支持向量机资料
支持向量机概述
支持向量机(Support Vector Machine,SVM)概述支持向量机(Support Vector Machine,SVM)是基于统计学习理论发展起来的新一代机器学习算法,由Vapnik于1992年介绍进入机器学习领域,之后受到广泛关注。
支持向量机理论处理的是两类分类问题,对于多类分类问题,通过多个二分类模型组合构成。
SVM的基本原理是将样本映射到高维空间,然后在高维空间中构建线性分类器,寻找使分类间隔最大的最优超平面,这个特点在保证分类器在具有较好的泛化能力的同时解决了维数灾难问题。
SVM的目标是在有限样本信息下寻求学习精度和学习能力的最优解,该问题最终转化成为一个二次型寻优问题,从理论上来看,将得到全局最优解,解决了神经网络中无法避免的局部极值问题。
由于SVM具有以上多个优点,使得该算法在众多领域获得较好应用,包括图像分类,生物信息学,病虫害识别等。
下面将具体介绍SVM的原理和求解过程。
(1)线性可分的情况给定一些样本数据,分别属于两个不同的类,标记为:{x i,y i},x i∈R dy i∈{1,−1},i=1,2,…,n。
由于这些样本数据是线性可分的,因此,存在一个超平面H:w T∙x+b=0,可以把这两类数据正确分开。
同时存在两个平行于H的超平面H1:w T∙x+b=1和H2:w T∙x+b=−1,使得距离超平面H最近的样本分别位于H1和H2之上,这些样本称为支持向量。
而剩余其他样本都将位于H1和H2之外,即满足式(1)或式(2)的约束条件。
w T∙x i+b≥1 y i=1(1)w T∙x i+b≤−1 y i=−1(2)在两类分类问题中,由于表示分类标记的y i只有1和-1两个值,因此可将式(1)和式(2)合并得到式(3)y i(w T∙x i+b)−1≥0(3)由两个平行平面之间的距离公式可得超平面H1和H2之间的间隔为f(w)=2(4)‖w‖SVM的目标就是寻找在满足式(3)约束的同时能够把样本准确分开,并且使H1和H2的距离最大的超平面H 。
支持向量机——精选推荐
支持向量机概述(一)支持向量机简介支持向量机(Support V ec tor Mac hine )是Cortes 和V apn ik 于1995年首先提出的,它在解决小样本、非线性及高维模式识别中有许多特有的优势,并能推广应用到函数拟合等其他机器学习问题中[1]。
支持向量机方法是建立在统计学习理论的VC 维和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,以期获得最好的推广能力[2]。
1.1 VC 维定义1.1(N(F,m Z )):设F 是一个假设集,即由在n R X 上取值为-1或1的若干函数组成的集合。
记m Z = },...,,{21m x x x 为X 中的m个点组成的集合。
考虑当f 取遍F 中的所有可能的假设时产生的m 维向量(f (1x ),f (2x ),…f (m x ))。
定义N(F,m Z ))为上述m 维向量中不同的向量个数。
定义1.2(m Z 被F 打散):设F 是一个假设集,m Z = },...,,{21m x x x 为X 中的m 个点组成的集合。
称m Z 被F 打散,或F 打散m Z 。
定义 1.3(VC 维):设假设集F 是一个由X 上取值为-1或1的函数组成的集合。
定义F 的VC 维为m ax{m|N(F,m Z ) = m2}.VC 维反映了函数集的学习能力。
一般而言,VC 维越大,学习机器越复杂。
但目前没有通用的关于任意VC 维计算的理论,只对一些特殊函数集的VC 维可以计算。
如何利用理论和实验的方法计算VC 维是当前统计学习理论中一个待研究的问题[3]。
1.2 结构风险最小化机器学习本质上是一种对问题真实模型的逼近,由于真实世界的模型往往无法精确给出,我们给出的模型与真实模型就存在一个误差,这个与真实模型之间的误差积累就叫做风险。
统计学习理论系统地研究了对于各种类型的函数集,经验风险和实际风险之间的关系,即泛化误差界。
支持向量机介绍课件
支持向量机的应用场景
01
分类问题:支持向量机可以用于 解决二分类或多分类问题,如文 本分类、图像分类等。
03
异常检测:支持向量机可以用于 异常检测,如信用卡欺诈检测、 网络入侵检测等。
02
回归问题:支持向量机可以用于 解决回归问题,如房价预测、股 票价格预测等。
4 支持向量机的优缺点
优点
01
高度泛化:支持向量机具有 很强的泛化能力,能够有效 地处理非线性问题。
02
鲁棒性:支持向量机对异常 值和噪声具有较强的鲁棒性, 能够有效地避免过拟合。
03
计算效率:支持向量机的训 练和预测过程相对较快,能 够有效地处理大规模数据。
04
易于解释:支持向量机的决 策边界直观易懂,便于理解 和解释。
缺点
01
计算复杂度高: 支持向量机的训 练和预测都需要 较高的计算复杂 度
02
容易过拟合:支 持向量机在处理 高维数据时容易 发生过拟合现象
03
模型选择困难:支 持向量机的参数选 择和模型选择较为 困难,需要一定的 经验和技巧
04
