物理化学基础概念

合集下载

物理化学的基本原理与应用

物理化学的基本原理与应用

物理化学的基本原理与应用物理化学是研究物质的宏观性质和微观机制的学科,其基本原理围绕着物质的结构、性质和变化进行研究。

物理化学与其他学科如物理学和化学有着紧密的联系,它在多个领域中都有广泛的应用,如材料科学、生物化学以及环境科学等。

本文将介绍物理化学的基本原理以及其在实际应用中的作用。

1. 原子结构和分子结构原子结构和分子结构是物理化学的基础,对于了解物质的性质和行为至关重要。

原子由质子、中子和电子组成,而分子则由多个原子通过化学键结合而成。

通过量子力学理论,我们可以计算原子和分子的能级、振动和旋转等性质,并揭示它们之间的相互作用。

2. 热力学热力学是物理化学的重要分支,研究能量在化学反应和物质转化中的转移和转化。

熵、焓和自由能是热力学的关键概念。

根据热力学原理,我们可以预测和控制化学反应的方向性和速率,从而实现高效的能量转换和储存。

3. 动力学动力学研究化学反应的速率和反应机理。

它通过探究反应速率与反应物浓度、温度和催化剂等条件的关系,揭示反应过程中的分子碰撞和转化过程。

动力学的研究可以帮助我们优化反应条件,提高产率和选择性,并实现绿色和可持续的化学合成。

4. 电化学电化学是物理化学与电学的交叉学科,研究物质在电场和电流下的行为。

它可以用于电化学能源转化和储存技术,如电池和燃料电池。

同时,电化学也应用于电解过程、电镀和电化学传感器等领域。

5. 物理化学在材料科学中的应用物理化学在材料科学中起着重要的作用。

通过控制原子和分子的结构与排列,物理化学可以设计和合成具备特定性质和功能的材料,如催化剂、半导体和纳米材料等。

物理化学还可以研究材料的表面性质、电学性能和力学特性,为新材料的开发提供理论基础和实验依据。

6. 物理化学在环境科学中的应用物理化学在环境科学中也扮演着重要角色。

通过物理化学原理的应用,我们可以研究大气中的大气化学反应、水体中的溶解行为以及土壤中的吸附和解吸过程。

这些研究有助于我们了解和解决环境问题,如空气污染、水污染和土壤污染等。

物理化学的知识点总结

物理化学的知识点总结

物理化学的知识点总结一、热力学1. 热力学基本概念热力学是研究能量转化和传递规律的科学。

热力学的基本概念包括系统、环境、热、功、内能、焓、熵等。

2. 热力学第一定律热力学第一定律描述了能量守恒的原理,即能量可以从一个系统转移到另一个系统,但总能量量不变。

3. 热力学第二定律热力学第二定律描述了能量转化的方向性,熵的增加是自然界中不可逆过程的一个重要特征。

4. 热力学第三定律热力学第三定律表明在绝对零度下熵接近零。

此定律是热力学的一个基本原理,也说明了热力学的某些现象在低温下会呈现出独特的特性。

5. 热力学函数热力学函数是描述系统状态和性质的函数,包括内能、焓、自由能、吉布斯自由能等。

二、化学热力学1. 热力学平衡和热力学过程热力学平衡是指系统各个部分之间没有宏观可观察的能量传输,热力学过程是系统状态发生变化的过程。

2. 能量转化和热力学函数能量转化是热力学过程中的一个重要概念,热力学函数则是描述系统各种状态和性质的函数。

3. 热力学理想气体理想气体是热力学研究中的一个重要模型,它通过状态方程和理想气体定律来描述气体的性质和行为。

4. 热力学方程热力学方程是描述系统热力学性质和行为的方程,包括焓-熵图、温度-熵图、压力-体积图等。

5. 反应焓和反应熵反应焓和反应熵是化学热力学研究中的重要参数,可以用来描述化学反应的热力学过程。

三、物质平衡和相平衡1. 物质平衡物质平衡是研究物质在化学反应和物理过程中的转化和分配规律的一个重要概念。

2. 相平衡相平衡是研究不同相之间的平衡状态和转化规律的一个重要概念,包括固相、液相、气相以及其之间的平衡状态。

3. 物质平衡和相平衡的研究方法物质平衡和相平衡的研究方法包括热力学分析、相平衡曲线的绘制和分析、相平衡图的绘制等。

四、电化学1. 电解质和电解电解质是能在水溶液中发生电离的化合物,电解是将电能转化为化学能或反之的过程。

2. 电化学反应和电势电化学反应是在电化学过程中发生的化学反应,电势是描述电化学系统状态的一个重要参数。

物理化学课件

物理化学课件
意义
热力学第一定律在物理学和化学 领域中具有重要地位,它为解释 许多自然现象提供了基础。
热力学第二定律
内容
热力学第二定律指出,热量总是从高 温物体传导到低温物体,而不能反过 来。也就是说,热量传递的方向总是 从高到低,不能反过来。
意义
热力学第二定律表明了自然界的某种 方向性,它限制了某些自然过程的进 行方式。
VS
详细描述
光化学第一定律指出,在一定温度和压力 下,光化学反应的速率与辐射能量成正比 。这个定律对于研究光化学过程和设计光 化学设备具有重要意义。
光化学第二定律
总结词
光化学第二定律是描述光化学过程中辐射能 量与化学反应途径关系的物理化学定律。
详细描述
光化学第二定律指出,在一定温度和压力下 ,一个光化学反应的速率与反应途径中各个 步骤的辐射能量差成正比。这个定律对于研 究光化学反应机理和设计光化学合成路线具 有重要意义。
化学平衡
内容
化学平衡是指化学反应中反应物和生成物之间的平衡状态。在一定条件下,反 应物和生成物之间的浓度不再发生变化,达到动态平衡。
意义
化学平衡是化学反应中一个重要的概念,它帮助我们了解反应进行的程度和方 向。
化学反应速率
内容
化学反应速率是指单位时间内反应物消耗或生成物产生的速率。通常用单位浓度 的变化量表示。
复杂系统与跨尺度研究
总结词
跨学科、多尺度研究
详细描述
物理化学在复杂系统和跨尺度研究方面具有独特的优势 。复杂系统研究涉及多个相互作用因素,需要综合运用 物理、化学和生物等学科的知识来理解和预测系统的行 为。跨尺度研究则要求科学家从原子、分子到纳米、宏 观等不同尺度上理解和控制化学过程,物理化学为解决 这些问题提供了有效的方法和工具。

