中国风能资源贮量

合集下载

中国风能资源分布

中国风能资源分布
2.沿海及其岛屿地丰富带。年有效风能功率密度在 200 瓦/米2以上,将风 能功率密度线平行于海岸线,沿海岛屿风能功率密度在 500 瓦/米2以上如台山、 平潭、东山、南鹿、大陈、嵊泗、南澳、马祖、马公、东沙等。可利用小时数约 在 7000-8000 小时,这一地区特别是东南沿海,由海岸向内陆是丘陵连绵,所以 风能丰富地区仅在海岸 50km之内,再向内陆不但不是风能丰富区,反而成为全 国最小风能区,风能功率密度仅 50 瓦/米2左右,基本上是风能不能利用的地区。
综观上述,冬春季的冷空气、夏秋的台风,都能影响到沿海及其岛屿。相对 内陆来说这里形成了我国风能丰富带。由于台湾海峡的狭管效应的影响,东南沿 海及其岛屿是我国风能最佳丰富区。我国有海岸线 18000 多公里,岛屿 6000 多 个,这里是风能大有开发利用的前景的地区。
3.内陆风能丰富地区,在两个风能丰富带之外,风能功率密度一般在 100w/m2 以下,可以利用小时数 3000 小时以下。但是在一些地区由于湖泊和特殊地形的 影响,风能也较丰富,如鄱阳湖附近较周围地区风能就大,湖南衡山、安徽的黄 山、云南太华山等也较平地风能为大。但是这些只限于很小范围之内,不像两大 带那样大的面积,特别是三北地区面积更大。
东南沿海又受台湾海峡的影响,每当冷空气南下到达时,由于狭管效应的结果使 风速增大,这里是我国风能资源最佳的地区。
2
在沿海每年夏秋季节都可受到热带气旋的影响,当热带气旋风速达到 8 级 (17.2m/s)以上时,称为台风。台风是一种直径 1000km 左右的圆形气旋,中心 气压极低,台风中心 0-30km 范围内是台风眼,台风眼中天气较好,风速很小。 在台风眼外壁天气最为恶劣,最大破坏风速就出现在这个范围内,所以一般只要 不是在台风正面直接登陆的地区,风速一般小于 10 级(26m/s),它的影响平均 有 800~1000km 的直经范围,每当台风登陆后我国沿海可以产生一次大风过程, 而风速基本上在风力机切出风速范围之内。是一次满发电的好机会。

世界及中国风能资源分布

世界及中国风能资源分布

中国风资源பைடு நூலகம்布
中国风能资源较丰富省区10m
省区 内蒙古
风能资源 10;000kW
6178
省区 山东
风能资源 10;000kW
394
新疆
3433
江西
293
黑龙江
1723
江苏
238
甘肃
1143
广东
195
吉林
638
浙江
164
河北
612
福建
137
辽宁
606
海南
64
世界及中国风能资源分布
一 全球风资源总体介绍
地球上的风能资源十分丰富;根据相关资料统计;每年来自外层空 间的辐射能为1 5×1018kWh;其中的2 5%即3 8×1016kWh的能量被大气 吸收;产生大约4 3×l0l2kWh的风能;
地区
北美 拉丁美洲和加勒比
西欧 东欧和独联体
中东和北非 撒哈拉以南非洲
美国风资源分布图
南 美 洲
澳 洲
三 中国风资源分布状况
根据全国风能详查和评价结果;我国陆上50m高度年平均风功率密度大 于等于300瓦/平方米的风能资源理论储量为73亿千瓦; 风能资源丰富和较丰 富的地区主要分布在两个大带里; 第一是三北东北 华北 西北地区丰富带; 第二是沿海及其岛屿地丰富带; 另外在一些地区由于湖泊和特殊地形的影响; 风能也较丰富;成为内陆风能丰富地区;
30
4188
20
1056
11
243
6
29143
27
风能资源受地形 的影响较大;世界风能 资源多集中在沿海和 开阔大陆的收缩地带;
8级以上的风能 高值区主要分布于南 半球中高纬度洋面和 北半球的北大西洋 北