不适用于线性不可 分问题:支持向量 机只适用于线性可 分问题,对于非线 性问题需要进行复 杂的特征转换或采 用其他算法
它通过引入松弛变量,允许某些
02
数据点在分类超平面的两侧。 软间隔分类器的目标是最大化间 03 隔,同时最小化松弛变量的数量。 软间隔分类器可以通过求解二次
04
规划问题得到。
3 支持向量机的应用
线性分类
01
支持向量机 可以用于线 性分类问题
02
线性分类器可 以找到最优的
支持向量机简介与基本原理
支持向量机简介与基本原理支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,被广泛应用于模式识别、数据分类以及回归分析等领域。
其独特的优势在于可以有效地处理高维数据和非线性问题。
本文将介绍支持向量机的基本原理和应用。
一、支持向量机的基本原理支持向量机的基本思想是通过寻找一个最优超平面,将不同类别的数据点分隔开来。
这个超平面可以是线性的,也可以是非线性的。
在寻找最优超平面的过程中,支持向量机依赖于一些特殊的数据点,称为支持向量。
支持向量是离超平面最近的数据点,它们对于确定超平面的位置和方向起着决定性的作用。
支持向量机的目标是找到一个超平面,使得离它最近的支持向量到该超平面的距离最大化。
这个距离被称为间隔(margin),最大化间隔可以使得分类器更具鲁棒性,对新的未知数据具有更好的泛化能力。
支持向量机的求解过程可以转化为一个凸优化问题,通过求解对偶问题可以得到最优解。
二、支持向量机的核函数在实际应用中,很多问题并不是线性可分的,此时需要使用非线性的超平面进行分类。
为了解决这个问题,支持向量机引入了核函数的概念。
核函数可以将低维的非线性问题映射到高维空间中,使得原本线性不可分的问题变得线性可分。
常用的核函数有线性核函数、多项式核函数、高斯核函数等。
线性核函数适用于线性可分问题,多项式核函数可以处理一些简单的非线性问题,而高斯核函数则适用于复杂的非线性问题。
选择合适的核函数可以提高支持向量机的分类性能。
三、支持向量机的应用支持向量机在实际应用中有着广泛的应用。
在图像识别领域,支持向量机可以用于人脸识别、物体检测等任务。
在生物信息学领域,支持向量机可以用于蛋白质分类、基因识别等任务。
在金融领域,支持向量机可以用于股票市场预测、信用评估等任务。
此外,支持向量机还可以用于文本分类、情感分析、异常检测等领域。
由于其强大的分类性能和泛化能力,支持向量机成为了机器学习领域中的重要算法之一。
《支持向量机SVM》课件
多分类SVM
总结词
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。
详细描述
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。常用的核函数有线性核、多项式核和RBF核等 。此外,一些集成学习技术也可以与多类分类SVM结合使用 ,以提高分类性能和鲁棒性。
03
SVM的训练与优化
细描述
对于非线性数据,线性不可分SVM通 过引入核函数来解决分类问题。核函 数可以将数据映射到更高维空间,使 得数据在更高维空间中线性可分。常 用的核函数有线性核、多项式核和径 向基函数(RBF)。
通过调整惩罚参数C和核函数参数, 可以控制模型的复杂度和过拟合程度 。
详细描述
多分类支持向量机可以通过两种策略进行扩展:一对一(OAO)和一对多(OAA)。 在OAO策略中,对于n个类别的多分类问题,需要构建n(n-1)/2个二分类器,每个二分 类器处理两个类别的分类问题。在OAA策略中,对于n个类别的多分类问题,需要构建
n个二分类器,每个二分类器处理一个类别与剩余类别之间的分类问题。
鲁棒性高
SVM对噪声和异常值具有 一定的鲁棒性,这使得它 在许多实际应用中表现良 好。
SVM的缺点
计算复杂度高
对于大规模数据集,SVM的训练时间可能会很长,因为其需要解决一 个二次规划问题。
对参数敏感
SVM的性能对参数的选择非常敏感,例如惩罚因子和核函数参数等, 需要仔细调整。
对非线性问题处理有限
SVM的优点
分类效果好
SVM在许多分类任务中表 现出了优秀的性能,尤其 在处理高维数据和解决非 线性问题上。
对异常值不敏感
SVM在训练过程中会寻找 一个最优超平面,使得该 平面的两侧的类别距离最 大化,这使得SVM对异常 值的影响较小。
支持向量机PPT课件
支持向量机ppt课件
https://
REPORTING
2023
目录
• 支持向量机概述 • 支持向量机的基本原理 • 支持向量机的实现步骤 • 支持向量机的应用案例 • 支持向量机的未来发展与挑战 • 总结与展望
2023
PART 01
支持向量机概述
REPORTING
详细描述
传统的支持向量机通常是针对单个任务进行训练和预测,但在实际应用中,经常需要处理多个相关任务。多任务 学习和迁移学习技术可以通过共享特征或知识,使得支持向量机能够更好地适应多个任务,提高模型的泛化性能。
深度学习与神经网络的结合
总结词
将支持向量机与深度学习或神经网络相结合,可以发挥各自的优势,提高模型的性能和鲁棒性。
模型训练
使用训练集对支持向量机模型进行训练。
参数调整
