≤x ≤ 4) 的图像所有交点的横坐标之和等于()A.2 B.4 C.6 D.8【2011,2】下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y =x3B.y = x +1C.y =-x2 +1D.y = 2-x【2011,9】由曲线y =,直线y =x - 2 及y 轴所围成的图形的面积为()A.103二、填空题B.4 C.163D.6【2017,16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D、E、F 为圆O 上的点,△DBC,△ECA,△F AB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起△DBC,△ECA,△F AB,使得D,E,F 重合,得到三棱锥.当△ABC.的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【2015,13】若函数f(x)=x ln(x a=【2013,16】若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2 对称,则f(x)的最大值为.三、解答题【2017,12】已知函数f (x)=ae2 x +(a -2)e x -x .(1)讨论f ( x) 的单调性;(2)若f ( x) 有两个零点,求a 的取值范围.【2016,12】已知函数f (x) = (x -2)e x +a(x -1)2 有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x1 , x2 是f (x) 的两个零点,证明:x1 +x2 < 2 .【2015,12】已知函数f ( x) =x3 +ax +1,g(x) =-l n x .4(Ⅰ)当a 为何值时,x 轴为曲线y =f (x) 的切线;(Ⅱ)用min{m, n} 表示m, n 中的最小值,设函数h(x) = min{ f (x), g(x)} (x > 0 ),讨论h(x) 零点的个数.【2014,21】设函数f ( x0 =ae x ln x +be x-1,曲线y =f (x) 在点(1,f (1) 处的切线为y =e(x -1) + 2 .(Ⅰ) x求a,b;(Ⅱ)证明:f (x) >1.【2013,21】设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P 处有相同的切线y=4x+2.(1)求a,b,c,d 的值;(2)若x≥-2 时,f(x)≤kg(x),求k 的取值范围.【2012,21】已知函数f (x) 满足f (x) =f '(1)e x-1 -f (0)x+1x2 .2(1)求f (x) 的解析式及单调区间;(2)若f (x) ≥1x2 +ax +b ,求(a +1)b 的最大值.2【2011,21】已知函数f (x) =a ln x+b,曲线y =f (x) 在点(1, f (1)) 处的切线方程为x +2y- 3 = 0 .x +1x(Ⅰ)求a 、b 的值;(Ⅱ)如果当x > 0 ,且x ≠1时,f (x) > ln x+k,求k 的取值范围.x -1 x3.三角函数、解三角形一、选择题2π 【2017,9】已知曲线 C 1:y =cos x ,C 2:y =sin (2x +3),则下面结正确的是( )πA .把 C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 6得到曲线C 2 个单位长度,πB .把C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 12得到曲线C 2个单位长度,1 C .把 C 1 上各点的横坐标缩短到原来的 2得到曲线C 2π 倍,纵坐标不变,再把得到的曲线向右平移 6个单位长度,1D .把 C 1 上各点的横坐标缩短到原来的 2π倍,纵坐标不变,再把得到的曲线向左平移 12个单位长度,得到曲线 C 2【2016,12】已知函数 f ( x ) = sin(ωx + ϕ )(ω > 0, ϕ≤ π , x = - π为 f ( x ) 的零点, x = π 为244y = f (x ) 图像的对称轴,且 f ( x ) 在 ( π 18 , 5π单调,则ω 的最大值为()36A .11B .9C .7D .5【2015,8】函数 f ( x ) = cos(ω x + ϕ) 的部分图象如图所示,则 f ( x ) 的单调递减区间为()A . (k π - 1 , k π + 3), k ∈ ZB . (2k π - 1 , 2k π + 3), k ∈ Z4 4 4 4 C . (k - 1 , k + 3k ∈ ZD . (2k - 1 , 2k + 3), k ∈ Z4 4【2015,2】 sin 20 cos10- cos160 sin10 4 4= ( )A .BC . - 12D . 12【2014,6】如图,圆 O 的半径为 1,A 是圆上的定点,P 是圆上的动点,角 x 的始边为射线OA ,终边为射线 OP ,过点 P 作直线OA 的垂线,垂足为 M ,将点 M 到直线OP 的距离表示为 x 的函数 f ( x ) ,则y= f ( x ) 在[0, π ]上的图像大致为()【2014,8】设α ∈ (0, π ) , β ∈ (0, π) ,且 tan α =1 + sin β,则()2A . 3α - β = π2 2B . 2α - β = π2cos βC . 3α + β = π 2D . 2α + β = π2【2012,9】已知ω > 0 ,函数 f ( x ) = sin(ω x + π ) 在( π,π )上单调递减,则ω 的取值范围是()4 2A .[ 1 , 5 ]B .[ 1 , 3 ]C .(0, 1 ]D .(0,2]2 4 2 4 2【2011,5】已知角θ 的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直线 y = 2x 上,则 cos 2θ =A . - 45B . - 35C . 35D . 45【2011,11】设函数 f ( x ) = sin(ω x + ϕ ) + cos(ω x + ϕ)(ω > 0, ϕ且 f (-x ) = f (x ) ,则( )< π 的最小正周期为π , 2A . f ( x ) 在 ⎛ 0, π ⎫单调递减 B . f ( x ) 在 ⎛ π ,3π ⎫单调递减2 ⎪ 4 4 ⎪⎝ ⎭⎝ ⎭C . f ( x ) 在 ⎛ 0, π ⎫单调递增 D . f ( x ) 在 ⎛ π ,3π ⎫单调递增2 ⎪ 4 4 ⎝ ⎭⎝ ⎭二、填空题【2015,16】在平面四边形 ABCD 中,∠A = ∠B = ∠C = 75 ,BC = 2 ,则 AB 的取值范围是.【2014,16】已知 a , b , c 分别为 ∆ABC 的三个内角 A , B , C 的对边, a =2,且 (2 + b )(sin A - sin B ) = (c - b ) sin C ,则 ∆ABC 面积的最大值为.【2013,15】设当 x =θ 时,函数 f (x )=sin x -2cos x 取得最大值,则 cos θ=.【2011,16】在 ABC 中, B = 60 , AC =AB + 2BC 的最大值为 .三、解答题【2017,17】△ABC 的内角A ,B ,C 的对边分别为 a ,b ,c ,已知△ABC 的面积为 a 23sin A(1)求 sin B sin C ;(2)若 6cos B cos C =1,a =3,求△ABC 的周长【2016,17】∆ABC 的内角A, B,C的对边分别为a,b, c ,已知2c os C(a cos B +b cos A) =c .(Ⅰ)求C ;(Ⅱ)若c = 7 ,∆ABC 的面积为3 3,求∆ABC 的周长.2【2013,17】如图,在△ABC 中,∠ABC=90°,AB=BC=1,P 为△ABC 内一点,∠BPC=90°.(1)若PB=1,求P A;(2)若∠APB=150°,求tan∠PBA.2【2012,17】已知a ,b ,c 分别为△ABC 三个内角A,B,C 的对边,a cos C +s in C -b -c = 0 .(1)求A;(2)若a = 2 ,△ABC 的面积为 b ,c .⎭⎝ ⎦4.平面向量一、选择题【2015,7】设 D 为 ∆ABC 所在平面内一点 BC = 3CD ,则()A . AD = - 1 AB + 4AC3 3 C . AD =4 AB + 1AC3 3B . AD = 1 AB - 4AC3 3 D . AD =4 AB - 1AC3 3【2011,10】已知 a 与 b 均为单位向量,其夹角为θ ,有下列四个命题P : a + b > 1 ⇔ θ ∈ ⎡0, 2π ⎫P : a + b > 1 ⇔ θ ∈ ⎛ 2π ,π ⎤1 ⎢⎣ 3 ⎪⎭ 2 3⎥ ⎝ ⎦⎡ π ⎫⎛ π ⎤P 3 : a - b > 1 ⇔ θ ∈ ⎢⎣0, 3 ⎪P 4 : a - b > 1 ⇔ θ ∈ 3 ,π ⎥其中的真命题是()A . P 1 , P 4B . P 1 , P 3C . P 2 , P 3D . P 2 , P 4二、填空题【2017,13】已知向量 a ,b 的夹角为 60°,|a |=2, | b |=1,则| a +2 b |=.【2016,13】设向量 a = (m ,1) ,b = (1,2) ,且| a + b |2= | a |2+ | b |2,则 m =.【2014,15】已知 A ,B ,C 是圆 O 上的三点,若 AO = 1( A B + AC ) ,则 AB 与 AC 的夹角为 . 2【2013,13】已知两个单位向量 a ,b 的夹角为 60°,c =t a +(1-t )b .若 b ·c =0,则 t =.【2012,13】已知向量 a , b 夹角为 45°,且| a |= 1,| 2a - b |= 10 ,则| b |=.n 2 15.数列一、选择题【2017,4】记S n 为等差数列{a n } 的前 n 项和.若 a 4 + a 5 = 24 , S 6 = 48 ,则{a n } 的公差为( )A .1B .2C .4D .8【2017,12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们 推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2, 1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22,依此类推.求满足如下条件的最小整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110【2016,3】已知等差数列{a n } 前 9 项的和为 27 , a 10 = 8 ,则 a 100 = ( )A .100B . 99C .98D .97 【2013,7】设等差数列{a n }的前 n 项和为 S n ,若 S m -1=-2,S m =0,S m +1=3,则 m =( ).A .3B .4C .5D .6 【2013,12】设△A n B n C n 的三边长分别为 a n ,b n ,c n ,△A n B n C n 的面积为 S n ,n =1,2,3,….c + a b + a 若 b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1= nn,c n +1=2nn,则( ).2A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列2 1【2013,14】若数列{a n }的前 n 项和 S n =a n 3+ ,则{a n }的通项公式是 a n = .3 【2012,5】已知{ a n }为等比数列, a4 + a 7 = 2 , a 5a 6 = -8 ,则 a 1 + a 10 = ()A .7B .5C .-5D .-7二、填空题【2016,15】设等比数列{a n } 满足 a 1 + a 3 = 10 , a 2 + a 4 = 5 ,则 a 1a 2a n 的最大值为.【2012,16】数列{ a n }满足 a n +1 + (-1) a n = 2n -1 ,则{ a n }的前 60 项和为 .三、解答题【2015,17】 S n 为数列{a n } 的前 n 项和.已知 a n >0, a+ 2a n = 4S n + 3 . n(Ⅰ)求{a n } 的通项公式;(Ⅱ)设 b n =,求数列{b n } 的前n 项和. a n a n +12【2014,17】已知数列{ a n }的前 n 项和为 S n , a 1 =1, a n ≠ 0 , a n a n +1 = λS n -1,其中 λ 为常数.(Ⅰ)证明: a n +2 - a n = λ ;(Ⅱ)是否存在 λ ,使得{ a n }为等差数列?并说明理由.【2011,17】等比数列{a n } 的各项均为正数,且 2a 1 + 3a 2 = 1, a 3 = 9a 2 a 6 .(Ⅰ)求数列{a n } 的通项公式;(Ⅱ)设 ⎧ 1 ⎫ b n = log 3 a 1 + log 3 a 2 + ...... + log 3 a n , 求数列 ⎨ ⎬ 的前n 项和. ⎩ b n ⎭⎩⎨⎩⎪ ⎨ x ≥ 06.不等式、推理与证明一、选择题⎧ x + y ≥ 1 【2014,9)】不等式组 ⎨⎩ x - 2 y ≤ 4的解集记为D .有下面四个命题: p 1 : ∀(x , y ) ∈ D , x + 2 y ≥ -2 ;p 2 : ∃(x , y ) ∈ D , x + 2 y ≥ 2 ; P 3 : ∀(x , y ) ∈ D , x + 2 y ≤ 3 ; p 4 : ∃(x , y ) ∈ D , x + 2 y ≤ -1 .其中真命题是()A . p 2 , P 3B . p 1 , p 4C . p 1 , p 2D . p 1 , P 3二、填空题⎧ x + 2 y ≤ 1⎪【2017,14】设 x ,y 满足约束条件 ⎨2x + y ≥ -1,则z = 3x - 2 y 的最小值为 .⎪ x - y ≤ 0 【2016,16】某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg , 乙材料 1kg ,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时.生产一件 产品 A 的利润为 2100 元,生产一件产品 B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则 在不超过 600 个工时的条件下,生产产品 A 、产品 B 的利润之和的最大值为 元.⎧ x -1 ≥ 0【2015,15】若 x ,y 满足约束条件 ⎪x - y ≤ 0 ⎪ x + y - 4 ≤ 0,则 y 的最大值为 .x【2014,14】甲、乙、丙三位同学被问到是否去过 A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过 B 城市; 乙说:我没去过 C 城市; 丙说:我们三人去过同一个城市.由此可判断乙去过的城市为.⎧ x - y ≥ -1⎪x + y ≤ 3【2012,14】设 x , y 满足约束条件 ⎪ ⎪⎩ y ≥ 0,则 z = x - 2 y 的取值范围为 .⎧3 ≤ 2x + y ≤ 9,【2011,13】若变量 x , y 满足约束条件 ⎨⎩6 ≤ x - y ≤ 9,则 z = x + 2 y 的最小值为 .7.