中国风能资源储量与分布

中国风能资源储量与分布

中国风能资源储量与分布我国位于亚洲大陆东部,濒临太平洋,季风强盛,内陆还有许多山系,地形复杂,加之青藏高原耸立我国西部,改变了海陆影响所引起的气压分布和大气环流,增加了我国季风的复杂性。

冬季风来自西伯利亚和蒙古等中高纬度的内陆,那里空气十分严寒干燥冷空气积累到一定程度,在有利高空环流引导下,就会爆发南下俗称寒潮,在此频频南下的强冷空气控制和影响下,形成寒冷干燥的西北风侵袭我国北方各省(直辖市、自治区)。

每年冬季总有多次大幅度降温的强冷空气南下,主要影响我国西北、东北和华北,直到次年春夏之交才消失。

夏季风是来自太平洋的东南风、印度洋和南海的西南风,东南季风影响遍及我国东半壁,西南季风则影响西南各省和南部沿海,但风速远不及东南季风大。

热带风暴是太平洋西部和南海热带海洋上形成的空气涡漩,是破坏力极大的海洋风暴,每年夏秋两季频繁侵袭我国,登陆我国南海之滨和东南沿海,热带风暴也能在上海以北登陆,但次数很少。

青藏高原地势高亢开阔,冬季东南部盛行偏南风,东北部多为东北风,其他地区一般为偏西风,夏季大约以唐古拉山为界,以南盛行东南风,以北为东至东北风。

我国幅员辽阔,陆疆总长达2万多公里,还有1800O多公里的海岸线,边缘海中有岛屿5000多个,风能资源丰富。

我国现有风电场场址的年平均风速均达到6米/秒以上。

一般认为,可将风电场风况分为三类:年平均风速6米/秒以上时为较好;7米/秒以上为好;8米/秒以上为很好。

可按风速频率曲线和机组功率曲线,估算国际标准大气状态下该机组的年发电量。

我国相当于6米/秒以上的地区,在全国范围内仅仅限于较少数几个地带。

就内陆而言,大约仅占全国总面积的1/1OO,主要分布在长江到南澳岛之间的东南沿海及其岛屿,这些地区是我国最大的风能资源区以及风能资源丰富区,包括山东、辽东半岛、黄海之滨,南澳岛以西的南海沿海、海南岛和南海诸岛,内蒙古从阴山山脉以北到大兴安岭以北,新疆达板城,阿拉山口,河西走廊,松花江下游,张家口北部等地区以及分布各地的高山山口和山顶。

中国风能资源的详查和评估

中国风能资源的详查和评估

风能是清洁的可再生能源,大力开发利用风能资源是有效应对气候变化的重要举措之一。

中国政府十分重视风能资源的有序开发和合理利用,20世纪70年代至2006年期间,先后组织开展了3次全国风能资源普查,为我国的风能资源开发提供了基础依据;为更好地满足我国风能资源持续、有序、合理地规划和开发利用需要,国家发改委、财政部及国家相关部门决定在之前全国风中国风能资源的详查和评估■文︱中国气象局风能太阳能资源评估中心能资源普查结果的基础上,实施“全国风能详查和评价”项目,该项目针对中国大陆风能资源丰富、适宜建设大型风电场、具备风能资源规模化开发利用条件的地区,通过现场观测、数值模拟、综合分析等技术手段,进一步摸清我国陆上风能资源特点及其分布,为促进我国风电又好又快发展做好前期工作。

该项目于2008年正式启动,由中国气象局具体牵头组织实施。

一、中国风能资源详查和评估技术发展和项目主要成果1. 初步建立全国陆上风能资源专业观测网依托全国风能资源详查和评价工作,中国气象局针对风能资源规划和风电场选址需要,采用规范、统一的标准,在中国大陆风能资源可利用区域设立了400座70~120米高的测风塔,初步建成了全国陆上风能资源专图1 全国风能资源专业观测网测风塔分布示意图业观测网(图1),该专业观测网于2009年5月正式全网观测运行,已获取的实地观测数据为全国(陆上)风能详查和评价提供了可靠的依据,同时也为规范风能资源观测的专业化运行和管理积累了丰富的实际操作经验。