根据验证集的性能指标,调整模型参数,如惩罚因子C和核函数类 型等。
模型优化
采用交叉验证、网格搜索等技术对模型进行优化,提高模型性能。
模型评估与调整
性能评估
使用测试集对模型进行 评估,计算准确率、召 回率、F1值等指标。
模型对比
将支持向量机与其他分 类器进行对比,评估其 性能优劣。
模型调整
根据评估结果,对模型 进行调整,如更换核函 数、调整参数等,以提 高性能。
2023
PART 04
支持向量机的应用案例
REPORTING
文本分类
总结词
利用支持向量机对文本数据进行分类 ,实现文本信息的有效管理。
详细描述
支持向量机在文本分类中发挥了重要 作用,通过对文本内容的特征提取和 分类,能够实现新闻分类、垃圾邮件 过滤、情感分析等应用。
支持向量机(SVM)
支持向量机(SVM)一、什么是支持向量机(SVM)?1、支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析。
支持向量机属于一般化线性分类器,这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区,因此支持向量机也被称为最大边缘区分类器。
2、支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。
在分开数据的超平面的两边建有两个互相平行的超平面,分隔超平面使两个平行超平面的距离最大化。
假定平行超平面间的距离或差距越大,分类器的总误差越小。
3、假设给定一些分属于两类的2维点,这些点可以通过直线分割,我们要找到一条最优的分割线,如何来界定一个超平面是不是最优的呢?二、如何计算最优超平面?1、线性分类:我们通常希望分类的过程是一个机器学习的过程。
这些数据点并不需要是中的点,而可以是任意的点(一个超平面,在二维空间中的例子就是一条直线)。
我们希望能够把这些点通过一个n-1维的超平面分开,通常这个被称为线性分类器。
有很多分类器都符合这个要求,但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。
如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。
我们从下面一个图开始:中间那条线是wx + b =0,我们强调所有点尽可能地远离中间那条线。
考虑上面3个点A、B和C。
从图中我们可以确定A是×类别的,然而C我们是不太确定的,B还算能够确定。
这样我们可以得出结论,我们更应该关心靠近中间分割线的点,让他们尽可能地远离中间线,而不是在所有点上达到最优。
因为那样的话,要使得一部分点靠近中间线来换取另外一部分点更加远离中间线。
同时这个所谓的超平面的的确把这两种不同形状的数据点分隔开来,在超平面一边的数据点所对应的y 全是-1 ,而在另一边全是1 。
支持向量机资料
支持向量机资料支持向量机1基本情况Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。
其原理也从线性可分说起,然后扩展到线性不可分的情况。
甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(Support Vector Machine,简称SVM)。
支持向量机的提出有很深的理论背景支持向量机方法是在近年来提出的一种新方法。
SVM的主要思想可以概括为两点:⑴它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;⑵它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。
例子如图:将1维的“线性不可分”上升到2维后就成为线性可分了。
在学习这种方法时,首先要弄清楚这种方法考虑问题的特点,这就要从线性可分的最简单情况讨论起,在没有弄懂其原理之前,不要急于学习线性不可分等较复杂的情况,支持向量机在设计时,需要用到条件极值问题的求解,因此需用拉格朗日乘子理论。
2一般特征⑴SVM学习问题可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。
而其他分类方法(如基于规则的分类器和人工神经网络)都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解。
⑵SVM通过最大化决策边界的边缘来控制模型的能力。
尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等。
⑶通过对数据中每个分类属性引入一个哑变量,SVM可以应用于分类数据。
⑷SVM一般只能用在二类问题,对于多类问题效果不好。