立体几何一、选择题【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形,该多面体的各个面中有若 干个是梯形,这些梯形的面积之和为( ) A .10B .12C .14D .16【2016,11】平面α 过正方体 ABCD - A 1 B 1C 1 D 1 的顶点 A ,α // 平面CB 1 D 1 ,α 平面 ABCD= m ,α 平面 ABB 1 A 1 = n ,则 m , n 所成角的正弦值为3A .B .2 3 1 C .D .2233【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直 的半径.若该几何体的体积是28π,则它的表面积是( )3A .17πB .18πC . 20πD . 28π【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下 问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思 为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的 弧长为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为 3,估算出堆放的米约有( )A .14 斛B .22 斛C .36 斛D .66 斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为 r )组成一个几何体,该几何体三视图中的正视 图和俯视图如图所示. 若该几何体的表面积为16 + 20π ,则 r =()A .1B .2C .4D .8【2015 年,11 题】【2014 年,12 题】 【2013 年,6 题】【2014,12】如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图,则该多面体的个 条棱中,最长的棱的长度为()A . 6 2B . 4 2C .6D .4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高 8 cm ,将一个球放在容器口,再向 容器内注水,当球面恰好接触水面时测得水深为 6 cm ,如果不计容器的厚度,则球的体积为( )A .500π cm 3B .866π cm 3C .1372π cm 3D .2048π cm 33333【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2013 年,8】【2012 年,7】【2011 年,6】【2012,7】如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为 ( )A .6B .9C .12D .15 【2012,11】已知三棱锥 S -ABC 的所有顶点都在球 O 的球面上,△ABC 是边长为 1 的正三角形,SC 为球O 的直径,且 SC =2,则此棱锥的体积为( )A6B C .3D .2【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()二、填空题【2011,15】已知矩形 ABCD 的顶点都在半径为 4 的球 O 的球面上,且 AB = 6, BC =则棱锥O - ABCD 的体积为.三、解答题【2017,18】如图,在四棱锥 P-ABCD 中,AB//CD ,且 ∠BAP = ∠CDP = 90(1)证明:平面P AB ⊥平面 P AD ;(2)若P A =PD =AB =DC , ∠APD = 90 ,求二面角 A -PB -C 的余弦值.o 【2016,18】如图,在以 A , B , C , D , E , F 为顶点的五面体中,面 ABEF 为正方形,AF = 2FD , ∠AFD = 90︒ ,C且二面角 D - AF - E 与二面角 C - BE - F 都是 60︒ .DEB(Ⅰ)证明:平面 ABEF ⊥ 平面 EFDC ; (Ⅱ)求二面角 E - BC - A 的余弦值.【2015,18】如图,四边形 ABCD 为菱形,∠ABC = 120A,E , F是平面 ABCD 同一侧的两点,BE ⊥平面 ABCD ,DF ⊥平面ABCD , BE = 2DF , AE ⊥ EC .(I )证明:平面 AEC ⊥平面 AFC ;(II )求直线 AE 与直线 CF 所成角的余弦值.【2014,19】如图三棱柱 ABC - A 1B 1C 1 中,侧面 BB 1C 1C 为菱形, AB ⊥ B 1C .(Ⅰ) 证明: AC = AB 1 ;(Ⅱ)若 AC ⊥ AB 1 , ∠CBB 1 = 60 ,AB=BC ,求二面角A - A 1B 1 -C 1 的余弦值.【2013,18】如图,三棱柱ABC-A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C 所成角的正弦值.1AA1,D 是棱AA1 的中点,DC1⊥BD.【2012,19】如图,直三棱柱ABC-A1B1C1 中,AC=BC=2(1)证明:DC1⊥BC;(2)求二面角A1-BD-C1 的大小.B1AB【2011,18】如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:P A⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C 的余弦值.C2 2 2 2 2 22 28.解析几何一、选择题【2017,10】已知F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线 l 1,l 2,直线 l 1 与 C 交于 A 、B 两点,直线 l 2 与C 交于D 、E 两点,则|AB |+|DE |的最小值为()A .16B .14C .12D .10【2016,10】以抛物线 C 的顶点为圆心的圆交 C 于 A , B 两点,交 C 的准线于 D , E 两点,已知 AB = 4 2 ,DE = 2 5 ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【2016,5】已知方程x 2 m 2+ ny 2- 3m 2 - n= 1 表示双曲线,且该双曲线两焦点间的距离为 4 ,则 n 的 取值范围是( )A . (-1,3)B . (-1, 3)C . (0,3)D . (0, 3)x 2 【2015,5】已知 M ( x 0 , y 0 ) 是双曲线 C : 2- y 2= 1上的一点,F 1 , F 2 是 C 的两个焦点,若 MF 1 ⋅ MF 2 < 0 ,则 y 0 的取值范围是()A . (- , )B . (-, )C . (-,D . (-,3 36 63 33 3【2014,4】已知 F 是双曲线 C :x 2 - my 2 = 3m (m > 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为A B .3C .D . 3m【2014,10】已知抛物线 C : y 2= 8x 的焦点为 F ,准线为 l , P 是l 上一点,Q 是直线 PF 与C 的一个 交点,若 FP = 4FQ ,则| QF | =()A . 72B . 5222C .3D .2x y 【2013,4】已知双曲线 C : - a 2 b 2 =1 (a >0,b >0)的离心率为 ,则 C 的渐近线方程为( ).2A .y = ± 1 x 4B .y = ± 1 x 3 2 2C .y = ± 1 x 2D .y =±x x y 【2013,10】已知椭圆E : + a 2 b 2=1 (a >b >0)的右焦点为 F (3,0),过点 F 的直线交 E 于 A ,B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为()A . x + y =1B . x + y =1C . x + y =1D . x + y =145 3636 2727 1818 9x 2 y 2 3a【2012,4】设 F 1 、 F 2 是椭圆 E : a 2 + b 2 ( a > b > 0 )的左、右焦点,P 为直线 x = 上一点,2∆F 2 PF 1 是底角为 30°的等腰三角形,则 E 的离心率为()A . 12B . 23C . 34D . 45【2012,8】等轴双曲线 C 的中心在原点,焦点在 x 轴上,C 与抛物线 y 2= 16x 的准线交于 A ,B 两点,| AB |=,则 C 的实轴长为( )A B .C .4 D .8【2011,7】设直线 L 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,L 与 C 交于 A ,B 两点, AB 为C 的实轴长的 2 倍,则 C 的离心率为( )A B C .2 D .3二、填空题【2017,15】已知双曲线 C : x 2y 2-= 1 (a >0,b >0)的右顶点为 A ,以 A 为圆心,b 为半径作圆 A ,圆 A a 2 b 2与双曲线 C 的一条渐近线交于 M 、N 两点.若∠MAN =60°,则 C 的离心率为 .x 2 【2015,14】一个圆经过椭圆 y 2+ = 1的三个顶点,且圆心在 x 轴的正半轴上,则该圆的标准方程为 .16 4【2011,14】在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F 1 , F 2 在 x 轴上,离心率为 .过2F 1 的直线 L 交 C 于 A , B 两点,且 ABF 2 的周长为 16,那么 C 的方程为.三、解答题【2017,20】已知椭圆 C : x 2 y 2 + =1(a >b >0),四点 P (1,1),P (0,1),P (–1 ),P (1, ) a 2 b 2 1 2 3 42 2中恰有三点在椭圆C 上.(1)求 C 的方程;(2)设直线 l 不经过 P 2 点且与 C 相交于 A ,B 两点.若直线 P 2A 与直线 P 2B 的斜率 的和为–1,证明:l 过定点.【2016,20】设圆x2 +y2 + 2x -15 = 0 的圆心为A ,直线l 过点B(1,0) 且与x 轴不重合,l 交圆A 于C, D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明EA +EB 为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C1 ,直线l 交C1 于M , N 两点,过B 且与l 垂直的直线与圆A 交于P,Q两点,求四边形MPNQ 面积的取值范围.x2【2015,20】在直角坐标系xOy 中,曲线C :y =与直线l :y =kx +a (a > 0 )交于M , N 两点.4(Ⅰ)当k = 0 时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.x 2 y 2 【2014,20】已知点 A (0,-2),椭圆 E : + a 2 b 2直线 AF 的斜率为, O 为坐标原点.3= 1(a > b > 0) 的离心率为, F 是椭圆的焦点,(Ⅰ)求 E 的方程;(Ⅱ)设过点 A 的直线l 与 E 相交于 P , Q 两点,当 ∆OPQ 的面积最大时,求l 的方程.【2013,20】已知圆 M :(x +1)2+y 2=1,圆 N :(x -1)2+y 2=9,动圆 P 与圆 M 外切并且与圆 N 内切,圆 心 P 的轨迹为曲线 C .(1)求 C 的方程;(2)l 是与圆 P ,圆 M 都相切的一条直线,l 与曲线 C 交于 A ,B 两点,当圆 P 的半径 最长时,求|AB |.【2012,20】设抛物线C:x2 =2py(p > 0 )的焦点为F,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B,D 两点.(1)若∠BFD=90°,△ABD 的面积为4 2 ,求p 的值及圆F 的方程;(2)若A,B,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【2011,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3 上,M 点满足MB / /OA ,MA⋅AB =MB ⋅BA ,M 点的轨迹为曲线C.(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.59.统计、概率分布列、计数原理一、选择题【2017,2】如图,正方形 ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部 分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()1 π 1 π A .B .C .D .4824【2017,6】(1 + 1+ x )6 展开式中 x 2 的系数为( ) x 2A .15B .20C .30D .35【2016,4】某公司的班车在 7 : 30 ,8 : 00 ,8 : 30 发车,小明在 7 : 50 至8 : 30 之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过 10 分钟的概率是( )A .1 B .1C .2 D .3 3234【2015,10】 (x 2 + x + y )5 的展开式中, x 5 y 2 的系数为()A .10B .20C .30D .60【2015,4】投篮测试中,每人投 3 次,至少投中 2 次才能通过测试.已知某同学每次投篮投中的概率为 0.6, 且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 【2014,5】4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活 动的概率( )A . 18 B . 38 C . 58 D . 78【2013,3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事 先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在 下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样 【2013,9】设 m 为正整数, ( x + y )2m 展开式的二项式系数的最大值为 a , (x + y )2m +1展开式的二项式系 数的最大值为 b .若 13a =7b ,则 m =( )A .5B .6C .7D .8 【2012,2】将 2 名教师,4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由 1 名教师和 2 名学生组成,不同的安排方案共有( )A .12 种B .10 种C .9 种D .8 种【2011,8】 ⎛ x + a ⎫ ⎛2x - 1 ⎫的展开式中各项系数的和为 2,则该展开式中常数项为( ) x ⎪ x ⎪ ⎝ ⎭ ⎝⎭ A . -40B . -20C .20D .40【2011,4】有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A . 13二、填空题B . 12C . 23D . 