该专业观测网的持续运行,可为开展风能预报业务和风电场后评估提供基础支持。

2. 研发了适用于中国的风能资源评估系统中国气象局风能太阳能资源评估中心在引进和吸收加拿大、丹麦和美国等风能数值模拟评估的成功经验基础上,根据中国地理、气候特点进行改进和优化,采用先进的地理信息系统(GIS)分析技术,开发了适于中国气候和地理特点的风能资源评估系统(W E R A S/C M A),数值模拟的水平分辨率达到1千米以下,风能参数模拟精度能够满足各级风电规划和风电场选址需要。

世界及中国风能资源分布

世界及中国风能资源分布

北美 拉丁美洲和加勒比 西欧 东欧和独联体 中东和北非
撒哈拉以南非洲 太平洋地区 (中国) 中亚和南亚
19339 18482 4742 23049
7876 3310 1968 6783 2566
2209 4188 1056 243
41 18 42 29 32
世界及中国风能资源分布
一、全球风资源总体介绍
地球上的风能资源十分丰富,根据相关资料统计,每年来自外层 空间的辐射能为1.5×1018kWh,其中的2.5%即3.8×1016kWh的能量被 大气吸收,产生大约4.3×l0l2kWh的风能。
全球风能资源分布
地区 陆地面积(km2) 风力为3~7级所占的 风力为3~7级所占的 面积(km2) 面积比例(%)
全球陆上年平均风速分布图
二、全球区域风资源分布
欧洲 欧洲是世界风能利用最 发达的地区,其风资源非 常丰富。欧洲沿海地区风 资源最为丰富,主要包括 英国和冰岛沿海、西班牙、 法国、德国和挪威的大西 洋沿海,以及波罗的海沿 海地区,其年平均风速可 达9m/s以上。整个欧洲大 陆,除了伊比利亚半岛中 部、意大利北部、罗马尼 亚和保加利亚等部分东南 欧地区以及土耳其地区以 外(该区域风速较小,在 4至5m/s以下),其他大 部分地区的风速都较大, 基本在6至7m/s以上。
亚 洲
非 洲
中北美洲 北美洲地形开阔平 坦,其风资源主要分 布于北美大陆中东部 及其东西部沿海以及 加勒比海地区。美国 中部地区,地处广袤 的北美大草原,地势 平坦开阔,其年平均 风速均在7m/s以上, 风资源蕴藏量巨大, 开发价值很大。北美 洲东西部沿海风速达 到9m/s,加勒比海地 区岛屿众多,大部分 沿海风速均在7m/s以 上,风能储量也十分 巨大。

【精品】风电知识问答

【精品】风电知识问答

【精品】风电知识问答一、关于风电 1、风能来源于何处?答:风能是由太阳辐射热引起的,是太阳能的一种转换形式。

太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。

据估计,到达地球的太阳能中大约有 2%转化为风能,全球风能约为 2. 74 109MW,其中可利用的风能为 2 107MW,比地球上可开发利用的水能总量大 1 0 倍。

2、我国的风能总量有多少?答:我国 10 米高度层的风能资源总储量为 32. 26 亿千瓦,其中实际可开发利用的风能资源储量为 2. 53 亿千瓦。

据估计,我国近海风能资源约为陆地的 3 倍。

因此,我国可开发风能资源总量约为 10 亿千瓦。

3、风机功率如何计算?答:一般来讲,风机叶片从风中吸收的功率可以用下面的公式表示:功率= 1/2 空气密度面积风速 3 风能利用系数面积=R2 其中,功率单位为瓦特;空气密度单位为千克/立方米,空气密度随气压和温度而变;面积指风轮扫掠面积,单位为平方米;风速单位为米/秒;风能利用系数为风力机将风能转换为机械能的效率,它与风速、叶片转速、叶片直径和桨叶节距角均有关系,是1/ 12叶尖速比和叶节距角的函数。