物理化学知识点总结

物理化学知识点总结

第一章 热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。

二、基本定律热力学第一定律:ΔU =Q +W 。

焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式1、体积功的计算 δW = -p e d V恒外压过程:W = -p e ΔV可逆过程:1221ln ln p p nRT V V nRT W ==2、热效应、焓等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; d H =d U +d(pV )焓与温度的关系:ΔH =⎰21d p T T T C3、等压热容与等容热容热容定义:V V )(T U C ∂∂=;p p )(T H C ∂∂=定压热容与定容热容的关系:nR C C =-V p 热容与温度的关系:C p =a +bT +c’T 2 四、第一定律的应用1、理想气体状态变化等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p e d V 等容过程:W =0 ; Q =ΔU =⎰T C d V ; ΔH =⎰T C d p 等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p ; ΔU =⎰T C d V 可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p不可逆绝热过程:Q =0 ; 利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p2、相变化可逆相变化:ΔH =Q =n Δ_H ;W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W3、热化学物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。

摩尔反应热的求算:)298,()298(B H H m f B m r θθν∆=∆∑反应热与温度的关系—基尔霍夫定律:)(])([,p B C T H m p BB m r ∑=∂∆∂ν。

物理化学笔记与考试指南

物理化学笔记与考试指南

物理化学笔记与考试指南一、热力学基础。

(一)基本概念。

1. 系统与环境。

- 系统:被研究的对象,可以是物质的一部分,如一定量的气体、液体或固体。

- 环境:系统之外与系统密切相关的部分。

系统与环境之间可以有物质和能量的交换。

根据交换情况分为孤立系统(无物质和能量交换)、封闭系统(有能量交换无物质交换)和敞开系统(有物质和能量交换)。

2. 状态函数。

- 定义:其数值仅取决于系统的状态,而与系统到达该状态的途径无关。

如温度T、压力p、体积V、内能U等。

- 特点:状态函数的微小变化在数学上是全微分。

例如,对于理想气体pV = nRT,p、V、T都是状态函数。

3. 过程与途径。

- 过程:系统状态发生变化的经过。

常见的过程有等温过程(Δ T=0)、等压过程(Δ p = 0)、等容过程(Δ V=0)、绝热过程(Q = 0)等。

- 途径:实现过程的具体步骤。

例如,从同一始态到同一终态,可以有不同的途径。

(二)热力学第一定律。

1. 表达式。

- Δ U=Q + W,其中Δ U是系统内能的变化,Q是系统吸收的热量,W是环境对系统做的功。

2. 功的计算。

- 体积功W=-p_外Δ V(适用于等外压过程)。

对于理想气体的可逆过程,W = -nRTln(V_2)/(V_1)。

3. 热的计算。

- 等容热Q_V=Δ U(因为W = 0);等压热Q_p=Δ H,其中H = U + pV是焓。

(三)热化学。

1. 反应热的计算。

- 标准摩尔反应焓Δ_rH_m^θ的计算:- 由标准摩尔生成焓Δ_fH_m^θ计算:Δ_rH_m^θ=∑_iν_iΔ_fH_m^θ(产物)-∑_jν_jΔ_fH_m^θ(反应物),其中ν是化学计量数。

- 由标准摩尔燃烧焓Δ_cH_m^θ计算:Δ_rH_m^θ=-∑_iν_iΔ_cH_m^θ(产物)+∑_jν_jΔ_cH_m^θ(反应物)。

2. Hess定律。

- 化学反应不管是一步完成还是分几步完成,其反应热相同。

物理化学重要知识点总结及其考点说明

物理化学重要知识点总结及其考点说明

物理化学重要知识点总结及其考点说明
一、化学热力学
1、化学热力学的定义:化学热力学是研究化学反应中物质的热量及能量变化的学科。

2、热力学三定律:第一定律:能量守恒定律;第二定律:热力学第二定律确定有序
能可以被有度能转化;第三定律:热力学第三定律始终指出热力学反应的可能性和温度有关。

3、焓的概念:焓是衡量物质的热力学状态的量,它是物质的热力学特性连续变化的
测量,是物质拥有的热量能量,也可以视为物质拥有的有序能。

4、热力学平衡:热力学平衡是指在不变的温度、压力和其他条件下,恒定的化学反
应发生,直至反应物和生成物的物质形式和化学结构保持不变,热量吸积也变得稳定,这
种状态称为热力学平衡。