34【2016,14】 (2x +x )5 的展开式中, x 3 的系数是 .(用数字填写答案)【2014,13】 (x - y )(x + y )8 的展开式中 x 2 y 7 的系数为 .(用数字填写答案)【2012,15】某一部件由三个电子元件按下图方式连接而成,元件 1 或元件 2 正常工作,且元件 3 正常工作,则部件正常工作.设三个 电子元件的使用寿命(单位:小时)均服从正态分布 N (1000,502),且各个元件元件1元件2元件3 能否正常工作相互独立,那么该部件的使用寿命超过 1000 小时的概率为 . 三、解答题【2017,19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16 个零件, 并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从 正态分布N (μ,σ2). (1)假设生产状态正常,记X 表示一天内抽取的 16 个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P (X ≥1)及 X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的 生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16 个零件的尺寸:1 16经计算得 x = ∑ x i = 9.97 ,s ==≈ 0.212 ,其中 x i 为抽取 16 i =1的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为 μ 的估计值 μˆ ,用样本标准差 s 作为 σ 的估计值σˆ ,利用估计值判断是否需对当 天的生产过程进行检查?剔除(μˆ - 3σˆ , μˆ + 3σˆ ) 之外的数据,用剩下的数据估计 μ 和 σ(精确到 0.01). 附:若随机变量Z 服从正态分布 N (μ,σ2),则 P (μ–3σ<Z <μ+3σ)=0.9974,0.997416≈0.9592≈ 0.09 .【2016,19】某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(Ⅰ)求X 的分布列;(Ⅱ)若要求P( X ≤n) ≥ 0.5 ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n = 19 与n = 20 之中选其一,应选用哪个?8【2015,19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售 量 y (单位:t )和年利润 z (单位:千元)的影响,对近 8 年的年宣传费 x i 和年销售量 y i (i = 1, 2, , 8 )数据作了初步处理,得到下面的散点图及一些统计量的值.1 8表中 w i =, w =∑ wii =1(Ⅰ)根据散点图判断, y = a + bx 与 y = c + y 关于年宣传费 x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及数据,建立 y 关于 x 的回归方程;(III )已知这种产品的年利润 z 与 x , y 的关系为 z = 0.2 y - x ,根据(Ⅱ)的结果回答下列问题:(i )年宣传费 x =49 时,年销售量及年利润的预报值是多少?(ii )年宣传费 x 为何值时,年利润的预报值最大?附:对于一组数据 (u 1 , v 1 ), (u 2 , v 2 ), , (u n , v n ) ,其回归直线 v = α + β u 的斜率和截距的最小二乘估计n∑ (ui- u )(v i - v )分别为 β = i =1n,α = v - β u .∑i =1(u i- u )2【2014,18)】从某企业的某种产品中抽取500 件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500 件产品质量指标值的样本平均数x 和样本方差s 2 (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布N(μ,δ2 ) ,其中μ近似为样本平均数x ,δ2 近似为样本方差s 2 .(i)利用该正态分布,求P(187.8 <Z < 212.2) ;(ii)某用户从该企业购买了100 件这种产品,记X 表示这100 件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX .12.2.若Z ~N(μ,δ2 ) ,则P(μ-δ<Z <μ+δ) =0.6826,P(μ- 2δ<Z <μ+ 2δ) =0.9544.【2013,19】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4 件作检验,这4 件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4 件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1 件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,且各件产品是否为优质2品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100 元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X 的分布列及数学期望.【2012,18】某花店每天以每枝5 元的价格从农场购进若干枝玫瑰花,然后以每枝10 元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16 枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n N )的函数解析式;(2)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:以100 天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16 枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;②若花店计划一天购进16 枝或17 枝玫瑰花,你认为应购进16 枝还是17 枝?请说明理由.⎨ ⎩ 【2011,19】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或 等于 102 的产品为优质品,现用两种新配方(分别称为 A 配方和 B 配方)做试验,各生产了 100 件这种产 品,并测量了每件产品的质量指标值,得到下面试验结果: A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用 A 配方,B 配方生产的产品的优质品率;⎧-2, t < 94(Ⅱ)已知用 B 配方生成的一件产品的利润 y(单位:元)与其质量指标值 t 的关系式为y = ⎪2, 94 ≤ t < 102 ⎪4, t ≥ 102从用 B 配方生产的产品中任取一件,其利润记为 X (单位:元),求 X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)10.复数及其运算一、选择题【2017,3】设有下面四个命题1p 1 : 若复数 z 满足 ∈ R ,则 z ∈ R ; p 2 : 若复数 z 满足 z 2 ∈ R ,则z ∈ R ; z p 3 : 若复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ; p 4 : 若复数 z ∈ R ,则 z ∈R . 其中的真命题为( )A . p 1 , p 3B . p 1 , p 4C . p 2 , p 3D . p 2 , p 4【2016,2】设 (1 + i )x = 1 + yi ,其中 x , y 是实数,则 x + yi = ( )A .1B . 2C . 3D . 2【2015,1】设复数 z 满足1 + z= i ,则| z | =( ) 1 - zA .1B C .D .2(1 + i )3【2014,2】(1 - i )2=( )A .1 + iB .1 - iC . -1+ iD .-1- i 【2013,2】若复数 z 满足(3-4i)z =|4+3i|,则 z 的虚部为().A .-4B . - 45C .4D . 45【2012,3】下面是关于复数 z = 22 -1 + i的四个命题:p 1 :| z |= 2 ; p 2 : z = 2i ; p 3 : z 的共轭复数为1 + i ; p 4 : z 的虚部为 -1.其中的真命题为( )A . p 2 , p 3B . p 1 , p 2C . p 2 , p 4D . p 3 , p 4【2011,1】复数2 + i的共轭复数是( ) 1 - 2iA . - 3 i5B . 3 iC . -i5D .i11.程序框图一、选择题【2017,8】右面程序框图是为了求出满足3n - 2n >1000 的最小偶数n,那么在两个空白框中,可以分别填入A.A+1 B.A>1000 和n=n+2C.A ≤1000 和n=n+1 D.A ≤1000 和n=n+2【2017,8】【2016,9】【2015,9】【2016,9】执行右面的程序框图,如果输入的x = 0 ,y =1,n =1,则输出x, y 的值满足()A.y =2x B.y =3x C.y =4x D.y =5x【2015,9】执行右面的程序框图,如果输入的t =0.01,则输出的n =()A.5 B.6 C.7 D.8【2014,7】执行下图的程序框图,若输入的a,b, k 分别为1,2,3,则输出的M =()A .203B .165C .72D .158【2013,5】执行下面的程序框图,如果输入的t∈[-1,3],则输出的s 属于( ).A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]【2012,6】如果执行右边和程序框图,输入正整数N (N ≥ 2 )和实数a1 ,a2 ,…,a N ,输出A,B,则()A.A +B 为a1 ,a2 ,…,a N 的和B.A +B为a ,a ,…,a 的算术平均数2 1 2 NC.A 和B 分别是a1 ,a2 ,…,a N 中最大的数和最小的数D.A 和B 分别是a1 ,a2 ,…,a N 中最小的数和最大的数【2013,5】【2012,6】【2011,3】【2011,3】执行右面的程序框图,如果输入的N 是6,那么输出的p 是()A.120 B.720 C.1440 D.5040⎩12.坐标系与参数方程一、解答题⎧ x = 3cos θ ,【2017,22】(选修 4-4,坐标系与参数方程)在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎨(θ ⎩ y = sin θ ,⎧ x = a + 4t ,为参数),直线 l 的参数方程为 ⎨ y = 1 - t , ( t 为参数).(1)若 a = -1 ,求 C 与 l 的交点坐标;(2)若 C 上的点到 l 的距离的最大值为a .⎧x = a cos t ,【2016,23】(选修 4-4:坐标系与参数方程)在直角坐标系 xOy 中,曲线 C 1 的参数方程为 ⎨⎩ y = 1 + a sin t ,(t 为参数, a > 0) .在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C 2 : ρ = 4 c os θ .(Ⅰ)说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程;(Ⅱ)直线 C 3 的极坐标方程为θ = α 0 ,其中α 0 满足 tan α 0 = 2 ,若曲线 C 1 与 C 2 的公共点都在C 3 上, 求 a .。
备战2017高考文数分项版(新课标1专版)专题05 平面向量 Word版含解析
一.基础题组1. 【2011全国1,文3】【答案】B2. 【2008全国1,文5】在中,,.若点满足,则ABC △AB c = AC b = D 2BD DC ==( )ADA .B .C .D .2133b c +5233c b -2133b c -1233b c +【答案】A3. 【2007全国1,文3】已知向量,,则与()(5,6)a =- (6,5)b =a b A.垂直 B.不垂直也不平行C.平行且同向D.平行且反向【答案】:A【解析】:∵,∴.(5)6650a b ∙=-⨯+⨯=a b ⊥ 4.【2013课标全国Ⅰ,文13】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =______.【答案】:2【解析】:∵b ·c =0,|a |=|b |=1,〈a ,b 〉=60°,∴a ·b =.111122⨯⨯=∴b ·c =[t a +(1-t )b ]·b =0,即t a ·b +(1-t )b 2=0.∴+1-t =0.∴t =2.12t 5.【2015高考新课标1,文2】已知点,向量,则向量(0,1),(3,2)A B (4,3)AC =--( )BC =(A ) (B )(C )(D )(7,4)--(7,4)(1,4)-(1,4)【答案】A【解析】∵=(3,1),∴=(-7,-4),故选A.AB OB OA =- BC = AC AB -【考点定位】向量运算6.【2016新课标1文数】设向量a =(x ,x +1),b =(1,2),且a b ,则x = .⊥【答案】23-【考点】向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题的形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若,则()()1122,,,x y x y ==a b .1122x y x y ⋅=+a b 二.能力题组1.【2014全国1,文6】设分别为的三边的中点,则F E D ,,ABC ∆AB CA BC ,,=+FC EBA. D. AD 【答案】A【解析】根据平面向量基本定理和向量的加减运算可得:在中,BEF ∆,同理,则12EB EF FB EF AB =+=+ 12FC FE EC FE AC =+=+.11111()()()()22222EB FC EF AB FE AC AB AC AB AC AD+=+++=+=+=2. 【2009全国卷Ⅰ,文8】设非零向量a 、b 、c 满足|a |=|b |=|c |,a+b =c ,则〈a,b 〉=()A.150°B.120°C.60°D.30°【答案】:B 【解析】:如图所示.∵|a |=|b |=|c |,∴△OAB 是正三角形.∴〈a,b 〉=120°.3. 【2011新课标,文13】已知与为两个不共线的单位向量,k 为实数,若向量与a b a b +向量垂直,则 .ka b -k =【答案】1三.拔高题组1.【2012全国1,文9】△ABC 中,AB 边的高为CD .若=a ,=b ,a ·b =0,|a |=1,|b |=2,则=( )CB CA ADA .B .C .D .1133-a b 2233-a b 3355-a b 4455-a b 【答案】D 【解析】∵a ·b =0,∴a ⊥b .又∵|a |=1,|b |=2,∴||AB =∴||CD ==∴||AD ==∴.4444()5555AD AB AB ===-=- a b a b 2. 【2010全国1,文11】已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么·的最小值为( )PAPBA.-4 B .-3C .-4+ D.-3+【答案】:D 3.【2005全国1,文11】点O 是三角形ABC 所在平面内的一点,满足,则点O 是的OA OB OB OC OC OA ⋅=⋅=⋅ABC ∆(A )三个内角的角平分线的交点(B )三条边的垂直平分线的交点(C )三条中线的交点(D )三条高的交点【答案】B 【解析】。