于上述公式中可以看出,风功率与速度的三次方(立方)成正比,并与风叶扫掠面积成正比。

4、什么是海风、陆风?答:白天,大陆上的气流受热膨胀上升至高空流向海洋,到海洋上空冷却下沉,在近地层海洋上的气流吹向大陆,补偿大陆的上升气流,低层风从海洋吹向大陆,称为海风;夜间,情况相反,低层风从大陆吹向海洋,称为陆风。

5、为什么说风能是一种绿色能源?答:风能是一种干净的自然能源,没有常规能源与核电会造成环境污染的问题。

风电机组平均每发电 1 亿千瓦时,按同比等量计算,相当于节约标准煤 3. 8 万吨,节水 31 万吨,减排二氧化碳 10. 5 万吨、二氧化硫 600 吨。

而且风机不会危害鸟类和其它野生动物。

在常规能源告急和全球生态环境恶化的双重压力下,风能作为一种高效清洁的新能源有着巨大的发展潜力。

我国风能资源储量及分布情况

我国风能资源储量及分布情况

我国风能资源储量及分布情况内容摘要:内蒙古、东北三省、甘肃、青海、河北、西藏以及新疆等地的风功率密度在200-300W/m2以上,有的甚至达到500W/m2以上,该地带近200km宽,可开发利用风能储量约2亿kW,约占全国可利用储量79%。

我国幅员辽阔,海岸线长,风能资源丰富。

全国900多个气象站对陆地上离地10m高度的资料估算得出:全国平均风功率密度约为100W/m2,风资源总储量约32.26亿kW,可幵发利用陆上风能约2.53亿kW,近海可开发利用风能约7.5亿kW。

陆上风电年上网电量若按等效满负荷2000小时计算,每年可提供电量5000亿千瓦时,海上风电年上网电量若按等效满负荷2500小时计算,每年可提供电量1.8万亿千瓦时,共2.3万亿千瓦时电量。

>《2012-2016年中国风能设备市场分析及投资方向研究报告》我国风资源丰富,开发前景广阔,必将在未来能源结构中占有重要地位。

由下图可以看出,我国风能主要分布在四个区域:(1) “三北”地区内蒙古、东北三省、甘肃、青海、河北、西藏以及新疆等地的风功率密度在200-300W/m2以上,有的甚至达到500W/m2以上,该地带近200km宽,可开发利用风能储量约2亿kW,约占全国可利用储量79%。

该地区地形平坦、交通方便、无破坏性风速,是我国最大的风能资源区,有利于风电场的大规模开发。

但,风电场建设过程中必须注意低温以及沙尘暴的影响。

(2)东南沿海地区该地区受台湾海峡影响,由于狭管效应,每当冷空气南下到达台湾海峡风速便会增大。

冬春季冷空气以及夏秋台风都会影响沿海及其岛均,带来丰富风能资源。

我国海岸线长达1800km,岛均多达6000多个,风能开发利用前景广阔。

该地区风能丰富带,年有效风功率密度在200W/ni2以上,沿海岛11|弓风功率密度在500W/m2以上,如台山、平潭、东山、南鹿、大陈等,可利用小时数平均在7000-8000小时。

东南沿海地区,海岸向内陆丘陵连绵,风能丰富地区距海岸不到50km。

我国风电资源分布表

我国风电资源分布表

表2-1是我国风能分区及占我国面积的百分比,表2-2是我国风能资源分布:
表2-1 我国风能分区及占我国面积百分比
指标丰富区较丰富区可利用区贫乏区
年有效风能密度(W/m2)>200 200-150 <150-50 <50
年≥3m/s累计小时数(h)>5000 5000-4000 <4000-2000 <2000
年≥6m/s累计小时数(h)>2200 2200-1500 <1500-350 <350
占全国面积的百分比(%)8 18 50 24
资料来源:网络搜集表2-2 我国风能资源分布
风功率密度分布地区
三北地区风能丰富带>200~300W/m2 三北指的是东北、华北和西北,包括东北三省、河北、内蒙
古、甘肃、青海、西藏和新疆等省/自治区;
沿海地区风能丰富带>200W/m2 台山、平潭、东山、南鹿、大陈、嵊泗、南澳、马祖、马公、
东沙等;
内陆局部风能丰富区<100W/m2 鄱阳湖、湖南衡山、湖北的九宫山、河南的嵩山、山西的五
台山、安徽的黄山、云南太华山等;
海上风能丰富区我国近海50m等深线浅海域10m高度,包括福建、江苏、
山东、浙江、辽宁、上海、河北、广西、海南、天津等。