3原理简介SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题.简单地说,就是升维和线性化.升维,就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起“维数灾难”,因而人们很少问津.但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归).一般的升维都会带来计算的复杂化,SVM 方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了“维数灾难”.这一切要归功于核函数的展开和计算理论.选择不同的核函数,可以生成不同的SVM,常用的核函数有以下4种:⑴线性核函数K(x,y)=x·y;⑵多项式核函数K(x,y)=[(x·y)+1]^d;⑶径向基函数K(x,y)=exp(-|x-y|^2/d^2)⑷二层神经网络核函数K(x,y)=tanh(a(x·y)+b).最优分类面:最优超平面SVM是从线性可分情况下的最优分类面发展而来的,基本思想可用图2的两维情况说明。
支持向量机(SVM)
其中,������������ ≥ 0, ������ = 1,2, ⋯ , ������。
������ ������
������ ������
0 < ������������ ≤ 1 分类正确
������������ > 1 分类错误
对于给定的训练样本: ������1 , ������1 , ������ 2 , ������ 2 , ⋯ , (������ ������ , ������������ ) 找到权值向量W 和偏置b,使其在满足 ������������ (������ T ������ ������ + ������) ≥ 1 − ������������ , ������ = 1,2, ⋯ , ������ ������������ ≥ 0, ������ = 1,2, ⋯ , ������
������
������0������
������=1
1 T = min ������ ������ + ������ ������,������,������ ∈������ 2
������
������������
������=1
= max min ������ ������, ������, ������, ������, ������ = ������(������0 , ������0 , ������0 , ������0 , ������0 )
T ������ ������ ������ ������
=: ������ ������
������
对偶问题:在满足约束条件
的情况下最大化函数
������ ������=1 ������ ������
支持向量机简介
W Xn
N
N
b n yn n
n1
n1
线性支持向量机的求解
❖ 两类可分情况
❖ 求解过程如下:
(1)求对偶函数
L
W,
b,
A
min
WRM ,bR
L
W,
b,
A
令 WbLLWW,,bb,,AA
带入前式化简得:
L (W
, b,
A)
1 2
0 0 得到:
NN
nk yn
n1k 1
W
N
n yn Xn
• 预测输出 可表示为
• 程度。
为损失函数,用来衡量两个变量之间的不一致
• 因此,机器学习问题也可以表示为,从一组独立同分布的观 测样本出发,通过最小化风险泛函R(a),确定学习机器的广义 参数a的过程。
❖ 最小化期望风险R(a),必须利用联合概率F(x,y)的信息。 ❖ 在实际中,联合分布未知,只有观测样本。 ❖ 用算术平均值逼近期望风险。
❖ 两类可分情况
N
❖ (3)解出分类函数g(X)的法向矢量W: W n ynXn
n1
❖ (4)由n 0 所对应的学习样本 Xn, yn 是支持向量,它们恰好位于 分类边带线上,其余与k 0 对应的约束条件中的样本点,都位于上
边 可带求l出1 之:上或下边带 l2之下,这些点的存在并不影响分类函数的位置。
相关基础知识
1. 分类问题 2. 两类可分问题的线性分类机 3. 求解线性分类问题的优化方法(拉
格朗日乘子) 4. 对偶理论
1、分类问题
❖ 设有两类模式C1和C2,T X1, y1 X2, y2 XN , yN
是从模式 C1和C2中抽样得到的训练集,
支持向量机
结 论: 唯一能确定得到的是真酒样本,故确定为单类分类问题,并 采用多个单类分类器分解问题的策略。
单类分类器分类:
基于概率密度的方法(Density-based classifiers) 基于神经网络的方法(ANN-based classifiers) 基于支持域的方法(Domain-based classifiers) 基于聚类的方法(Clustering-based classifiers)
软件包功能:
支持多个平台,可以在windows(命令行环境)、java、matlab 中运行,其中包括的分类器有 C-SVC 、nu-SVC、one-class SVM、 epsilon-SVR、nu-SVR,可以进行分类或者回归以及参数优选。
基本思想:通过对目标数据的学习,形成一个围绕目标的边界或区域, 如超球面、超平面等,并最小化数据支撑域的体积,已达到错误接受 率最小的目的。
优 点:由于借鉴了SVM的最大间隔理论,因而适合处理小样本、 高维和存在噪声数据的单类分类问题,代表方法有One-class SVM和 SVDD(Support Vector Data Description).