2017高考数学试题分类汇编 平面向量 解析版
2017高考分类汇编 平面向量解析版1、(2017北京文理)设m ,n 为非零向量,则“存在负数,使得”是“”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【答案】A【解析】若,使,则两向量反向,夹角是,那么;若,那么两向量的夹角为,并不一定反向,即不一定存在负数,使得,所以是充分而不必要条件,故选A.2、(2017江苏卷).如图,在同一个平面内,向量,,的模分别为1,1,与的夹角为,且=7,与的夹角为45°.若,则 ▲ .【答案】3【解析】由可得,根据向量的分解,易得,即,即,即得,所以.3、(2017山东理)(12)已知12,e e与的夹角为60︒,则实数的值是.λλ=m n 0<⋅m n 0λ∃<λ=m n ,m n 180︒cos1800⋅=︒=-<m n m n m n 0⋅<m n (]90,180︒︒λλ=m n OA OB OCOA OC αtan αOB OC OC mOA nOB =+(,)m n ∈R m n +=tan 7α=sin α=cos 10α=cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩0210n m =⎪-=⎪⎩510570n m n m +=⎧⎨-=⎩57,44m n ==3m n +=12-e 12λ+e e λ4、(2017山东文)(11)已知向量a =(2,6),b =(1,)λ- ,若∥a b ,则λ= . 【答案】3- 【解析】由∥a b 可得162 3.λλ-⨯=⇒=-5、(2017天津)(13)在中,,,.若,,且,则的值为___________.【答案】【解析】由题可得,则.6、(2017浙江)10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记,,,则ABC △60A =︒∠3AB =2AC =2BD DC = ()AE AC AB λλ∈=-R 4AD AE ⋅=-λ3111232cos 603,33AB AC AD AB AC ⋅=⨯⨯︒==+12()33AD AE AB AC ⋅=+2123()34934333311AC AB λλλλ-=⨯+⨯-⨯-⨯=-⇒= 1·I OAOB =2·I OB OC =3·I OC OD=(第10题图)A .B .C .D .【答案】C【解析】因为,,,所以,故选C .7、(2017全国1卷理)已知向量a ,b的夹角为60︒,2a = ,1b = ,则2a b += ________.【答案】【解析】()22222(2)22cos602a b a b a a b b+=+=+⋅⋅⋅︒+221222222=+⨯⨯⨯+444=++12=∴2a b + 8、(2017全国2卷理)【题目12】(2017·新课标全国Ⅱ卷理12)12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接PC ∴∴∴最小值为解法二:均值法∵2PC PB PO += ,∴ ()2PA PC PB PO PA ⋅+=⋅123I I I <<132I I I <<312I I I <<213I I I <<90AOB COD ∠=∠> OA OC <OB OD <0OB OC OA OB OC OD ⋅>>⋅>⋅由上图可知:OA PA PO =- ;两边平方可得()()2232PA PO PA PO =+-⋅∵()()222PA POPA PO +≥-⋅ ,∴ 322PO PA ⋅≥-∴ ()322PA PC PB PO PA ⋅+=⋅≥- ,∴最小值为32-解法三:配凑法 ∵2PC PB PO +=∴ ()()()()()222232222PO PA PO PAPO PA AOPA PC PB PO PA +--+-⋅+=⋅==≥-∴最小值为32-9、(2017全国卷2文)4.设非零向量a ,b 满足+=-b b a a 则A. a ⊥bB. =b aC. a ∥bD. >b a解析:ba b a b a b a b a b a ⊥⇒=⋅⇔-=+⇔-=+022选A10、(2017全国3卷理)12.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为() A .3 B. CD .2 【答案】A【解析】由题意,画出右图.设BD 与C 切于点E ,连接CE . 以A 为原点,AD 为x 轴正半轴, AB 为y 轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =.∴BD ∵BD 切C 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.12||||22||||||BCD BC CD S EC BD BD ⋅⋅⋅====△()A O Dxy BP gCE即C. ∵P 在C 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=.设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:0021x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩ 而00(,)AP x y = ,(0,1)AB = ,(2,0)AD =. ∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=∴0112x μθ==,01y λθ==. 两式相加得:112)2sin()3λμθθθϕθϕ+=++=+=++≤(其中sin ϕ=,cos ϕ=当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3. 11、(2017全国卷3文)13.已知向量(2,3),(3,)a b m =-=,且a ⊥b ,则m =. 【答案】2【解析】由题意可得:2330,2m m -⨯+=∴=.。
2017年高考数学试题分项版—平面向量(解析版)
2017年高考数学试题分项版—平面向量(解析版)一、选择题1.(2017·全国Ⅱ文,4)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A .a ⊥b B .|a |=|b | C .a ∥b D .|a |>|b |1.【答案】A【解析】方法一 ∵|a +b |=|a -b |, ∴|a +b |2=|a -b |2.∴a 2+b 2+2a·b =a 2+b 2-2a·b . ∴a·b =0.∴a ⊥b . 故选A.方法二 利用向量加法的平行四边形法则. 在▱ABCD 中,设AB →=a ,AD →=b , 由|a +b |=|a -b |知|AC →|=|DB →|,从而四边形ABCD 为矩形,即AB ⊥AD ,故a ⊥b . 故选A.2.(2017·北京文,7)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m·n <0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 2.【答案】A【解析】方法一 由题意知|m |≠0,|n |≠0. 设m 与n 的夹角为θ. 若存在负数λ,使得m =λn , 则m 与n 反向共线,θ=180°, ∴m ·n =|m ||n |cos θ=-|m ||n |<0.当90°<θ<180°时,m ·n <0,此时不存在负数λ,使得m =λn . 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.方法二 ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π,当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.3.(2017·全国Ⅱ理,12)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( ) A .-2 B .-32C .-43D .-13.【答案】B【解析】方法一 (解析法)建立坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3), B (-1,0),C (1,0).设P 点的坐标为(x ,y ), 则P A →=(-x ,3-y ),PB →=(-1-x ,-y ), PC →=(1-x ,-y ),∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2[x 2+⎝⎛⎭⎫y -322-34]≥2×⎝⎛⎭⎫-34=-32. 当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32. 故选B.方法二 (几何法)如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|,问题转化为求|P A →||PD →|的最大值. 又|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤⎝⎛⎭⎪⎫|P A →|+|PD →|22=⎝⎛⎭⎫322=34, ∴[P A →·(PB →+PC →)]min =(2P A →·PD →)min =-2×34=-32.故选B.4.(2017·全国Ⅲ理,12)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( ) A .3 B .2 2C. 5D .24.【答案】A【解析】建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD . ∵CD =1,BC =2, ∴BD =12+22=5, EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0). ∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ), ∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A.5.(2017·北京理,6)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5.【答案】A【解析】方法一 由题意知|m |≠0,|n |≠0. 设m 与n 的夹角为θ.若存在负数λ,使得m =λn ,则m 与n 反向共线,θ=180°, ∴m ·n =|m ||n |cos θ=-|m ||n |<0.当90°<θ<180°时,m ·n <0,此时不存在负数λ,使得m =λn . 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.方法二 ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件, 故选A. 二、填空题1.(2017·全国Ⅰ文,13)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________. 1.【答案】7【解析】∵a =(-1,2),b =(m,1), ∴a +b =(-1+m,2+1)=(m -1,3). 又a +b 与a 垂直,∴(a +b )·a =0, 即(m -1)×(-1)+3×2=0, 解得m =7.2.(2017·全国Ⅲ文,13)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. 2.【答案】2【解析】∵a =(-2,3),b =(3,m ),且a ⊥b , ∴a·b =0,即-2×3+3m =0,解得m =2.3.(2017·天津文,14)在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________. 3.【答案】311【解析】由题意,知|AB →|=3,|AC →|=2, AB →·AC →=3×2×cos 60°=3,AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →, ∴AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →) =λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311. 4.(2017·山东文,11)已知向量a =(2,6),b =(-1,λ),若a ∥b ,则λ=________. 4.【答案】-3【解析】∵a ∥b ,∴2λ-6×(-1)=0,解得λ=-3.5.(2017·浙江,15)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________. 5.【答案】4 2 5【解析】设a ,b 的夹角为θ, ∵|a |=1,|b |=2,∴|a +b |+|a -b |=(a +b )2+(a -b )2=5+4cos θ+5-4cos θ. 令y =5+4cos θ+5-4cos θ. 则y 2=10+225-16cos 2θ. ∵θ∈[0,π],∴cos 2θ∈[0,1], ∴y 2∈[16,20],∴y ∈[4,25],即|a +b |+|a -b |∈[4,25].6.(2017·浙江,10)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 36.【答案】C【解析】∵I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →, 又OB →与CA →所成角为钝角, ∴I 1-I 2<0,即I 1<I 2.∵I 1-I 3=OA →·OB →-OC →·OD →=|OA →||OB →|cos ∠AOB -|OC →||OD →|cos ∠COD =cos ∠AOB (|OA →||OB →|-|OC →||OD →|), 又∠AOB 为钝角,OA <OC ,OB <OD , ∴I 1-I 3>0,即I 1>I 3. ∴I 3<I 1<I 2, 故选C.7.(2017·江苏,12)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),则m +n=________.7.【答案】3【解析】方法一 因为tan α=7, 所以cos α=210,sin α=7210. 过点C 作CD ∥OB 交OA 的延长线于点D ,则OC →=OD →+DC →,∠OCD =45°. 又因为OC →=mOA →+nOB →, 所以OD →=mOA →,DC →=nOB →, 所以|OD →|=m ,|DC →|=n .在△COD 中,由正弦定理得|DC →|sin α=|OD →|sin ∠OCD =|OC →|sin ∠ODC ,因为sin ∠ODC =sin(180°-α-∠OCD )=sin(α+∠OCD )=45,即n 7210=m 22=245, 所以n =74,m =54,所以m +n =3.