资料来源:网络搜集。

风力发电基本知识

风力发电基本知识

风力发电基础知识风力发电是把风的动能转为电能。

风能作为一种清洁的可再生能源,越来越受到世界各国的重视。

其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW,比地球上可开发利用的水能总量还要大10倍。

风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。

中文名风力发电外文名wind power generation使用介质自然风力资源约10亿kW资源我国风能资源丰富,可开发利用的风能储量约10亿kW,其中,陆地上风能储量约2.53亿kW(陆地上离地10m高度资料计算),海上可开发和利用的风能储量约7.5亿kW,共计10亿kW。

而2003年底全国电力装机约5.67亿kW。

风是没有公害的能源之一。

而且它取之不尽,用之不竭。

对于缺水、缺燃料和交通不便的沿海岛屿、草原牧区、山区和高原地带,因地制宜地利用风力发电,非常适合,大有可为。

海上风电是可再生能源发展的重要领域,是推动风电技术进步和产业升级的重要力量,是促进能源结构调整的重要措施。

我国海上风能资源丰富,加快海上风电项目建设,对于促进沿海地区治理大气雾霾、调整能源结构和转变经济发展方式具有重要意义。

国家能源局2015年9月21日发布数据显示,到2015年7月底,纳入海上风电开发建设方案的项目已建成投产2个、装机容量6.1万千瓦,核准在建9个、装机容量170.2万千瓦,核准待建6个,装机容量154万千瓦。

这与2014年末国家能源局《全国海上风电开发建设方案(2014-2016)》规划的总装机容量1053万千瓦的44个项目相距甚远。

为此,国家能源局要求,进一步做好海上风电开发建设工作,加快推动海上风电发展。

利用风是一种潜力很大的新能源,十八世纪初,横扫英法两国的一次狂暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。

中国风能分布

中国风能分布
东南沿海又受台湾海峡的影响,每当冷空气南下到达时,由于狭管效应的结果使 风速增大,这里是我国风能资源最佳的地区。
2
在沿海每年夏秋季节都可受到热带气旋的影响,当热带气旋风速达到 8 级 (17.2m/s)以上时,称为台风。台风是一种直径 1000km 左右的圆形气旋,中心 气压极低,台风中心 0-30km 范围内是台风眼,台风眼中天气较好,风速很小。 在台风眼外壁天气最为恶劣,最大破坏风速就出现在这个范围内,所以一般只要 不是在台风正面直接登陆的地区,风速一般小于 10 级(26m/s),它的影响平均 有 800~1000km 的直经范围,每当台风登陆后我国沿海可以产生一次大风过程, 而风速基本上在风力机切出风速范围之内。是一次满发电的好机会。
R' = 0.785R/10 = 2.53 亿 kW。
4
夏季(6~8 月)东亚地面气压分布开势与冬季完全相反。这时中、高纬度的 蒙古高压向北退缩的已不清楚,相反地印度低压继续发展控制了亚州大陆,为全 年最盛的季节。大平洋副热带高压等时也向北扩展和向大陆西伸。可以说东亚大 陆夏季的天气气候变化基本上受这两个环流系统的强弱和相互作用所制约。
随着太平洋副热带高压的西伸北跳,我国东部地区均可受到它的影响,在此 高压的西部为东南气流和西南气流带来了丰富的降水,但由于高、低压间压差小, 风速不大,夏季是全国全年风速最小的季节。
在春季这几种气流在我国频繁的交绥。春季是我国气旋活动最多的季节,特 别是我国东北及内蒙一带气旋活动频繁,造成内蒙和东北的大风和沙暴天气。同 样地江南气旋活动也较多,但造成的却是春雨和华南雨季。这也是三北地区风资 源较南方丰富的一个主要的原因。全国风向已不如冬季风那样稳定少变,但仍以 偏北风占优势,但风的偏南分量显著的增加。
< 1500-350