One-class SVM
算法基本原理:
给定训练数据集D,将其从RN到某高维特征空间 的非线性映射 使得
(Xi ) ,在高维空间建立一个超平面 W (x) 0 将映射样本与原点以间
隔 分开,其中w为超平面的法向量,为超平面的截距,为了使超平面尽可能
远离原点,最大化原点到目标数据间的欧氏距离 / W 来寻找最优超平面。经 过映射后的OCSVM在二维空间中寻找最优超平面。
《支持向量机》课件
非线性支持向量机(SVM)
1
核函数与核技巧
深入研究核函数和核技巧,将SVM应用于非线性问题。
2
多类别分类
探索如何使用SVM解决多类别分类问题。
3
多分类问题
了解如何将SVM应用于多分类问题以及解决方法。
SVM的应用
图像识别
探索SVM在图像识别领域 的广泛应用。
金融信用评估
了解SVM在金融领域中用 于信用评估的重要作用。
其他领域
探索SVM在其他领域中的 潜在应用,如生物医学和 自然语言处理。
《支持向量机》PPT课件
探索令人兴奋的机器学习算法 - 支持向量机。了解它的定义、历史、优点和 局限性,以及基本思想、几何解释和优化问题。
支持向量机简介
定义与背景
学习支持向量机的基本概念和背景知识。
优缺点
掌握支持向量机的优点和局限性,和核心思想。
几何解释和优化问题
几何解释
优化问题
通过直观的几何解释理解支持向量机的工作原理。 研究支持向量机的优化问题和求解方法。
线性支持向量机(SVM)
1 学习算法
探索线性支持向量机的 学习算法并了解如何应 用。
2 常见核函数
介绍常用的核函数类型 和选择方法,以及它们 在SVM中的作用。
3 软间隔最大化
研究软间隔最大化方法, 提高SVM在非线性问题 上的准确性。
支持向量机(SVM)简述
第1 2章12.1 案例背景12.1.1 SVM概述支持向量机(Support Vector Machine,SVM)由Vapnik首先提出,像多层感知器网络和径向基函数网络一样,支持向量机可用于模式分类和非线性回归。
支持向量机的主要思想是建立一个分类超平面作为决策曲面,使得正例和反例之间的隔离边缘被最大化;支持向量机的理论基础是统计学习理论,更精确地说,支持向量机是结构风险最小化的近似实现。
这个原理基于这样的事实:学习机器在测试数据上的误差率(即泛化误差率)以训练误差率和一个依赖于VC维数(Vapnik - Chervonenkis dimension)的项的和为界,在可分模式情况下,支持向量机对于前一项的值为零,并且使第二项最小化。
因此,尽管它不利用问题的领域内部问题,但在模式分类问题上支持向量机能提供好的泛化性能,这个属性是支持向量机特有的。
支持向量机具有以下的优点:①通用性:能够在很广的各种函数集中构造函数;②鲁棒性:不需要微调;③有效性:在解决实际问题中总是属于最好的方法之一;④计算简单:方法的实现只需要利用简单的优化技术;⑤理论上完善:基于VC推广性理论的框架。
在“支持向量”x(i)和输入空间抽取的向量x之间的内积核这一概念是构造支持向量机学习算法的关键。
支持向量机是由算法从训练数据中抽取的小的子集构成。
支持向量机的体系结构如图12 -1所示。
图12-1 支持向量机的体系结构其中K为核函数,其种类主要有:线性核函数:K(x,x i)=x T x i;多项式核函数:K(x,x i)=(γx T x i+r)p,γ>0;径向基核函数:K(x,x i )=exp(-γ∥x −x i ∥2), γ>0;两层感知器核函数:K(x,x i )=tanh(γx T x i+r )。
1.二分类支持向量机C - SVC 模型是比较常见的二分类支持向量机模型,其具体形式如下:1)设已知训练集:T ={(x 1,y 1),…,(x i ,y i )}∈(X ×Y )ι其中,x i ∈X =R n ,y i ∈Y ={1,-1}( i =1,2,…,ι);x i 为特征向量。
支持向量机(SVM)
同样的,对于线性 SVM 的目标函数及其约束条件使用 Lagrange Multiplier 后,求偏导可得:
������
������
������
������(������,
������,