方法二 由tan α=7可得cos α=152,sin α=752,则152=OA →·OC →|OA →||OC →|=m +nOA →·OB →2,由cos ∠BOC =22可得22=OB →·OC →|OB →||OC →|=mOA →·OB →+n 2,cos ∠AOB =cos(α+45°)=cos αcos 45°-sin αsin 45° =152×22-752×22=-35,则OA →·OB →=-35,则m -35n =15,-35m +n =1,则25m +25n =65,则m +n =3. 8.(2017·全国Ⅰ理,13)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 8.【答案】2 3 【解析】方法一 |a +2b |=(a +2b )2 =a 2+4a ·b +4b 2=22+4×2×1×cos 60°+4×12 =12=2 3. 方法二(数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=||.又∠AOB =60°,所以|a +2b |=2 3.9.(2017·天津理,13)在△ABC 中,∠A =60°,AB =3,AC =2.若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________. 9.【答案】311【解析】由题意知|AB →|=3,|AC →|=2, AB →·AC →=3×2×cos 60°=3,AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,∴AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →) =λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311. 10.(2017·山东理,12)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 10.【答案】33【解析】由题意知|e 1|=|e 2|=1,e 1·e 2=0,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2. 同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12,解得λ=33.。
2011—2019年高考真题全国卷1理科数学分类汇编——5.平面向量
2011—2019年高考真题全国卷1理科数学分类汇编——5.平面向量一、选择题【2019,7】已知非零向量,a b r r 满足2a b =r r ,且()a b b -⊥r r r ,则a r 与b r 的夹角为( )A.6π B.3π C.23π D.56π 【2018,6】在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r ( )A .3144AB AC -u u u r u u u r B .1344AB AC -u u u r u u u r C .3144AB AC +u u u r u u u rD .1344AB AC +u u u r u u u r 【2015,7】设D 为ABC ∆错误!未找到引用源。
所在平面内一点3BC CD =u u u r u u u r ,则( )A .1433AD AB AC =-+u u u r u u u r u u u r B .1433AD AB AC =-u u u r u u u r u u u r C .4133AD AB AC =+u u u r u u u r u u u r D .4133AD AB AC =-u u u r u u u r u u u r 【2011,10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦ 其中的真命题是( )A .14,P PB .13,P PC .23,P PD .24,P P二、填空题【2017,13】已知向量a ,b 的夹角为60°,|a |=2, | b |=1,则| a +2 b |= .【2016,13】设向量a )1,(m =,b )2,1(=,且|a +b ||2=a ||2+b 2|,则=m .【2014,15】已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+u u u r u u u r u u u r ,则AB u u u r 与AC uuu r 的夹角为 . 【2013,13】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.【2012,13】已知向量a r ,b r 夹角为45°,且||1a =r ,|2|10a b -=r r ||b =r _________.5.平面向量(解析版)一、选择题【2019,7】已知非零向量,a b r r 满足2a b =r r ,且()a b b -⊥r r r ,则a r 与b r 的夹角为( )A.6π B.3π C.23π D.56π 【解析】设a r 与b r 的夹角为θ,∵()a b b -⊥r r r ∴2()cos a b b a b b θ-⋅=-r r r r r r =0∴1cos =2θ ∴=3πθ.选B【2018,6】在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r ( )A .3144AB AC -uu u r uu u r B .1344AB AC -u u u r u u u r C .3144AB AC +u u u r u u u r D .1344AB AC +u u u r u u u r【解析】选A【2015,7】设D 为ABC ∆错误!未找到引用源。
2011-2017年新课标全国卷2理科数学试题分类汇编——4.平面向量
2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编4.平面向量一、选择题(2017·12)已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r 的最小值是( )A.2-B.32-C. 43- D.1- (2016·3)已知向量(1)(32),,=,m =-a b ,且()⊥a +b b ,则m =( ) A .-8 B .-6C .6D .8 (2014·3)设向量a ,b r r 满足10|a b |+=r r ,6|a b |-=r r ,则a b ⋅r r =( )A .1B .2C .3D .5二、填空题(2015·13)设向量a ,b 不平行,向量λ+a b 与2+a b 平行,则实数λ= ____________.(2013·13)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=u u u r u u u r _______. (2012·13)已知向量a ,b 夹角为45º,且1=||a ,102=-||b a ,则=||b .2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编4.平面向量(逐题解析版)一、选择题(2017·12)【解析】解法一:建系法,连接OP ,()0,3OA =u u u r ,()1,0OB =-u u u r ,()1,0OC =u u u r . 2PC PB PO +=u u u r u u u r u u u r ,∴()(),,3PO PA x y x y ⋅=--⋅--u u u r u u u r ,∴22223334PO PA x y y x y ⎛⎫⋅=+-=+-- ⎪ ⎪⎝⎭u u u r u u u r ∴34PO PA ⋅≥-u u u r u u u r ,∴ ()322PA PC PB PO PA ⋅+=⋅≥-u u u r u u u r u u u r u u u r u u u r ,∴最小值为32- 解法二:均值法:∵2PC PB PO +=u u u r u u u r u u u r ,∴ ()2PA PC PB PO PA ⋅+=⋅u u u r u u u r u u u r u u u r u u u r 由上图可知:OA PA PO =-u u u r u u u r u u u r ;两边平方可得()()2232PA PO PA PO =+-⋅u u u r u u u r u u u r u u u r∵ ()()222PA PO PA PO +≥-⋅u u u r u u u r u u u r u u u r ,∴ 322PO PA ⋅≥-u u u r u u u r ,∴ ()322PA PC PB PO PA ⋅+=⋅≥-u u u r u u u r u u u r u u u r u u u r ,∴最小值为32-. (2016·3)D 【解析】(42)a b m +=-r r ,,∵()a b b +⊥r r r ,∴()122(2)0a b b m +⋅=--=r r r ,解得8m =,选D .(2014·3)A 解析:2222|||210,26,a b a b a b a b a b a b +=-=∴++⋅=+-⋅=r r r r r r r r r r r r Q 两式相减得:1a b ⋅=r r .二、填空题(2015·13)12解析:因为向量a b λ+r r 与2a b +r r 平行,所以(2)a b k a b λ+=+r r r r ,则12k kλ=⎧⎨=⎩,所以12λ=. (2013·13)2解析:以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则点A 的坐标为(0,0),点B 的坐标为(2,0),点D 的坐标为(0,2),点E 的坐标为(1,2),则AE uu u r =(1,2),BD uuu r =(-2, 2),所以=2AE BD ⋅uu u r uu u r .(2012·13)由已知得222222|2|(2)444||4||||cos45||a b a b a a b b a a b b -=-=-⨯+=-⋅+o r r r r r r r r r r r r24|||10b b =-+=r ,解得||b =r。
平面向量高考题选及答案知识讲解
形, P 为平
面 ABC 内一点,则 PA (PB PC) 的最小是 )A. 2 B. 3 C. 4
2
3
D. 1
7.【2017 全国高考新课标 III 卷理数·12T】在矩形 ABCD 中,AB=1,AD=2,
动点 P 在以点 C 为圆心且与 BD 相切的圆上。若 AP = AB + AD ,则 + 的
11.【2017 全国高考浙江卷理数·13T】在平面直角坐标系 xOy 中,A(-
12,0),B(0,6),点 P 在圆 O:x2+y2=50 上,若 PA · PB 20,则点 P 的横
坐标的取值范围是 12【2017 全国高考浙江卷理数·16T】(本小题满分 14 分)
已知向量 a=(cosx,sinx),
,
.(1)若 a∥b,求 x 的值;
(2)记
,求 的最大值和最小值以及对应的 x 的值
13、(2016 年北京高考)设 a , b 是向量,则“| a || b | ”是“| a b || a b | ”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
平面向量高考题选及 答案
精品资料
《平面向量》
1.【2017 全国高考新课标 I 卷理数·13T】已知向量 a,b 的夹角为 60°,
|a|=2,|b|=1,则| a +2b |=
.
2.(2016 全国 1.理数.13)设向量 a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则
m=
(C) 3 a2 Error! Digit expected. 4
24.【2015 高考陕西,理 7】对任意向量 a,b ,下列关系式中不恒成立的是
2013---2017近五年全国1卷高考理科数学分类汇编---平面向量
平面向量高考真题专题1.(2017全国1.理数.13)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= _____________ .2.(2016全国1.理数.13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = .3.(2015全国1.理数.7)设D 为ABC 所在平面内一点,3BC CD =,则(A ) 1433AD AB AC =-+ (B ) 1433AD AB AC =- (C ) 4133AD AB AC =+ (D ) 4133AD AB AC =-4.(2014全国1.理数.15)已知,,A B C 是圆O 上的三点,若()12AO AB AC =+,则AB 与AC 的夹角为 .5.(2013全国1.理数. 13)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t) b ,若b c •=0,则t =_____.高考平面向量专题答案(2017全国1.理数.13)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= _____________ .【考点】:向量的模长。
【思路】:牢记求解模长问题利用平方的思路,直接将所求的内容进行平方即可。
【解析】:222124444421122a b a b a b +=++⋅=++⨯⨯⨯=,故而模长为223a b +=。
(2016全国1.理数.13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = .【答案】2-【解析】试题分析:由222||||||+=+a b a b ,得⊥a b ,所以1120m ⨯+⨯=,解得2m =-.考点:向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .(2015全国1.理数.7)设D 为ABC 所在平面内一点,3BC CD =,则(A ) 1433AD AB AC =-+ (B ) 1433AD AB AC =- (C ) 4133AD AB AC =+ (D ) 4133AD AB AC =- 【解析】试题分析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A.考点:平面向量运算(2014全国1.理数.15)已知,,A B C 是圆O 上的三点,若()12AO AB AC =+,则AB 与AC 的夹角为 .【解析】:∵1()2AO AB AC =+,∴O 为线段BC 中点,故BC 为圆O 的直径, ∴090BAC ∠=,∴AB 与AC 的夹角为090(2013全国1.理数. 13)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t) b ,若b c •=0,则t =_____.【命题意图】本题主要考查平面向量的数量积,是容易题.【解析】•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2.。
2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—5