二、物理化学
1、物理化学的概念:物理化学是一门融合了物理学和化学的学科,通过应用物理方法,来研究化学性质的变化和分子间的作用及反应,其研究具有多学科的性质。

2、气体的特性:气体的物理性质有很多,如压强、体积、温度、熵、焓等。

质量和
体积的关系为:在一定温度下,气体的质量和体积都成正比。

3、溶质的溶解度:溶解度是衡量溶质溶解在溶剂中的性质,它是指在一定温度、压
力下,溶质在溶剂中的最高溶解量。

溶质的溶解度与温度,压强及溶剂特性有关。

4、化学均衡:化学均衡是指在特定温度和压强下,混合物中物质的各种浓度比例,
产物与原料之间的反应紊乱程度,变化状态的一种稳定平衡状态。

物理化学期末总结

物理化学期末总结

物理化学期末总结物理化学学期总结绪论1.物理化学的概念:物理化学是从研究化学现象和物理现象之间的相互联系入手,从而探求化学变化中具有普遍性的基本规律的一门科学。

在实验方法上主要采用物理学中的方法。

2.物理化学的研究内容(1) 化学变化的方向和限度问题。

(2) 化学反应的速率和机理问题。

(3) 物质的性质与其结构之间的关系问题。

第一章气体1.理想气体概念:任何压力机任何温度下都严格服从理想气体状态方程的气体叫做理想气体。

2.分子热运动理论:物质由大量分子构成,分子不停的做无规则的高速运动,热运动有使分子相互分散的倾向,分子间存在相互作用力:引力和斥力。

3.理想气体混合物:(1)自然界的气体多数为混合气体。

(2)假设混合气体中,各气体组分均为理想气体。

(3)混合气体服从理想气体状态方程。

4. 道尔顿分压定律:在气体混合物中,混合气体的总压力等于各气体在相同温度和相同体积下单独存在时的分压力之和。

5.阿马格分体积定律 :在气体混合物中,混合气体的总体积等于各气体在相同温度和相同压力下单独存在时的体积之和。

6. 真实气体对于理想气体的偏差的概念:由于真实气体仅在压力很低、温度较高条件下才近似符合理想气体状态方程。

而真实气体的压力、温度偏离理想气体条件时,就出现对理想气体状态方程的明显偏差。

7. 偏差的原因真实气体不符合理想气体的微观模型。

(a 真实气体分子占有一定体积;b 分子间存在相互引力)。

8.液体的饱和蒸汽压概念:是指在一定条件下,能与液体平衡共存的它的蒸汽的压力,通常也叫做蒸汽压。

同一种液体,其蒸汽压决定决定于液体所处的状态,主要取决于液体的温度,温度升高,则蒸汽压增大。

∑=B Bp p p RT n V BB ∑=第二章热力学第一定律1.热力学的研究对象:(1)热力学是研究热、功和其他形式能量之间的相互转换及其转换过程中所遵循的规律;主要基础是热力学第一定律和热力学第二定律。

(2)热力学第一定律研究各种物理变化和化学变化过程中所发生的能量效应;(3)热力学第二定律研究化学变化的方向和限度。

物理化学基础

物理化学基础

物理化学基础
物理化学是一门研究化学反应和物理现象之间关系的学科。

它涉及到化学反应的热力学、动力学、量子力学和统计力学等方面。

以下是一些物理化学基础概念:
1. 热力学:研究化学反应中能量转化和平衡的学科。

它包括热力学第一定律(能量守恒定律)、热力学第二定律(熵增定律)和热力学第三定律(绝对零度时熵为零)。

2. 动力学:研究化学反应速率和反应机制的学科。

它包括反应速率定律、反应级数、活化能等概念。

3. 量子力学:研究微观粒子行为的学科。

它包括波粒二象性、量子叠加态、量子纠缠等概念。

4. 统计力学:研究大量微观粒子集体行为的学科。

它包括玻尔兹曼分布、热力学熵、自由能等概念。

这些概念是物理化学的基础,它们相互关联,共同构成了物理化学的理论框架。

物理化学常用名词和概念-上

物理化学常用名词和概念-上

物理化学常用名词和概念-上(总4页)-本页仅作为预览文档封面,使用时请删除本页-物理化学常用名词和概念上册1.物理化学: 利用物理学的理论和实验技术,从物质的物理现象和化学现象的联系入手来探求化学变化基本规律的一门科学。

2.系统/体系: 被划定的研究对象称为系统,亦称为物系或体系。

3.环境: 与系统密切相关、有相互作用且影响能及的部分。

4.封闭系统/封闭体系: 与环境之间无物质交换,但有能量交换的一类系统。

5.孤立系统/隔离系统: 与环境之间既无物质交换,又无能量交换的系统。

6.敞开系统: 与环境之间既有物质交换,又有能量交换的系统。

7.广度性质/容量性质/广延性质/广延量: 其数值与系统所含的物质的量成正比的一类物理量。

这种性质具有加和性,在数学上是一次齐函数。

8.强度性质: 它在数值只取决于体系自身的特点,与系统的数量无关,不具有加和性的一类物理量,它在数学上是零次齐函数。

9.热力学平衡:当系统的诸性质均不随时间而改变,则系统就处于热力学平衡,它包括:热[动]平衡、力[学]平衡和物质平衡。

注意:不能说成“包括:热[动]平衡、力[学]平衡、化学平衡和相平衡”四个平衡,因为若系统没有化学反应发生就不存在化学平衡的问题,而一个系统若只有一个相也就不存在相平衡的问题,但只要有物质存在,就会有物质平衡的问题。

10.物质平衡: 系统内既没有物质从一部分到另一部分的净迁移,又无净化学反应发生。

即系统内各部分的组成均匀一致,且不随时间而变。

它可包含相平衡和化学平衡。

11.相平衡: 当系统中有多相共存时,各相的组成和数量都不随时间而改变。

12.化学平衡: 当系统中有化学反应发生时,各物质的数量均不再随时间而改变。

13.状态函数: 其数值仅取决于系统所处的状态,而与系统的历史无关;它的变化值仅取决于系统的起始和终了状态,而与发生该变化的具体途径无关的一类物理量。

在数学上具有全微分的性质,其环积分为零。

14.状态方程: 表示系统状态函数之间的定量关系式。

物理化学知识点总结

物理化学知识点总结

热力学第一定律一、基本概念1、体系和环境(1)、体系和环境体系:作为研究对象的物质及其所在的空间称为体系;环境:体系以外且与体系密切相关的物质及其所在空间称为环境;界面:体系和环境之间存在有界面,界面可以是容器的器壁,也可以是假想的界面,本质上,界面是认为设想的几何面,其中不包含物质,不具备物理和化学性质。