������,
������,
������)
=
1 2
‖������‖2
+
C
∑
������(������)
−
∑
������ (������) [������ (������) (������ ������ Φ(������(������) )
+
������)
−
1
+
������ (������) ]
−
∑
������ (������) ������ (������)
������=1
������=1
������=1
������
∂L ∂w
=
������
−
∑
������ (������) ������ (������) Φ(������ (������) )
对于线性可分 SVM 而言,目标函数实际上就是分割平面的选取,因此目 标函数实际上就是:
������∗, ������∗
=
1 arg������m,������ax{‖������‖
min [������(������)(������
������=1,2,…,������
������
Φ(������
(������))
+
������)]}
对于上式,在不改变分割面位置的情况下,总存在一个 W 值,使距离该 直线最近的向量到直线距离为 1。因此上式中,最小值部分可以始终取 1。此时的 W 值,实际上才是目标函数本身。而同时存在约束条件:
【优秀文档】支持向量机PPT资料
*i
yi1
线性可分的支持向量(分类)机
于是,得到如下的决策函数:
f(x)sgnn * iyi(xxi)b*
i1
支持向量:称训练集D中的样本xi为支持向量,如 果它对应的i*>0。
的优化问题转化为如下的对偶问题(使用极小形式):
为求解问题(1),使用Lagrange乘子法将其转化为对偶问题。
的函数
,一旦选定了函数,就可以求解最优化问题
的优化问题转化为如下的对偶问题(使用极小形式):
一、线性可分的支持向量(分类)机
Transform x (x)
问题是:这样的参数对(w,b)有许多。
首先考虑线性可分情况。
将(3)式代入Lagrange函数,并利用(4)式,则原始
线性可分情况意味着存在超平面使训练点中的正类和 上式可将2维空间上二次曲线映射为6维空间上的一个超平面:
得到q 阶多项式分类器
负类样本分别位于该超平面的两侧。 对于线性不可分的样本怎么办?
二,这里的“机(machine,机器)”便是一个算法。
面上把两类类别划分开来的超平面的向量点) 二,这里的“机(machine,机器)”便是一个算法。
在机器学习领域,常把一些算法看做是一个机器,如 分类机(当然,也叫做分类器),而支持向量机本身 便是一种监督式学习的方法,它广泛的应用于统计分 类以及回归分析中。
SVM的描述
目标:找到一个超平面,使得它能够尽可能多 的将两类数据点正确的分开,同时使分开的两 类数据点距离分类面最远。
b L ( w ,b , ) 0 , w L ( w ,b , ) 0
得到: n
yii 0
(3)
i 1
n
w yiixi
支持向量机
变换可能出现的问题
难以得到一个好的分类且计算开销大
SVM同时解决这两个问题 同时解决这两个问题
最小化 ||w||2 能得到好的分类 利用核函数技巧可以进行有效的计算
φ( ) φ( ) φ( ) φ( ) φ( ) φ( ) φ( ) φ( ) φ( ) φ( ) φ( ) φ( ) φ( ) φ( ) φ( ) φ( ) φ( ) φ( )
三. SVM的应用 的应用
数据与文本分类 系统建模及预测 模式识别(图像及语音识别,生物特征识 别) 异常检测(入侵检测,故障诊断) 时间序列预测
§2 统计学习理论
一. 两分类问题
给定 l 个观测值: i , i = 1, 2, ..., l
x
xi ∊
Rn
第2类
每个观测值与一个标记相连: 土 y i , i = 1, 2, ..., l y i ∊ {土1} 对于 (2-类) 分类, 建立一个函数:
§3 线性支持向量机
两分类问题: 一. 两分类问题 线性分割情形
第2类
许多决策边界可以分割这 些数据点出为两类 我们选取哪一个? 我们选取哪一个?