2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—5.平面向量2011年—2018年新课标全国卷文科数学分类汇编5.平面向量一、选择题2018·新课标Ⅰ,XXX在△ABC中,AD为BC边上的中线,E为AD的中点,则XXX。
答案:D2018·新课标Ⅱ,XXX已知向量a,b满足|a|=1,a·b=−1,则a·(2a−b)=2−3a·b=5.答案:C2017·新课标Ⅱ,XXX设非零向量a,b,满足a+b=a−b,则a⊥b。
答案:A2016·新课标Ⅲ,文3已知向量BA=(−1,−2),BC=(1,2),则∠ABC=90°。
答案:B2015·新课标Ⅰ,文2已知点A(0,1),B(3,2),向量AC=(−4,−3),则向量BC=(7,4)。
答案:B2015·新课标Ⅱ,XXX向量a=(1,−1),b=(−1,2),则(2a+b)·a=1.答案:B2014·新课标Ⅰ,文6设D,E,F分别为ΔABC的三边BC,CA,AB的中点,则EB+FC=AB。
答案:D2014·新课标Ⅱ,XXX设向量a,b满足|a+b|=10,|a−b|=6,则a·b=19.答案:D二、填空题2018·新课标Ⅲ,文13已知向量a=(1,2),b=(2,−2),c=(1,λ)。
若c∥(2a+b),则λ=−1.答案:−12017·新课标Ⅰ,文13已知向量a=(−1,2),b=(m,1)。
若向量a+b与a垂直,则m=5.答案:52017·新课标Ⅲ,文13已知向量a=(−2,3),b=(3,m),且a⊥b,则m=−6/5.答案:−6/52016·新课标Ⅰ,文13设向量a=(x,x+1),b=(1,2),且a⊥b,则x=−3/5.答案:−3/52016·新课标Ⅱ,文13已知向量a=(m,4),b=(3,−2),且a∥b,则m=6.答案:62013·新课标Ⅰ,文13已知两个单位向量a,b的夹角为60°,c=ta+(1−t)b。
(含详解)2011-2017新课标1卷理科数学分类汇编(立体几何)(K12教育文档)
(含详解)2011-2017新课标1卷理科数学分类汇编(立体几何)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((含详解)2011-2017新课标1卷理科数学分类汇编(立体几何)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(含详解)2011-2017新课标1卷理科数学分类汇编(立体几何)(word版可编辑修改)的全部内容。
立体几何20177.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形。
该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.1616.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F 为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.18.(12分)如图,在四棱锥P—ABCD中,AB//CD,且90BAP CDP∠=∠=。
(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,90APD∠=,求二面角A-PB-C的余弦值.2016(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是(A)17π(B)18π(C)20π(D)28π(11)平面a过正方体ABCD—A1B1C1D1的顶点A,a//平面CB1D1,a⋂平面ABCD=m,a⋂平面ABB1A1=n,则m、n所成角的正弦值为(A)32(B)22(C)33(D)13(18)(本题满分为12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,90AFD∠=,且二面角D-AF—E与二面角C-BE-F都是60.(I)证明:平面ABEF⊥EFDC;(II)求二面角E—BC—A的余弦值.20156、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?"其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1。
2017年新课标全国理数高考试题汇编:平面向量—学生专用(可编辑修改word版)
2 52 ⋅ + BD AP AB AD AE AC AB ( AD AE 2017 年新课标全国理数高考试题汇编:平面向量1.【2017 全国高考新课标 II 卷理数·12T】已知△ABC 是边长为 2 的等边三角形, P 为平面 ABC 内一点,则 PA (PB PC ) 的最小是( )A. -2B. - 32C.- 43D. -12.【2017 全国高考新课标 III 卷理数·12T】在矩形 ABCD 中,AB =1,AD =2,动点 P 在以点 C 为圆心且与 BD相切的圆上。
若 = λ + μ ,则λ + μ 的最大值为A .3B .2C .D .23.【2017 全国高考新课标 I 卷理数·13T 】已知向量 a , b 的夹角为 60°, |a |=2, |b |=1, 则| a +2b|=.4.【2017 全国高考天津卷理数·13T】在△ABC 中, ∠A = 60︒ , AB = 3 , AC = 2 .若 = 2DC ,= - ∈ R ) ,且 ⋅ =-4 ,则的值为 .5.【2017 全国高考浙江卷理数·15T】已知向量a ,b 满足 a = 1, b = 2, 则 a + b + a - b 的最小值是 ,最大值是.6.【2017 全国高考江苏卷理数·12T】如图,在同一个平面内,向量O A ,O B ,O C ,的模分别为 1,1,,O A 与O C 的夹角为,且 tan =7,O B 与O C 的夹角为 45°。
若O C =m O A +n O B (m ,n ∈R ),则 m+n=7. 【2017 全国高考浙江卷理数·13T】在平面直角坐标系 xOy 中,A (-12,0),B (0,6),点 P 在圆 O :x 2+y 2=50上,若P A·P B 20,则点P 的横坐标的取值范围是8.【2017 全国高考浙江卷理数·16T】(本小题满分14 分)已知向量a=(cos x,sin x),b = (3, ‒ 3),x∈ [0,π]. (1)若a∥b,求x 的值;(2)记f(x) = a∙ b,求f(x)的最大值和最小值以及对应的x 的值。
2017年新课标全国理数高考试题汇编:平面向量—老师专用(最新整理)
2017年新课标全国理数高考试题汇编:平面向量1.【2017全国高考新课标II 卷理数·12T 】已知是边长为2的等边三角形,为平面内一点,ABC △P ABC 则的最小是( )()PA PB PC ⋅+ A .B .C . D .2-32-43-1-【答案】B解等问题,然后利用函数、不等式、方程的有关知识来解决.2.【2017全国高考新课标III 卷理数·12T 】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD相切的圆上。
若= +,则+的最大值为AP λAB μAD λμA .3B .CD .2【答案】A试题解析:如图所示,建立平面直角坐标系设 ,()()()()()0,1,0,0,2,0,2,1,,A B C D P x y 根据等面积公式可得圆的半径,即圆C 的方程是 ,r =()22425x y -+=【考点】 平面向量的坐标运算;平面向量基本定理【名师点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算。
(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决。
3.【2017全国高考新课标I 卷理数·13T 】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= .【答案】试题解析:,所以222|2|||44||4421cos 60412+=+⋅+=+⨯⨯⨯+= a b a a b b.|2|+==a b 秒杀解析:利用如下图形,可以判断出的模长是以2为边长,一夹角为60°的菱形的对角线的2+a b长度,则为【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.(4.【2017全国高考天津卷理数·13T 】在中,,,.若,ABC △60A =︒∠3AB =2AC =2BD DC = ,且,则的值为___________.()AE AC AB λλ∈=-R 4AD AE ⋅=- λ【答案】 3115.【2017全国高考浙江卷理数·15T 】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是_______.【答案】4,【解析】试题解析:设向量,a b 的夹角为θ,由余弦定理有:a b -== ,a b +== ,则:a b a b ++-=+ ,令y =,则[]21016,20y =+,据此可得:())max min 4a b a b b a b ++-==++-== ,即a b a b ++- 的最小值是4,最大值是.【考点】平面向量模长运算【名师点睛】本题通过设向量,a b 的夹角为θ,结合模长公式, 可得a b a b ++-= ,再利用三角函数的有界性求出最大、最小值,属中档题,对学生的转化能力和最值处理能力有一定的要求.6.【2017全国高考江苏卷理数·12T 】如图,在同一个平面内,向量,,,的模分别为1,1OA OB O C与的夹角为,且tan =7,与的夹角为45°。
2017年高考数学(理科)-平面向量-专题练习-答案
山东省2017年高考数学(理科)专题练习平面向量 答 案【真题回访】回访一 平面向量的线性运算 1.A 2.12回访二 平面向量的数量积 3.D 4.16热点题型1 平面向量的运算 【例1】 (1)B (2)B【变式训练一】 (1)32(2)-2热点题型2 三角与向量的综合问题 【例2】 (1)85(2)122⎤-⎢⎥⎣⎦【变式训练二】 (1)6π(2)6x π=,()g x 的最大值为32. 专题限时集训(三) 平面向量 【A 组 高考达标】一、选择题 1.B 2.A 3.D 4.C 5.C 二、填空题 6.65 7.712 8.16三、解答题9.(1)∵23m n ==,()1,2AB =u u u r ,()2,1AC =u u u r ,∴()()()221,22,12,233OP =+=u u u r ,∴OP ==u u u r(2)∵()()()1,22,12,2OP m n m n m n =+=++u u u r,∴2,2,x m n y m n =+⎧⎨=+⎩两式相减,得m n y x -=-.令y x t -=,由图知,当直线y x t =+ 过点()2,3B 时,t 取得最大值1,故m n -的最大值为1.10.(1)由2BA BC =u u u r u u u rg 得cacosB 2=. 因为1cosB 3=,所以6ac =. 余弦定理,得2222accosB a c b +=+. 又3b =,所以2292213a c +⨯=+=. 解226,13,ac a c =⎧⎨+=⎩得2a =,=3c 或3a =,2c =.因为ac >,所以3a =,2c =.(2)在ABC △中,sinB 3===,由正弦定理,得2sin C sin B 339c b ==⨯=. 因为a b c =>,所以C为锐角,因此7cos C 9===.于是1723cos cosBcosC sinBs ()inC 393927B C -+=⨯+⨯==. 【B 组 名校冲刺】 一、选择题 1.B 2.A 3.B 4.A 二、填空题 5.2 6.-3 三、解答题7.(1)因为向量22sin ,03a x πω⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭,()()2cos ,30b x ωω=>,所以函数())2214sin cos 4sin cos cos cos 3222sin cos 1cos 2sin 2x 2cos 26a b x x x x x x x x x x f x πωωωωωωπωωωωω⎛⎛⎫⎛⎫==+=-+=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎛⎫=+-=+ ⎪⎝⎭g g g 由题意可知f (x )的最小正周期为πT =, 所以2π=π2ω,即1ω=. (2)已知()2co =s 26f x x π⎛⎫+ ⎪⎝⎭[]0,2x π∈时,2,4666x ππππ⎡⎤+∈+⎢⎥⎣⎦, 故[π2π6],2πx +∈或[π23π],4π6x +∈时,函数()f x 单调递增, 所以函数f (x )的单调递增区间为5π11π,1212⎡⎤⎢⎥⎣⎦和17π23π,1212⎡⎤⎢⎥⎣⎦.8.设BC u u u r ,CA u u u r ,AB u u u r依次为a ,b ,c ,则6a b c ++=,2b ac =.在ABC △中,22222212cosB 222a c b a c ac ac a ac ac c ac +-+-==-≥=,故有03B π≤<,又622a c bb +-≤==,从而02b <≤.(1)22111πsin sin 2sin 2223S ac B b B ==≤=g g 当且仅当a c =,且π3B =,即ABC△为等边三角形时面积最大,即max S .(2)()()()22222222263cos 327.222a c acb b b ac b BA BC ac B b +----+-=====-++u u u r u u u r g ∵02b <≤,∴821BA <≤u u u rg , 即BA BC u u u r u u u rg 的取值范围是[)2,18.山东省2017年高考数学(理科)专题练习平面向量 解 析【真题回访】回访一 平面向量的线性运算1.A [∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3 AD →,∴AD →=-13AB →+43AC →.]2.12[∵λa +b 与a +2b 平行,∴λa +b =t (a +2b ), 即λa +b =ta +2tb ,∴⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎨⎧λ=12,t =12.]回访二 平面向量的数量积3.D[由已知条件得BD →·CD →=BD →·BA →=3a ·a cos 30°=32a 2,故选D.]4.16[已知A =π6,由题意得|AB →||AC →|cos π6=tan π6,|AB →||AC →|=23,所以△ABC 的面积S =12|AB →||AC →|sin π6=12×23×12=16.] 热点题型1 平面向量的运算 【例1】(1)B [(1)法一:建立平面直角坐标系如图所示,设正方形的边长为2,则A (0,0),B (2,0),C (2,2),M (2,1),D (0,2),所以AC →=(2,2),AM →=(2,1),BD →=(-2,2).由AC →=λAM →+μBD →,得(2,2)=λ(2,1)+μ(-2,2),即(2,2)=(2λ-2μ,λ+2μ),所以⎩⎪⎨⎪⎧2λ-2μ=2,λ+2μ=2,解得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B.