(2)、体系的分类体系和环境之间可以有物质和能量的交换,依据此,可将体系分为敞开体系、封闭体系、隔离体系。

①、敞开体系:体系与环境之间既有能量交换又有物质交换;②、封闭体系:体系与环境之间只有能量交换而无物质交换;③、隔离体系:体系与环境之间既无能量交换也无物质交换。

2、状态和状态函数(1)、状态和状态函数的定义状态:状态是指体系所有性质的总体表现;状态函数:体系的热力学性质称为状态函数。

(2)、状态函数的性质:①、体系的状态一定,状态函数就有定值。

②、状态函数的变化值只取决于始、末状态,与变化的经历无关。

③、状态函数的微分为全微分。

(3)、状态函数的分类。

①、广度性质:体系的广度量与物质的数量成正比,如V,U等,它具有加和性②、强度性质:体系的强度量与物质的数量无关,如T,p等,它不具有加和性。

(4)、热力学平衡态一定条件下,体系中各个相的宏观性质不随时间变化,将体系与环境隔离体系的性质仍不改变的状态。

热力学平衡态应满足如下条件:①、热平衡:体系中的各个部分温度相等,即体系内部处于热平衡,有单一的温度;②、力学平衡:体系内部处于力平衡,有单一的压力;③、相平衡:体系内部各相之间的分布达到平衡,宏观上没有任何一种物质从一个相转移到另一个相;④、化学平衡:体系内部处于化学平衡,宏观上表现为体系的组成不随时间变化。

(5)、状态函数的数学性质若状态函数①、单值性:环形积分等于零,,或可写作全微分性质:③、归一化关系④、复合函数的偏微分,则⑤、偏微商的分离⑥、完全微分3、过程与途径在一定环境条件下,体系发生由始态到终态的变化,则称体系发生了一个热力学过程,(1)、变化过程①、等温过程:体系始态与终态温度相同,且变化过程中温度始终等于环境温度、等于;②、等压过程:体系始态与终态压力相同,且变化过程中压力始终等于环境压力、等于;④、体系由变化到,程,计算其热力学函数,如热力学能、熵变等要设计过程。

高考化学物理化学基础知识清单

高考化学物理化学基础知识清单

高考化学物理化学基础知识清单一、基本概念和原理1. 原子结构:元素、原子核、电子云2. 元素周期表:元素周期性、主族元素、副族元素、过渡元素3. 化学键:离子键、共价键、金属键、氢键4. 化学方程式:物质的化学变化、摩尔比例、化学计量5. 氧化还原反应:氧化剂、还原剂、氧化态、还原态6. 酸碱中和反应:酸、碱、pH值、酸碱指示剂二、物质的性质和变化1. 固体:晶体结构、晶体缺陷、固体的力学性质2. 液体:表面张力、黏度、液体的蒸发3. 气体:理想气体状态方程、气体的扩散、气体的压力4. 溶液:溶解度、溶解过程、饱和溶液、稀释溶液5. 热力学:焓变、熵变、自由能变化、平衡常数三、化学反应与能量变化1. 反应速率:活化能、反应速率的影响因素、反应速率定律2. 化学平衡:平衡常数、化学平衡的移动、平衡浓度的影响3. 热化学:焓变、熵变、吉布斯自由能、热化学方程式四、电化学1. 电解质溶液:电离程度、强电解质、弱电解质、非电解质2. 电池:电化学电池、电动势、电解质溶液的浓度对电池电动势的影响3. 电解:电解质溶液中放电与电解质溶液中电流五、化学分析1. 离子反应:阳离子分析、阴离子分析、络合物2. 仪器分析方法:质谱、红外光谱、核磁共振等六、化学工业和实际应用1. 有机化学:烃类、醇类、酮类、醛类、酸类等2. 高分子化合物:聚合反应、聚合物的性质与应用3. 化学肥料与农药:氮肥、磷肥、钾肥、杀虫剂、除草剂等4. 化学能源与环境:石油、煤炭、天然气、核能、清洁能源以上是高考化学物理化学基础知识清单。

希望这份清单能帮助你复习和掌握化学知识,为高考取得好成绩打下坚实的基础。

祝你成功!。

大学物理化学概念总结

大学物理化学概念总结

大学物理化学概念总结篇一:大学物理化学概念总结第一章气体的pvT 关系一、理想气体状态方程 pV=(m/M)RT= nRT (1.1)或pVm=p(V/n)=RT (1.2)式中p、V、T及n的单位分别为Pa、m3、K及mol。

Vm=V/n称为气体的摩尔体积,其单位为m3·mol。

R=8.314510J·mol-1·K-1称为摩尔气体常数。

此式适用于理想,近似于地适用于低压下的真实气体。

二、理想气体混合物 1.理想气体混合物的状态方程(1.3) pV=nRT=(?nB)RTBpV=mRT/Mmix (1.4)式中Mmix为混合物的摩尔质量,其可表示为Mmixdef?ByBMB (1.5)Mmix=m/n= ?BmB /?BnB(1.6)式中MB为混合物中某一种组分B的摩尔质量。

以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。

2.道尔顿定律pB=nBRT/V=yBp (1.7)P=?pB (1.8)B理想气体混合物中某一种组分B的分压等于该组分单独存在于混合气体的温度T及总体积V的条件下所具有的压力。

而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。

以上两式适用于理想气体混合系统,也近似适用于低压混合系统。

3.阿马加定律VB*=nBRT/p=yBV (1.9)V=∑VB* (1.10)VB*表示理想气体混合物中物质B的分体积,等于纯气体B 在混合物的温度及总压条件下所占有的体积。