第1类
坏的决策边界的例子
第2类
第2类
第1类
第1类
好的决策边界: 好的决策边界 间隔大 决策边界离两类数据应尽可能远 最大化间隔 m
第2类
第1类
m
二. 最优化问题 设 {x1, ..., xn} 为数据集, yi ∈ {1,-1} 为xi 的类标记 要求决策边界正确地分类所有的点
⇒
于是得到一个带有约束的优化问题
将上述最优化问题转换成其对偶问题 对偶问题: 对偶问题
取Lagrange函数 Φ(w,b;α)=1/2‖w‖2 –∑n i=1 αi (yi[(w,xi)+b] –1) ‖ ‖ 则对偶问题由 max αW(α)=max α(minw,b Φ(w,b;α)) 给出。由 minw,b Φ(w,b;α) 得 ә Φ/ ә b=0 ⇒ ∑n i=1 αiyi=0 ә Φ/ ә w =0 ⇒ w=∑n i=1 αiyixi
《支持向量机》课件
优化算法
梯度下降法
优化算法使用梯度下降法来迭代更新 超平面的参数,使得分类器的分类效 果不断优化。在每次迭代中,算法计 算当前超平面的梯度并沿着负梯度的 方向更新参数。
核函数参数
对于非线性支持向量机,核函数的参数决定了数据映射到特征空间的复杂度。选择合适的核函数参数可以使分类 器更好地适应数据特性。常见的核函数参数包括多项式核的阶数和RBF核的宽度参数σ。
04
支持向量机的扩展与改进
多分类支持向量机
总结词
多分类支持向量机是支持向量机在多分类问题上的扩展,通过引入不同的策略,将多个分类问题转化 为二分类问题,从而实现对多类别的分类。
金融风控
用于信用评分、风险评估等金融领域。
02
支持向量机的基本原理
线性可分支持向量机
01
线性可分支持向量机是支持向量机的基本形式,用 于解决线性可分问题。
02
它通过找到一个超平面,将不同类别的数据点分隔 开,使得正例和反例之间的间隔最大。
03
线性可分支持向量机适用于二分类问题,且数据集 线性可分的情况。
计算效率高
支持向量机采用核函数技巧,可以在低维空间中 解决高维问题,从而减少计算复杂度。
支持向量机的应用场景
文本分类
利用支持向量机对文本数据进行分类,如垃 圾邮件识别、情感分析等。
生物信息学
支持向量机在基因分类、蛋白质功能预测等 方面具有重要价值。
图像识别
在图像分类、人脸识别等领域,支持向量机 也得到了广泛应用。
03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
支持向量机1基本情况Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。
其原理也从线性可分说起,然后扩展到线性不可分的情况。
甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(Support Vector Machine,简称SVM)。
支持向量机的提出有很深的理论背景支持向量机方法是在近年来提出的一种新方法。
SVM的主要思想可以概括为两点:⑴它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;⑵它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。
例子如图:将1维的“线性不可分”上升到2维后就成为线性可分了。
在学习这种方法时,首先要弄清楚这种方法考虑问题的特点,这就要从线性可分的最简单情况讨论起,在没有弄懂其原理之前,不要急于学习线性不可分等较复杂的情况,支持向量机在设计时,需要用到条件极值问题的求解,因此需用拉格朗日乘子理论。
2一般特征⑴SVM学习问题可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。
而其他分类方法(如基于规则的分类器和人工神经网络)都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解。
⑵SVM通过最大化决策边界的边缘来控制模型的能力。
尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等。
⑶通过对数据中每个分类属性引入一个哑变量,SVM可以应用于分类数据。
⑷SVM一般只能用在二类问题,对于多类问题效果不好。
3原理简介SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题.简单地说,就是升维和线性化.升维,就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起“维数灾难”,因而人们很少问津.但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归).一般的升维都会带来计算的复杂化,SVM 方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了“维数灾难”.这一切要归功于核函数的展开和计算理论.选择不同的核函数,可以生成不同的SVM,常用的核函数有以下4种:⑴线性核函数K(x,y)=x·y;⑵多项式核函数K(x,y)=[(x·y)+1]^d;⑶径向基函数K(x,y)=exp(-|x-y|^2/d^2)⑷二层神经网络核函数K(x,y)=tanh(a(x·y)+b).最优分类面:最优超平面SVM是从线性可分情况下的最优分类面发展而来的,基本思想可用图2的两维情况说明。
如图:方形点和圆形点代表两类样本,H为分类线,H1,H2分别为过各类中离分类线最近的样本且平行于分类线的直线,他们之间的距离叫分类间隔。
最优分类线就是要求分类线不但能将两类正确分开(训练错误率为0),且使分类间隔最大。
推广到高维空间,最优分类线就变为最优分类面。
设线性可分的样本集(x i,y i),i=1,…,n,x∈R d,y∈{+1,-1}。
d维空间中的线性判别函数:g(x)=wx-b,分类面方程为:wx-b=0。
我们可以对它进行归一化,使得所有样本都满足| g(x)|>=1,即分类面最近的样本满足g(x)=1,这样分类间隔就等于2/||W||,因此要求分类间隔最大,就是要求||W||或||W||2最小。
而要求分类面对所有样本正确分类,就是要求满足:y i[w x i+b]-1>=0, i=1,…,n,(1)因此,满足上面公式且使||W||2最小的分类面就是最优分类面。
过两类样本中离分类面最近的点且平行于最优分类面的超平面H1,H2上的训练样本,就是使上式等号成立的样本称作支持向量。