最新我国风力发电场地分布情况

最新我国风力发电场地分布情况

我国风力发电场的分布情况我国有效风能分布图根据图中国风力资源分布状况图,我国风能资源丰富的地区主要分布在以下地区:(1)三北(东北、华北、西北)地区丰富带,风能功率密度在200~300瓦/米2以上,有的可达500瓦/米2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等、可利用的小时数在5000小时以上,有的可达7000小时以上.这一风能丰富带的形成,主要是由于三北地区处于中高纬度的地理位置有关.(2)东南沿海及附近岛屿包括山东、江苏、上海、浙江、福建、广东、广西和海南等省(市)沿海近10 公里宽的地带,年风功率密度在200W/m2米以上.(3)内陆个别地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区.(4)近海地区,我国东部沿海水深5米到20米的海域面积辽阔,按照与陆上风能资源同样的方法估测,10米高度可利用的风能资源约是陆上的3倍,即7亿多千瓦.根据中国气象科学研究院绘制的全国平均风功率密度分布图,中国陆地10m高度层的风能总储量为32.26亿KW,居世界第一位。

我国陆上实际可开发风能资源储量为2.53亿千瓦,近海风场的可开发风能资源是陆上3倍,则总的可开发风能资源约10亿千瓦。

也就是说,如果中国的风力资源开发60%,那么仅风能就可以支撑中国目前每年全部的电力需求。

中国的风电资源不仅丰富,而且分布基本均匀。

东南沿海及其岛屿、青藏高原、西北、华北、新疆、内蒙古和东北部分地区都属于风能储藏量比较丰富的地区,而甘肃、山东、苏北、皖北等地区也有相当大比例的风能资源可以有效利用。