理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。

以上两式适用于理想气体混合系统,也近似适用于低压混合系统。

三、临界参数每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以Tc或tc表示。

我们将临界温度Tc时的饱和蒸气压称为临界压力,以pc表示。

物理化学的定义

物理化学的定义

第0章绪论§0.1 物理化学的定义、形成和发展1. 物理化学的定义化学变化种类繁多,但从本质上说都是原子或原子团的重新组合。

在原子或原子团重新组合的过程中,总是伴随着温度、压力、体积等物理性质的变化和热效应、光效应、电效应等物理现象的发生;反过来,物理性质的变化和物理效应对化学反应发生、进行和限度均可产生重要的影响。

科学发展的经验证明,深入探讨化学现象和物理现象之间的关系,是揭示化学变化规律的重要途径。

物理化学便是借助化学现象和物理现象之间的联系,利用物理学原理和数学手段研究化学现象基本规律的学科。

2. 物理化学的形成和发展俄国科学家罗蒙诺索夫(M. V. Lomomnocov,1771~1765)在十八世纪中叶首先使用了“物理化学”这个名词,但物理化学学科是在1804年道尔顿(J. Dalton, 1766~1844)提出原子论、1811年阿佛伽德罗(A. A vogadro,1776~1886)建立分子论、以及热力学第一定律、第二定律建立并应用于化学过程之后才得以形成。

一般认为,1887年德国科学家奥斯瓦尔德(W. Ostwald,1853~1932)和荷兰科学家范霍夫(J. H. van't Hoff, 1852~1911)创办《物理化学杂志》是物理化学成为一个学科的标志。

进入二十世纪后,随着现代物理学、数学、计算机科学的进展和现代测试方法的大量涌现,物理化学的各个领域均取得了突飞猛进的发展。

量子力学的创立和发展,使物理化学的研究由宏观进入微观领域;飞秒激光技术和交叉分子束技术的出现,使化学动力学的研究由静态扩展到动态;不可逆过程热力学理论、耗散结构理论、协同理论及突变理论的提出,使化学热力学的研究由平衡态转向非平衡态;低能离子散射、离子质谱、X-射线、紫外光电子能谱等技术的发展,促进了界面化学、催化科学的研究;而共振电离光谱、原子力显微镜和扫描隧道显微镜等技术的发展,促进了纳米材料和纳米结构的研究。

物化政专业的基础知识与核心概念

物化政专业的基础知识与核心概念

物化政专业的基础知识与核心概念物化政专业是指物理化学政治学专业的简称,它是一门综合性的学科,涵盖了物理学、化学和政治学这三个学科的基础知识与核心概念。

本文将从物理化学和政治学的角度,介绍物化政专业的基础知识和核心概念。

一、物理化学的基础知识与核心概念1. 物质的性质:物理化学的研究对象是物质及其性质。

物质的性质包括物理性质和化学性质。

物理性质是指物质的质量、体积、密度、颜色等可以通过物理方法来测定和观察的性质。

化学性质是指物质在化学反应中表现出来的性质,如燃烧、氧化、还原等。

2. 原子与分子:原子是物质的最小单位,由质子、中子和电子组成。

分子是由两个或更多个原子通过化学键结合而成的。

原子和分子是物质的基本组成部分,对于研究物质的性质和变化具有重要意义。

3. 化学反应:化学反应是指物质之间发生的化学变化过程。

化学反应可以分为合成反应、分解反应、置换反应和氧化还原反应等。

化学反应的速率、平衡和能量变化是物理化学研究的重要内容。

4. 物理化学定律:物理化学定律是对物质性质和变化规律的总结和归纳。

其中著名的定律有质量守恒定律、能量守恒定律、化学反应定律等。

这些定律为物理化学实验和研究提供了基础。

二、政治学的基础知识与核心概念1. 国家与政府:国家是具有独立主权的政治组织,由人民组成,有自己的领土和政治体制。

政府是国家的组织机构,代表国家行使管理和治理职能。

国家和政府是研究政治学的基本要素。

2. 政治理论:政治学研究的核心内容之一是政治理论。

政治理论包括国家理论、政权理论、政治制度理论等。

通过对政治理论的研究,可以揭示国家政权的运行规律和政治权力的性质,为政治实践提供指导。

3. 政治制度与政治文化:政治制度是指国家和政府的组织形式和运行规则。

政治文化是指国家和政府的价值观念、信仰体系和行为模式等。

政治制度和政治文化对于政治稳定和发展具有重要影响。

4. 国际关系:国际关系是指不同国家之间的相互关系。

国际关系研究的内容包括国际政治、国际经济、国际安全等方面。

物理化学知识点(全)

物理化学知识点(全)