法二:因为AC →=λAM →+μBD →=λ(AB →+BM → )+μ(BA →+AD → )=λ⎝⎛⎭⎪⎫AB →+12AD →+μ(-AB →+AD → )=(λ-μ)AB →+⎝⎛⎭⎫12λ+μAD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B. ](2)B [如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →,所以AF →=12AB →+34AC →.又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B.]【变式训练一】(1)32 [如图所示,可知OA ⊥AP ,OB ⊥BP ,OP =1+3=2,又OA =OB =1,可以求得AP =BP = 3.∠APB =60°,故P A →·PB →=3×3×cos 60°=32.](2)-2 [∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得mn =-2.]热点题型2 三角与向量的综合问题 【例2】[解] (1)∵a ∥b ,∴34cos x +sin x =0,∴tan x =-34,4分∴cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85.(2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎫2x +π4+32, 由正弦定理得a sin A =bsin B ,可得sin A =22.9分 ∵b >a , ∴A =π4,10分y =f (x )+4cos ⎝⎛⎭⎫2A +π6=2sin ⎝⎛⎭⎫2x +π4-12.11分 ∵x ∈⎣⎡⎦⎤0,π3, ∴2x +π4∈⎣⎡⎦⎤π4,11π12, ∴32-1≤y ≤2-12, 即y 的取值范围是⎣⎡⎦⎤32-1,2-12.12分【变式训练一】[解] (1)|a |2=(sin x )2+(3sin x )2=4sin 2x ,|b |2=(sin x )2+(cos x )2=1. 由|a |=|b |,得4sin 2x =1,2分 又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,3分 所以x =π6,.4分(2)f (x )=a·b =sin 2x +3sin x ·cos x 5分 =32sin2x +12-12cos 2x 7分 =sin ⎝⎛⎭⎫2x -π6+12.8分 将f (x )图象向左平移π6个单位得到函数g (x )=sin ⎝⎛⎭⎫2x +π6+12.10分 因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6, 从而当2x +π6=π2即x =π6时,sin ⎝⎛⎭⎫2x +π6取最大值1,11分 所以x =π6时,g (x )的最大值为32.12分专题限时集训(三) 平面向量 【A 组 高考达标】 一、选择题1.B [因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B.]2.A [由题意可得OB →的横坐标x =2cos(60°+45°)=2⎝⎛⎭⎫24-64=1-32,纵坐标y =2sin(60°+45°)=2⎝⎛⎭⎫64+24=1+32,则OB →=⎝ ⎛⎭⎪⎫1-32,1+32,故选A.] 3.D [∵向量a =(3,1),b =(x ,-3),且a ⊥b ,∴3x -3=0,∴x =3, ∴b =(3,-3),a -b =(0,4),设向量b 与a -b 的夹角为θ, 则cos θ=b ·(a -b )|b |·|(a -b )|=-1223×4=-32,∴θ=150°.]4.C [∵M 是BC 边的中点, ∴AM →=12(AB →+AC →).∵O 是△ABC 的外接圆的圆心,∴AO →·AB →=|AB →||AO →|cos ∠BAO =12|AB →|2=12×(23)2=6.同理可得AO →·AC →=12|AC →|2=12×(22)2=4,∴AM →·AO →=12(AB →+AC →)·AO →=12AB →·AO →+12AC →·AO →=12×(6+4)=5.] 5.C [由AO →=12(AB →+AC →)可知O 是BC 的中点,即BC 为外接圆的直径,所以|OA →|=|OB →|=|OC →|.又因为|AO →|=|AC →|=1,故△OAC 为等边三角形,即∠AOC =60°,由圆周角定理可知∠ABC =30°,且|AB →|=3,所以BA →在BC →方向上的投影为|BA →|·cos ∠ABC =3×cos 30°=32,故选C.] 二、填空题6.65 [设e 1,e 2为水平方向(向右)与竖直方向(向上)的单位向量,则向量c =e 1-2e 2,a =2e 1+e 2,b =-2e 1-2e 2,由c 与xa +yb 共线,得c =λ(x a +y b ),∴e 1-2e 2=2λ(x -y )e 1+λ(x -2y )e 2,∴⎩⎪⎨⎪⎧λ(2x -2y )=1,λ(x -2y )=-2,∴⎩⎨⎧x =3λ,y =52λ,则x y 的值为65.] 7.712 [∵AP →⊥BC →,∴AP →·BC →=0, ∴(λAB →+AC →)·BC →=0,即(λAB →+AC →)·(AC →-AB →)=λAB →·AC →-λAB →2+AC →2-AC →·AB →=0. ∵向量AB →与AC →的夹角为120°,|AB →|=3,|AC →|=2, ∴(λ-1)×3×2×cos 120°-9λ+4=0,解得λ=712.]8.-16 [∵△ABC 是正三角形,O 是其中心,其边长AB =BC =AC =1,∴AO 是∠BAC 的平分线,且AO =33,∴OB → ·OC →=(AB →-AO → )·(AC →-AO → )=AB → ·AC →-AO → ·AC →-AO → ·AB →+AO →2=1×1×cos 60°-33×1×cos 30°-33×1×cos 30°+⎝⎛⎭⎫332=-16.] 三、解答题9.[解] (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2),∴|OP →|=22+22=2 2.4分(2)∵OP →=m (1,2)+n (2,1)=(m +2n,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减,得m -n =y -x . 令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.10.[解] (1)由BA →·BC →=2得ca cos B =2.1分 因为cos B =13,所以ac =6.2分由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×2=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2.4分 因为a >c ,所以a =3,c =2.6分 (2)在△ABC 中,sin B =1-cos 2 B =1-⎝⎛⎭⎫132=223,7分由正弦定理,得sin C =c b sin B =23×223=429.8分因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2 C =1-⎝⎛⎭⎫4292=79.10分 于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.12分【B 组 名校冲刺】 一、选择题1.B [由题意可得OD →=k OC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线可得kλ+kμ=1,则λ+μ=1k >1,即λ+μ的取值范围是(1,+∞),故选B.]2.A [因为(a +b )⊥⎝⎛⎭⎫a -52b ,所以a 2-52b 2-32a·b =0. 又因为|a |=2,|b |=1,所以a 2=4,b 2=1,所以4-52-32a ·b =0,所以a·b =1.所以a·b =|a |·|b |cos〈a ,b 〉=1,所以cos 〈a ,b 〉=12.又a 与b 的夹角范围为[0,π],所以a 与b 的夹角为π3.]3. B [∵BF →=2FO →,圆O 的半径为1,∴|FO →|=13, ∴FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO →2+FO →·(OE →+OD →)+OD →·OE →=⎝⎛⎭⎫132+0-1=-89.] 4.A [因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m ⊗OP →+n ⇒(x ,y )=⎝⎛⎭⎫12,4⊗(x 0,cos x 0)+⎝⎛⎭⎫π6,0⇒(x ,y )=⎝⎛⎭⎫12x 0+π6,4cos x 0⇒⎩⎪⎨⎪⎧ x =12x 0+π6,y =4cos x 0,即⎩⎪⎨⎪⎧x 0=2⎝⎛⎭⎫x -π6,y =4cos x 0⇒y =4cos ⎝⎛⎭⎫2x -π3, 即f (x )=4cos ⎝⎛⎭⎫2x -π3, 当x ∈⎣⎡⎦⎤π6,π3时,由π6≤x ≤π3⇒π3≤2x ≤2π3⇒0≤2x -π3≤π3, 所以12≤cos ⎝⎛⎭⎫2x -π3≤1⇒2≤4cos ⎝⎛⎭⎫2x -π3≤4, 所以函数y =f (x )在区间⎣⎡⎦⎤π6,π3上的最大值是4,故选A.]二、填空题5.2 [由题意得|a |=12+(3)2=2,则|a -2b |2=|a |2-4|a||b|cos 〈a ,b 〉+4|b |2=22-4×2cos π3|b |+4|b |2=12,解得|b |=2(负舍).]6.-3 [由⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0得BC →与∠A 的角平分线所在的向量垂直,所以AB =AC ,BC →⊥AD →.又|AB →-AC →|=23,所以|CB →|=23,所以|BD →|=3,AB →·BD →=-BA →·BD →=-|BD →|2=-3.]三、解答题 7.[解] (1)因为向量a =⎝⎛⎭⎫2sin ⎝⎛⎭⎫ωx +2π3,0,b =(2cos ωx,3)(ω>0),所以函数f (x )=a·b =4sin ⎝⎛⎭⎫ωx +2π3cos ωx =4⎝⎛⎭⎫sin ωx ·⎝⎛⎭⎫-12+cos ωx ·32cos ωx =23·cos 2ωx -2sin ωx cos ωx =3(1+cos 2ωx )-sin 2ωx =2cos ⎝⎛⎭⎫2ωx +π6+3, 由题意可知f (x )的最小正周期为T =π,所以2π2ω=π,即ω=1. (2)已知f (x )=2cos ⎝⎛⎭⎫2x +π6+3,当x ∈[0,2π]时,2x +π6∈⎣⎡⎦⎤π6,4π+π6,故2x +π6∈[π,2π]或2x +π6∈[3π,4π]时,函数f (x )单调递增, 所以函数f (x )的单调递增区间为⎣⎡⎦⎤5π12,11π12和⎣⎡⎦⎤17π12,23π12.8.[解] 设|BC →|,|CA →|,|AB →|依次为a ,b ,c ,则a +b +c =6,b 2=ac .在△ABC 中,cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,故有0<B ≤π3, 又b =ac ≤a +c 2=6-b 2,从而0<b ≤2. (1)S =12ac sin B =12b 2sin B ≤12·22·sin π3=3,当且仅当a =c ,且B =π3,即△ABC 为等边三角形时面积最大,即S max = 3.(2)BA →·BC →=ac cos B =a 2+c 2-b 22=(a +c )2-2ac -b 22=(6-b )2-3b 22=-(b +3)2+27. ∵0<b ≤2,∴2≤BA →·BC →<18,即BA →·BC →的取值范围是[2,18).。
高考数学(理)(全国通用)大一轮复习2017高考试题汇编 第五章 平面向量 word版含解析
第五章 平面向量第一节 平面向量的线性运算及其坐标表示题型59 向量的概念及共线向量 题型60 平面向量的线性表示——暂无 题型61 向量共线的应用1.(2017全国3理12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上. 若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为( ).A .3B.D .2解析 解法一:由题意,作出图像,如图所示.设BD 与C e 切于点E ,联结CE .以点A 为坐标原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系,则点C 坐标为(2,1).因为||1CD =,||2BC =.所以BD =BD 切C e 于点E .所以CE⊥BD .所以CE 是Rt BCD △斜边BD上的高.1222BCDBC CDS EC BD BD ⋅⋅⋅==△, 即C e.因为点P 在C e 上.所以点P 的轨迹方程为224(2)(1)5x y -+-=.设点P 的坐标为00(,)x y ,可以设出点P坐标满足的参数方程0021x y θθ⎧=⎪⎪⎨⎪=⎪⎩,而00(,)AP x y =u u u r ,(0,1)AB =u u u r ,(2,0)AD =u u u r. 因为(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=u u u r u u u r u u u r,所以0112x μθ==,01y λθ==.两式相加得()112λμθθθϕ+=++=++=2sin()3θϕ++≤ (其中sin ϕcos ϕ),当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值为3.故选A.解法二:如图所示,考虑向量线性分解的等系数和线,可得λμ+的最大值为3.2.(2017浙江理15)已知向量a ,b 满足1=a ,2=b ,则++-a b a b 的最小值是 ,最大值是 .解析 解法一:如图所示,a +b 和-a b 是以,a b 为邻边的平行四边形的两条对角线,则()2222210++-=+=a b a b a b,A 是以O 为圆心的单位圆上的一动点,构造2个全等的平行四边形AOBD ,平行四边形ECOA .所以AB AC +-=+a +b a b . 易知当A ,B ,C 三点共线时,AB AC +最小,此时4AB AC BC +==; 当AO BC ⊥时,AB AC+最大,此时2AB AC AB +==解法二:()2222++-=++-++-=a b a b a b a b a b a b ()222++a b1010+=+θ是向量a ,b 的夹角).所以当2cos 1θ=时,++-a b a b 取得最小值4;当2cos 0θ=时,++-a b a b 取得最大值a题型62 平面向量基本定理及应用1.(2017江苏12)如图所示,在同一个平面内,向量OA u u u r ,OB uuu r ,OC uuu r的模分别为1,1,OA u u u r 与OC uuu r 的夹角为α,且tan 7α=,OB uuu r 与OC uuu r的夹角为45︒.若OC mOA nOB =+u u u r u u u r u u u r(),m n ∈R , 则m n += .B解析 解法一:由题意OC OA mOA OA nOB OAOC OB mOA OB nOB OB⎧⋅=⋅+⋅⎪⎨⋅=⋅+⋅⎪⎩u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r (*)而由tan 7α=,得sin α=,cos α=,11cos 4OA OB απ⎛⎫⋅=⨯⨯+ ⎪⎝⎭u u u r u u u r 3cos cos sin sin 445ααππ=⋅-⋅=-.