定义:支持向量机(Support Vector Machine,SVM),是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。
它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
在地球物理反演当中解决非线性反演也有显著成效,例如(支持向量机在预测地下水涌水量问题等)。
已知该算法被应用的主要有:石油测井中利用测井资料预测地层孔隙度及粘粒含量、天气预报工作等。
支持向量机方法建立在统计学习理论的VC维理论和结构风险最小原理基础上,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折中,以求获得最好的推广能力(或称泛化能力)。
所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。
正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。
我们通常希望分类的过程是一个机器学习的过程。
这些数据点是n维实空间中的点。
我们希望能够把这些点通过一个n-1维的超平面分开。
通常这个被称为线性分类器。
有很多分类器都符合这个要求。
但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。
如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。
支持向量机属于一般化线性分类器。
他们也可以认为是提克洛夫规则化(Tikhonov Regularization)方法的一个特例。
这种分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区。
因此支持向量机也被称为最大边缘区分类器。
支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。
在分开数据的超平面的两边建有两个互相平行的超平面。
建立方向合适的分隔超平面使两个与之平行的超平面间的距离最大化。
其假定为,平行超平面间的距离或差距越大,分类器的总误差越小。
一个极好的指南是 C.J.C Burges的《模式识别支持向量机指南》。
支持向量机特点支持向量机中的一大亮点:在传统的最优化问题中提出了对偶理论,主要有最大最小对偶及拉格朗日对偶。
(1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;(2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;(3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。
(4)SVM 是一种有坚实理论基础的新颖的小样本学习方法。
它基本上不涉及概率测度及大数定律等,因此不同于现有的统计方法。
从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”,大大简化了通常的分类和回归等问题。
(5)SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。
(6)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。
这种“鲁棒”性主要体现在:①增、删非支持向量样本对模型没有影响;②支持向量样本集具有一定的鲁棒性;③有些成功的应用中,SVM 方法对核的选取不敏感支持向量机不足(1) SVM算法对大规模训练样本难以实施由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m 为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。
针对以上问题的主要改进有有J.Platt的SMO算法、T.Joachims的SVM、C.J.C.Burges 等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法(2) 用SVM解决多分类问题存在困难经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。
可以通过多个二类支持向量机的组合来解决。
主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。
主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。
如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。
支持向量机的优势:可用于分类、回归和异常检验可以发现全局最优解可以用参数来控制过度拟合问题SVM的关键在于核函数。
低维空间向量集通常难于划分,于是将它们映射到高维空间。
但这个办法带来的困难就是计算复杂度的增加,而核函数正好巧妙地解决了这个问题。
只要选用适当的核函数,就可以得到高维空间的分类函数。
采用不同的核函数将导致不同的SVM 算法。
支持向量机分类器理解SVM有四个关键名词:分离超平面、最大边缘超平面、软边缘、核函数。
分离超平面(separating hyperplane):处理分类问题的时候需要一个决策边界,好象楚河汉界一样,在界这边我们判别A,在界那边我们判别B。
这种决策边界将两类事物相分离,而线性的决策边界就是分离超平面。
最大边缘超平面(Maximal Margin Hyperplane):分离超平面可以有很多个,怎么找最好的那个呢,SVM的作法是找一个“最中间”的。
换句话说,就是这个平面要尽量和两边保持距离,以留足余量,减小泛化误差,保证稳健性。
或者用中国人的话讲叫做“执中”。
以江河为国界的时候,就是以航道中心线为界,这个就是最大边缘超平面的体现。
在数学上找到这个最大边缘超平面的方法是一个二次规划问题。
软边缘(Soft Margin):但世界上没这么美的事,很多情况下都是“你中有我,我中有你”的混杂状态。
不大可能用一个平面完美的分离两个类别。
在线性不可分情况下就要考虑软边缘了。
软边缘可以破例允许个别样本跑到其它类别的地盘上去。
但要使用参数来权衡两端,一个是要保持最大边缘的分离,另一个要使这种破例不能太离谱。
这种参数就是对错误分类的惩罚程度C。
核函数(Kernel Function),为了解决完美分离的问题,SVM还提出一种思路,就是将原始数据映射到高维空间中去,直觉上可以感觉高维空间中的数据变的稀疏,有利于“分清敌我”。