第二章热力学第一定律内容摘要热力学第一定律表述热力学第一定律在简单变化中的应用 热力学第一定律在相变化中的应用 热力学第一定律在化学变化中的应用 一、热力学第一定律表述U Q W ∆=+ dU Q W δδ=+适用条件:封闭系统的任何热力学过程 说明:1、amb W p dV W '=-+⎰2、U 是状态函数,是广度量W 、Q 是途径函数 二、热力学第一定律在简单变化中的应用----常用公式及基础公式 过 程WQΔUΔH理想气体自由膨胀理想气体等温可逆-nRTln (V 2/V 1); -nRTln (p 1/p 2) nRTln (V 2/V 1);nRTln (p 1/p 2)0 0等 容任意物质0 ∫nCv.mdT ∫nCv.mdT ΔU+V Δp 理想气体 0 nCv.m △T nCv.m △T nCp.m △T 等 压任意物质-P ΔV ∫nCp.mdT ΔH -p ΔV Qp 理想气体-nR ΔT nCp.m △TnCv.m △T nCp.m △T 理 想 气 体 绝 热过 程 Cv.m(T 2-T 1);或nCv.m △TnCp.m △T可逆 (1/V 2γ-1-1/ V 1γ-1)p 0V 0γ/(γ-1)2、基础公式热容 C p .m =a+bT+cT 2 (附录八) ● 液固系统----Cp.m=Cv.m ● 理想气体----Cp.m-Cv.m=R ● 单原子: Cp.m=5R/2 ● 双原子: Cp.m=7R/2 ● Cp.m / Cv.m=γ理想气体• 状态方程 pV=nRT• 过程方程 恒温:1122p V p V = • 恒压: 1122//V T V T = • 恒容: 1122/ / p T p T =• 绝热可逆: 1122 p V p V γγ= 111122 T p T p γγγγ--=111122 TV T V γγ--= 三、热力学第一定律在相变化中的应用----可逆相变化与不可逆相变化过程1、 可逆相变化 Q p =n Δ相变H m W = -p ΔV无气体存在: W = 0有气体相,只需考虑气体,且视为理想气体ΔU = n Δ相变H m - p ΔV2、相变焓基础数据及相互关系 Δ冷凝H m (T) = -Δ蒸发H m (T)Δ凝固H m (T) = -Δ熔化H m (T) Δ凝华H m (T) = -Δ升华H m (T)(有关手册提供的通常为可逆相变焓)3、不可逆相变化 Δ相变H m (T 2) = Δ相变H m (T 1) +∫Σ(νB C p.m )dT 解题要点: 1.判断过程是否可逆;2.过程设计,必须包含能获得摩尔相变焓的可逆相变化步骤;3.除可逆相变化,其余步骤均为简单变化计算.4.逐步计算后加和。

物理化学基础概念

物理化学基础概念

分子的自由程:在分子的每两次连续碰撞之间所经过的路程叫做自由程,自由程在不断的无规则的变化,其平均值叫做平均自由程。

(P 36)摩尔气体常数:各种气体不论温度如何,当压力趋于零时,)/0T pv p m →(均趋于一个共同的极限值R ,R 成为摩尔气体常数,R=8.3145J ·mol -1·k -1。

(P 20)压缩因子:在压力较高或温度较低时,实际气体与理想气体的偏差很大,定义“压缩因子Z ”来衡量偏差的大小。

nRTpV RT pV Z m ==理想气体pV m =RT ,Z=1。

对实际气体,若Z>1,表明在同温、同压下,实际气体的体积要大于按理想气体方程计算的结果。

即实际气体的可压缩性比理想气体小。

当Z<1时,情况则相反。

(P 41)van der Waals (范德华)方程式:RT b V V a p m m=-+)(2 其中a,b 为修正因子,可通过表查出(P 44) 化学热力学的主要内容:根据热力学第一定律计算变化中的热效应,根据热力学第二定律解决变化的方向和限度问题。

热力学第三定律时一个关于低温现象的定律,主要时阐明了规定熵的数值。

有了这个定律,在原则上只要利用热化学的有关数据就能解决有关化学平衡的计算问题。

热力学第零定律则是热平衡的互通性,并为温度建立了严格的科学定义。

(P 64)系统与环境:我们用观察、实验等方法进行科学研究时,必须先确定所要研究的对象,把一部分物质与其余的分开(其界面可以是实际的也可以是想象的)。

这种被划定的研究对象,就称为系统(以前也称为体系),而在系统以外与系统密切相关、且影响所能及的部分,则称为环境。

(P 67) 根据系统与环境的关系,可以把系统分为三类:隔离系统:系统完全不受环境的影响,和环境之间没有物质或能量的交换。

隔离系统也称为孤立系统。

例如:一个完好的热水瓶,无热,功,物质的交换。

封闭系统:系统与环境之间没有物质的交换,但可以发生能量交换。

物理化学知识点总结

物理化学知识点总结

一、基本概念1.系统与环境敞开系统:与环境既有能量交换又有物质交换的系统。

封闭系统:与环境只有能量交换而无物质交换的系统。

(经典热力学主要研究的系统)孤立系统:不能以任何方式与环境发生相互作用的系统。

2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、体积V等。

根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。

广度性质:广度性质的值与系统中所含物质的量成正比,如体积、质量、熵、热容等,这种性质的函数具有加和性,是数学函数中的一次函数,即物质的量扩大a倍,则相应的广度函数便扩大a倍。

强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。

注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律热力学第一定律的数学表达式:对于一个微小的变化状态为:dU=公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。

它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。

或者说dU与过程无关而δQ和δW却与过程有关。

这里的W既包括体积功也包括非体积功。

以上两个式子便是热力学第一定律的数学表达式。

它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。

三、体积功的计算1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。

将一定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。

当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境之间可以自由移动的界面。

物理化学ppt课件

物理化学ppt课件

热力学第二定律与熵增原理
总结词
热力学第二定律是指在一个封闭系统中,熵(即系统的混乱度)永远不会减少,只能增加或保持不变 。
详细描述
热力学第二定律是热力学的另一个基本定律,它表明在一个封闭系统中,熵(即系统的混乱度)永远 不会减少,只能增加或保持不变。这意味着能量转换总是伴随着熵的增加,这也是为什么我们的宇宙 正在朝着更加混乱和无序的方向发展。
03
化学平衡与相平衡
化学平衡条件与平衡常数
化学反应的平衡条件
当化学反应达到平衡状态时,正逆反 应速率相等,各组分浓度保持不变。
平衡常数
平衡常数表示在一定条件下,可逆反 应达到平衡状态时,生成物浓度系数 次幂的乘积与反应物浓度系数次幂的 乘积的比值。
相平衡条件与相图分析
相平衡条件
相平衡是指在一定温度和压力下 ,物质以不同相态(固态、液态 、气态)存在的平衡状态。
色谱分析技术
色谱法的原理
色谱法是一种基于不同物 质在固定相和移动相之间 的分配平衡,实现分离和 分析的方法。
色谱法的分类
根据固定相的不同,色谱 法可分为液相色谱、气相 色谱、凝胶色谱等。
色谱法的应用
色谱法在物理化学实验中 广泛应用于分析混合物中 的各组分含量、分离纯物 质等。
质谱分析技术
质谱法的原理
05
物理化学在环境中的应用
大气污染与治理
1 2 3
大气污染概述
大气污染是指人类活动向大气中排放大量污染物 ,导致空气质量恶化,对人类健康和生态环境造 成危害的现象。
主要污染物
大气中的主要污染物包括颗粒物、二氧化硫、氮 氧化物等,这些污染物会对人体健康和环境产生 严重影响。
治理措施
针对大气污染,采取了多种治理措施,包括工业 污染源控制、机动车污染控制、城市绿化等。