将(*)式化简为13 5531 5m n m n ⎧=-⎪⎪⎨⎪=-+⎪⎩①② 式①加式②,得3m n +=.故填3.解法二(坐标法):如图所示,以OA 所在的直线为x 轴,过O 且垂直于OA 的直线为y 轴建立平面直角坐标系,由题意结合解法一可得()1,0A ,17,55C ⎛⎫⎪⎝⎭,34,55B ⎛⎫- ⎪⎝⎭,由OC mOA nOB =+u u u r u u u r u u u r ,得()1734,1,0,5555m n ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,即13557455m n n⎧=-⎪⎪⎨⎪=⎪⎩,解得5474m n ⎧=⎪⎪⎨⎪=⎪⎩,故3m n +=.故填3.解法三(解三角形):由tan 7α=,可得sin α=,cos α=,如图所示,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2100210n m n m +=⎪-=⎩,即510570n m n m +=⎧⎨-=⎩,解得57,44m n ==,所以3m n +=.题型63 平面向量的坐标运算1.(2017江苏13)在平面直角坐标系xOy 中,点()12,0A -,()0,6B ,点P 在圆22:50O x y +=上.若20PA PB ⋅u u u r u u u r„,则点P 的横坐标的取值范围是 .解析 不妨设()00,P x y ,则220050x y +=,且易知0x ⎡∈-⎣.因为PA PB AP BP =⋅⋅u u u r u u u r u u u r u u u r()()000012,,6x y x y =+⋅-=220000126x x y y ++-005012620x y =+-„,故00250x y -+„.所以点()00,P x y 在圆22:50O x y +=上,且在直线250x y -+=的左上方(含直线).联立2250250x y x y ⎧+=⎨-+=⎩,得15x =-,21x =,如图所示,结合图形知0x ⎡⎤∈-⎣⎦.故填⎡⎤-⎣⎦.2评注 也可以理解为点P 在圆22000012620x y x y +=+-的内部来解决,与解析中的方法一致.题型64 向量共线(平行)的坐标表示——暂无第二节 平面向量的数量积题型65 平面向量的数量积1.(2017天津理13)在ABC △中,60A =o∠,3AB =,2AC =.若2BD DC =u u u r u u u r ,()AE AC AB λλ∈=-R u u u r u u u r u u u r ,且4AD AE ⋅=-u u u r u u u r,则λ的值为___________.解析 解法一:如图所示,以向量AB u u u r,AC uuu r 为平面向量的基底,则依题意可得1cos603232AB AC AB AC ⋅==⨯⨯=ou u u r u u u r u u u r u u u r .又因为2BD DC =u u u r u u u r ,则()22213333AD AB BD AB BC AB AC AB AC AB =+=+=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r , 则22212114533333AD AE AC AB AC AB λλλ⎛⎫-=⋅=-+-⋅=- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r ,解得311λ=.DCBA解法二:以点A 为坐标原点,以AB 所在的直线为x 轴,建立直角坐标系(如图所示).依题意易得()0,0A ,()3,0B,(C ,()=3,0AB u u u r,(BC =-u u u r,(=AC u u u r .则可得2533AD AB BD AB BC ⎛=+=+= ⎝⎭u u u r u u u r u u u r u u u r u u u r,()AE AC AB λλ=-=-u u ur u u u r u u u r ,于是有()511432533AD AE λλλ-=⋅=-+=-u u u r u u u r ,解得311λ=.2.(2017北京理6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( ). A.充分而不必要条件B.必要而不充分条件C. 充分必要条件D.既不充分也不必要条件解析若0λ∃<,使λ=m n ,即两向量方向相反,夹角为180o ,则0⋅<m n .若0⋅<m n ,也可能夹角为(90,180⎤⎦o o,方向并不一定相反,故不一定存在.故选A.3.(2017全国1理13)13.已知向量a ,b 的夹角为60o,2=a ,1=b ,则2+=a b . 解析 ()22222(2)22cos602+=+=+⋅⋅⋅+o a b a b a a b b221222222=+⨯⨯⨯+=444++=12,所以2+==a b 4.(2017全国2理12)已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( ).A.2-B.32-C. 43- D.1-解析 解法一(几何法):如图所示,取BC 的中点D ,联结AD ,取AD 的中点E ,由2PB PC PD +=u u u r u u u r u u u r,则()()()22PA PB PC PD PA PE ED PE EA ⋅+=⋅=+⋅+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ()222PE ED -=u u u r u u u r2221132422PE AD AD ⎛⎫--=- ⎪⎝⎭u u u r u u u r u u u r …,当且仅当20PE =u u u r,即点P 与点E 重合时,取得最小值为32-,故选B. PECBA解法二(解析法):建立如图所示的直角坐标系,以的BC 的中点为坐标原点,所以()03A ,,()10B -,,()10C ,.设点()P x y ,,()3PA x y=--u u u r,,()1PB x y =---u u u r,,()1PC x y =--u u u r,,所以()222232PA PB PC x y y ⋅+=-+u u u r u u u r u u u r 223324x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦, 则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,3y =.故选B.5.(2017全国3理12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为( ).A .3B .225D .2解析 解法一:由题意,作出图像,如图所示.设BD 与C e 切于点E ,联结CE .以点A 为坐标原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系,则点C 坐标为(2,1).因为||1CD =,||2BC =.所以BD =BD 切C e 于点E .所以CE⊥BD .所以CE 是Rt BCD △斜边BD上的高.1222BCDBC CDS EC BD BD ⋅⋅⋅==△, 即C e.因为点P 在C e 上.所以点P 的轨迹方程为224(2)(1)5x y -+-=.设点P 的坐标为00(,)x y ,可以设出点P坐标满足的参数方程0021x y θθ⎧=⎪⎪⎨⎪=⎪⎩,而00(,)AP x y =u u u r ,(0,1)AB =u u u r ,(2,0)AD =u u u r. 因为(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=u u u r u u u r u u u r,所以0112x μθ==,01y λθ==.两式相加得()112λμθθθϕ+=++=++=2sin()3θϕ++≤ (其中sin ϕcos ϕ),当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值为3.故选A.解法二:如图所示,考虑向量线性分解的等系数和线,可得λμ+的最大值为3.λ+μ=2λ+μ=3DCBA6.(2017山东理12)已知12,e e 是互相垂直的单位向量,12-e 与12λ+e e 的夹角为60o ,则实数λ的值是. 解析)()221212112122λλλ-⋅+=+⋅-⋅-=e e e e e e e e ,()22212121122333232-=-=-⋅+=e e e e e e e e ,()222221212112221λλλλλ+=+=+⋅+=+e e e e e e e e ,所以22321cos601λλλ-=⨯+⨯=+o ,解得3λ=. 7.(2017浙江理10)如图所示,已知平面四边形ABCD ,AB BC ⊥,2AB BC AD ===,3CD =,AC 与BD 交于点O ,记1·I OAOB =u u u r u u u r ,2·I OB OC =u u u r u u u r ,3·I OC OD =u u u r u u u r,则( ).A .123I I I <<B .132I I I <<C .312I I I <<D .213I I I <<解析 如图所示,动态研究问题:D D ¢®,O O ¢®.此时有90AOB?o ,90BOC?o ,90COD?o ,且CO AO >,DO BO >.故OB OCOA OBOC OD ???uu u r uuu ruu r uu u ruuu r uuu r .8.(2017浙江理15)已知向量a ,b 满足1=a ,2=b ,则++-a b a b 的最小值是 ,最大值是 .解析 解法一:如图所示,a +b 和-a b 是以,a b 为邻边的平行四边形的两条对角线,则()2222210++-=+=a b a b a b,A 是以O 为圆心的单位圆上的一动点,构造2个全等的平行四边形AOBD ,平行四边形ECOA .所以AB AC +-=+a +b a b . 易知当A ,B ,C 三点共线时,AB AC +最小,此时4AB AC BC +==; 当AO BC ⊥时,AB AC +最大,此时225AB AC AB +==O'OAba a -ba +b AD OC解法二:()2222++-=++-++-=a b a b a b a b a b a b ()222++a b1010+=+θ是向量a ,b 的夹角).所以当2cos 1θ=时,++-a b a b 取得最小值4;当2cos 0θ=时,++-a b a b 取得最大值题型66 向量与三角形的四心——暂无。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
【2015,7】设D 为ABC ∆所在平面内一点3BC CD =,则( )
A .1433AD A
B A
C =-+ B .1433
AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【2011,10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题
12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦ 3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦
其中的真命题是( )
A .14,P P
B .13,P P
C .23,P P
D .24,P P
二、填空题
【2017,13】已知向量a ,b 的夹角为60°,|a |=2, | b |=1,则| a +2 b |= .
【2016,13】设向量a )1,(m =,b )2,1(=,且|a +b ||2=a ||2+b 2|,则=m .
【2014,15】已知A ,B ,C 是圆O 上的三点,若1()2
AO AB AC =+,则AB 与AC 的夹角为 . 【2013,13】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.
【2012,13】已知向量a ,b 夹角为45°,且||1a =,|2|10a b -=,则||b =_________.
一、选择题
【2015,7】设D 为ABC ∆所在平面内一点3BC CD =,则( )
A .1433AD A
B A
C =-+ B .1433
AD AB AC =- C .4133AD AB AC =+ D .4133
AD AB AC =- 解析:11()33AD AC CD AC BC AC AC AB =+=+=+-=1433AB AC -+,选A .. 【2011,10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题
12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦ 3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦
其中的真命题是( )
A .14,P P
B .13,P P
C .23,P P
D .24,P P
解析:1a b +==>得, 1cos 2θ>-,20,3πθ⎡⎫⇒∈⎪⎢⎣⎭
.由
1a b -==>得1cos 2θ<,,3πθπ⎛⎤⇒∈ ⎥⎝⎦
. 选A . 二、填空题 【2017,13】已知向量a ,b 的夹角为60°,|a |=2, | b |=1,则| a +2 b |= . 【解析】()22222(2)22cos602a b a b a a b b
+=+=+⋅⋅⋅︒+221222222=+⨯⨯⨯+444=++12=,
∴212a b += 【法二】令2,c b =由题意得,2a c ==,且夹角为60,所以2a b a c +=+的几何意义为以,a c 夹角为60的平行四边形的对角线所在的向量,易得223a b a c +=+=;
【2016,13】设向量a )1,(m =,b )2,1(=,且|a +b ||2=a ||2+b 2|,则=m .
【解析】由已知得:()1,3a b m +=+,∴()2222
2222213112a b a b m m +=+⇔++=+++,解得2m =-. 【2014,15】已知A ,B ,C 是圆O 上的三点,若1()2
AO AB AC =+,则AB 与AC 的夹角为 .
【解析】∵1()2
AO AB AC =+,∴O 为线段BC 中点,故BC 为O 的直径,∴090BAC ∠=,∴AB 与AC 的夹角为090.
【2013,13】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.
解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2,又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12
t +1-t ,∴ t =2. 【2012,13】已知向量a ,b 夹角为45°,且||1a =,|2|10a b -=,则||b =_________. 【解析】由已知||2
245cos ||||=︒⋅⋅=⋅,因为|2|10a b -=,所以10||4||422=+⋅-, 即06||22||2=--b b , 解得23||=b .。