物理化学知识点归纳

物理化学知识点归纳

物理化学知识点归纳物理化学是研究物质的物理性质、结构和化学反应规律的一门科学。

下面是一些常见的物理化学知识点的归纳,供参考。

1. 热力学:热力学是研究物质能量转化和平衡状态的一门科学。

常见的概念包括热力学系统、热力学过程、热力学参数等等。

2. 热力学第一定律:热力学第一定律是能量守恒定律在热力学中的表现,即能量不能被创造或被毁灭,只能由一种形式转化为另一种形式。

3. 热力学第二定律:热力学第二定律是研究热转移方向的一条基本规律。

它表明热能是从高温体传向低温体的过程,而不是相反的方向。

4. 热力学第三定律:热力学第三定律是指在绝对零度下,所有物质的熵为0,这也是指物质在0K时达到的最低可能状态。

5. 理想气体状态方程:理想气体状态方程是PV=nRT,其中P为压强,V为体积,n为物质的物质量,R为气体常数,T为绝对温度。

6. 相图和相变:相图是物质在不同温度和压力下的物态图,相变则是物质在不同条件下从一种物态转化为另一种物态的过程。

7. 热力学循环:热力学循环是指暴露在高温和低温环境中的系统,在一定数值条件下的能量转移过程。

常见的热力学循环有卡诺循环、斯特林循环等。

8. 反应动力学:反应动力学是研究化学反应速率和反应过程进展的一门科学。

常见的概念包括反应速率常数、反应级数等等。

9. 活化能:活化能是指化学反应中反应物转化为生成物所需要的最小能量。

它可以用来描述化学反应难度和速率的大小。

10. 化学平衡和平衡常数:化学平衡是指化学反应达到动态平衡状态,反向反应速率等于正向反应速率时的状态。

平衡常数可以用来量化反应平衡状态的强弱。

11. 热力学稳定性:热力学稳定性是指物质在一定条件下保持稳定状态的能力。

它是物质稳定性的一个基本特征,也可以用来判断化学反应的可行性。

12. 溶液化学:溶液化学是研究物质在溶液中的相互作用和化学反应的一门科学。

常见的概念包括溶解度、电解质、非电解质等等。

13. 离子产生平衡常数:离子产生平衡常数是指在水溶液中一种弱电解质的分解到离子和离子再结合的平衡常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子的自由程:在分子的每两次连续碰撞之间所经过的路程叫做自由程,自由程在不断的无规则的变化,其平均值叫做平均自由程。

(P 36)
摩尔气体常数:各种气体不论温度如何,当压力趋于零时,)/0
T pv p m →(均趋于一个共同的极限值R ,R 成为摩尔气体常数,R=8.3145J ·mol -1·k -1。

(P 20)
压缩因子:在压力较高或温度较低时,实际气体与理想气体的偏差很大,定义“压缩因子Z ”来衡量偏差的大小。

nRT
pV RT pV Z m ==理想气体pV m =RT ,Z=1。

对实际气体,若Z>1,表明在同温、同压下,实际气体的体积要大于按理想气体方程计算的结果。

即实际气体的可压缩性比理想气体小。

当Z<1时,情况则相反。

(P 41)
van der Waals (范德华)方程式:RT b V V a
p m m
=-+)(2 其中a,b 为修正因子,可通过表查出(P 44)
化学热力学的主要内容:根据热力学第一定律计算变化中的热效应,根据热力学第二定律解决变化的方向和限度问题。

热力学第三定律时一个关于低温现象的定律,主要时阐明了规定熵的数值。

有了这个定律,在原则上只要利用热化学的有关数据就能解决有关化学平衡的计算问题。

热力学第零定律则是热平衡的互通性,并为温度建立了严格的科学定义。

(P 64) 系统与环境:我们用观察、实验等方法进行科学研究时,必须先确定所要研究的对象,把一部分物质与其余的分开(其界面可以是实际的也可以是想象的)。

这种被划定的研究对象,就称为系统(以前也称为体系),而在系统以外与系统密切相关、且影响所能及的部分,则称为环境。

(P 67)
根据系统与环境的关系,可以把系统分为三类:
隔离系统:系统完全不受环境的影响,和环境之间没有物质或能量的交换。

隔离系统也称为孤立系统。

例如:一个完好的热水瓶,无热,功,物质的交换。

封闭系统:系统与环境之间没有物质的交换,但可以发生能量交换。

例如:一个不保温的热水瓶。

敞开系统:系统不受任何限制,与环境之间可以有能量交换,也可以有物质的交换。

例如:一个打开瓶塞的热水瓶。

(P 67)
状态函数:当系统处于一定的状态时(定态),系统的性质只决定于它现在所处的状态,而与其过去的历史无关。

若外界条件不变,系统的各种性质就不会发生变化。

而当系统的状态发生变化时,它的一系列性质也随之而改变,改变多少,只取决于系统的开始和终了状态,而与变化时所经历的途径无关。

无论经历多么复杂的变化,只要系统恢复原状,则这些性质也恢复原状。

在热力学中,把具有这种特性的物理量叫做状态函数。

状态函数在数学上具有全微分的性质,可以按全微分的关系来处理。

热:由于温度不同,而在系统与环境间交换或传递的能量就是热,用符号Q 表示。

并规定,当系统吸热时,Q 取正值,即Q>0,系统放热时,Q 取负值,即Q<0。

焓:常用符号H 表示,是表示物质系统能量的状态函数:H=U+PV (式中U 是系统内能,P 是压力,V 是体积)。

焓是体系的性质,在一定状态下,每一种物质都有特定的焓,但无法测定焓的绝对值,在化学上,可通过测定恒压化学反应的热效应,从而求得生成物与反应物之间的焓的差值,即焓变。

用∆H 表示,即∆H=H 生成物-H 反应物,如果化学反应的∆H 为正值,则反应为吸热反应,表示体系从环境吸收热能,∆H 为负值,则反应为放热反应,表示体系向环境放出热能。

∆H 与反应物或生成物的质量成正比。

正反应与逆反应的∆H 值大小相等而符号相反,如果一个反应可以看成是多个反应之和,那么,总反应的∆H 就等于各步反
应的焓变之和。

熵:体系内部质点混乱程度或无序程度的量度,是物质的一个状态函数,常用S表示。

当物质的聚集状态发生改变时,其熵值就会改变,在一定条件下,每个化学反应都有一定的熵变值。

化学反应的熵变,就是生成物与反应物熵的差,熵变用∆S表示,一个气体化学反应,若是分子数增加的,则熵增大,此时体系的混乱度增大;若是分子数减少的,则熵减小,此时体系的混乱度减小,给一个体系加热,可使体系内部指点的混乱度增大,熵增大,故熵变∆S跟加给体系的热量∆Q成正比;∆S∝∆Q。

给体系加热时的温度不同,引起混乱度的增大也有所不同,相对来说,低温下加热引起的混乱度增大更为显著,故熵变∆S跟温度成反比,即∆S∝1/T。

由上述两种关系可以得到∆S=∆Q/T。

当体系的热力学温度趋于零度时,混乱度为最小,此时熵值也趋于零。

汽化热:在温度不变的条件下,单位质量(常以克为单位)的液体转化为气体时所吸收的热量,如100℃时水的汽化热为539卡/克。

比热:将1克物质升高摄氏1度所需要的热量。

热量若以焦耳(J)为单位,比热的单位应该是J/g·℃。

如水的比热为4.18 J/g·℃。

热量若以卡(cal)为单位,水的比热为1cal/g·℃。

比容:单位质量物质的容积,是密度的倒数。

热容:使物系温度升高1摄氏度时所需要的热量,称该物系的热容。

如果物系的质量为1克,其热容又称作比热,如果是1摩尔,称摩尔热容。

蒸发潜热:也称蒸发焓,用∆Hv表示,它是在相同温度下饱和蒸汽的焓与饱和液体焓的差。

(热力学,P286)
全热、显热、潜热:温度升高需要的热量叫显热,物质不发生相变(固液气转变)吸收或放出热量。

物体蒸发需要的热量叫潜热物质发生相变过程吸收或放出的热量。

全热就是显热+潜热。

如1mol水(100℃)蒸发成1mol水蒸汽(100℃)需要吸收40.62kj的热量,这部分热量就是潜热;而1mol60℃水升温至100℃(无水蒸汽生成)需要吸收的热量(约3.014kj)就是显热。

显热和潜热的比值决定相对湿度,显热决定室内温度。

绝对压强:以绝对零压作为起点计算的压强称为绝对压强,是流体的真实压强。

表压强:表压强=绝对压强-大气压强。

真空度:当被测流体的绝对压强小于外界大气压时,所用的测压仪表称为真空表。

真空度=大气压强-绝对压强。

沉降槽,澄清槽:工业上的沉降操作一般分为浓缩和澄清两大类,前者主要是为了将悬浮液增稠,后者主要是为了从比较稀的悬浮液中除去少量悬浮物,用于浓缩操作的设备曾称为增稠器,又叫沉降槽,用于澄清操作的设备称为澄清槽。

压缩比:出口压力与进口压力之比。

过电位:又称过电压,或超电压。

电解时,实际所需的分解电压超过理论值的那部分电压称超电压。

如理论分解电压为1.2伏特,实际需要的电压为1.7伏特,那么超电压即为0.5伏特。

一般说来气体的超电压都比较大,金属的超电压,除铁,钴,镍外都比较小。

对同一析出物来说,其超电压也不是恒定的。

如氢气的超电压在铁电极上是0.08伏特,在镍电极上则是0.21伏特。

超电压除跟析出物质的性质,状态和电极材料有关外,还跟电流密度,温度,溶液浓度及其他多种因素有关。

在电解工业中,超电压的存在会造成多耗电能,是个不利条件,但有时也能发挥有利作用,如在微酸性的锌盐溶液中镀锌时,按理论计算,阴极上应析出氢气,但由于氢气超电压较大,实际析出的是锌而不是氢气,这样,在镀件上就可以得到锌镀层了。

公称压力:阀门的公称压力是指在国家标准规定温度下阀门允许的最大工作压力,以便用来选用管道的标准元件(规定温度;对于铸铁和铜阀门为0--120℃;对于碳素钢阀门为0--200℃;对于钼钢和铬钼钢阀门为0--350℃),以符号PN表示。

阀门的通道直径是按管
子的公称直径进行制造的.所以阀门公称直径也就是管子的公称直径。

所谓公称直径是国家标准中规定的计算直径(不是管道的实际内径),用符号DN表示。

相关文档
最新文档