我国陆地上从新疆、甘肃、宁夏到内蒙古,是一个大风力带;同时还有许多大风口,如张家口地区,鄱阳湖湖口地区、云南大理等。

这些为风能的集中开发利用提供了极大的便利。

到2008年底,中国的风电装机容量达到1200万千瓦,现在在全世界是位居第四位,装机容量近三年来是连续成倍增长。

如果按照现在这样的增长速度,到2010年底,可能会达到3000万千瓦。

中国风电发展现状与未来展望

中国风电发展现状与未来展望

中国风电发展现状与未来展望一、风能资源风能储量我国幅员辽阔,海岸线长,风能资源比较丰富;根据全国900多个气象站陆地上离地10m高度资料进行估算,全国平均风功率密度为100W/m2,风能资源总储量约亿kW,可开发和利用的陆地上风能储量有亿kW,近海可开发和利用的风能储量有亿kW,共计约10亿kW;如果陆上风电年上网电量按等效满负荷2000小时计,每年可提供5000亿千瓦时电量,海上风电年上网电量按等效满负荷2500小时计,每年可提供万亿千瓦时电量,合计万亿千瓦时电量;风能资源分布我国面积广大,地形条件复杂,风能资源状况及分布特点随地形、地理位置不同而有所不同;风能资源丰富的地区主要分布在东南沿海及附近岛屿以及北部地区;另外,内陆也有个别风能丰富点,海上风能资源也非常丰富;北部东北、华北、西北地区风能丰富带;北部东北、华北、西北地区风能丰富带包括东北三省、河北、内蒙古、甘肃、青海、西藏和新疆等省/自治区近200km宽的地带;三北地区风能资源丰富,风电场地形平坦,交通方便,没有破坏性风速,是我国连成一片的最大风能资源区,有利于大规模的开发风电场,但是当地电网容量较小,限制了风电的规模,而且距离负荷中心远,需要长距离输电;沿海及其岛屿地区风能丰富带;沿海及其岛屿地区包括山东、江苏、上海、浙江、福建、广东、广西和海南等省/市沿海近10km宽的地带,冬春季的冷空气、夏秋的台风,都能影响到沿海及其岛屿,加上台湾海峡狭管效应的影响,东南沿海及其岛屿是我国风能最佳丰富区;沿海地区经济发达,沿海及其岛屿地区风能资源丰富,风电场接入系统方便,与水电具有较好的季节互补性;然而沿海岸的土地大部份已开发成水产养殖场或建成防护林带,可以安装风电机组的土地面积有限;内陆风能丰富点;在内陆一些地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区;海上风能丰富区;我国海上风能资源丰富,东部沿海水深2m到15m的海域面积辽阔,按照与陆上风能资源同样的方法估测,10m高度可利用的风能资源约是陆上的3倍,即7亿多kW,而且距离电力负荷中心很近;随着海上风电场技术的发展成熟,经济上可行,将来必然会成为重要的可持续能源;二、风电的发展建设规模不断扩大,风电场管理逐步规范1986年建设山东荣成第一个示范风电场至今,经过近20多年的努力,风电场装机规模不断扩大截止2004年底,全国建成43个风电场,安装风电机组1292台,装机规模达到万kW,居世界第10位,亚洲第3位位于印度和日本之后;另外,有关部门组织编制有关风电前期、建设和运行规程,风电场管理逐步走向规范化;专业队伍和设备制造水平提高,具备大规模发展风电的条件经过多年的实践,培养了一批专业的风电设计、开发建设和运行管理队伍,大型风电机组的制造技术我国已基本掌握,主要零部件国内都能自己制造;其中,600kW及以下机组已有一定数量的整机厂,初步形成了整机试制和小批量生产;截止2004年底,本地化风电机组所占市场份额已经达到18%,设备制造水平不断提高,目前,我国已经具备了设计和制造750kW定桨距定转速机型的能力,相当于国际上二十世纪90年代中期的水平;与国外联合设计的1200千瓦和独立设计的1000千瓦变桨距变转速型样机于2005年安装,进行试验运行;风力发电成本逐步降低随着风电产业的形成和规模发展,通过引进技术,加速风电机组本地化进程以及加强风电场建设和运行管理,我国风电场建设和运行的成本逐步降低,初始投资从1994年的约12000元/kW降低到目前的约9000元/kW;同时风电的上网电价也从超过元/kWh降低到约元/kWh;2003年国务院电价改革方案规定风电暂不参与市场竞争,电量由电网企业按政府定价或招标价格优先购买;国家发展改革委从2003年开始推行风电特许权开发方式,通过招投标确定风电开发商和上网电价,并与电网公司签订规范的购电协议,保证风电电量全部上网,风电电价高出常规电源部分在全省范围内分摊,有利于吸引国内外各类投资者开发风电;2005年2月28日通过的中华人民共和国可再生能源法中规定了“可再生能源发电项目的上网电价,由国务院价格主管部门根据不同类型可再生能源发电的特点和不同地区的情况,按照有利于促进可再生能源开发利用和经济合理的原则确定”,“电网企业为收购可再生能源电量而支付的合理的接网费用以及其他合理的相关费用,可以计入电网企业输电成本,并从销售电价中回收;”和“电网企业依照本法第十九条规定确定的上网电价收购可再生能源电量所发生的费用,高于按照常规能源发电平均上网电价计算所发生费用之间的差额,附加在销售电价中分摊”,将风电特许权项目中的特殊之处已经用法律条文作为通用的规定,今后风电的发展应纳入法制的框架;三、存在问题资源需要进行第二轮风能资源普查,在现有气象台站的观测数据的基础上,按照近年来国际通用的规范进行资源总量评估,进而采用数值模拟技术编制高分辨率的风能资源分布图,评估风能资源技术可开发量;更重要的是应该利用GIS地理信息系统技术将电网、道路、场址可利用土地,环境影响、当地社会经济发展规划等因素综合考虑,进行经济可开发储量评估;风电设备生产本地化现有制造水平远落后于市场对技术的需求,国内定型风电机组的功率均为兆瓦级以下,最大750千瓦,而市场需要以兆瓦级为主流;国内风电机组制造企业面临着技术路线从定桨定速提升到变桨变速,单机功率从百千瓦级提升到兆瓦级的双重压力,技术路线跨度较大关;自主研发力量严重不足,由于国家和企业投入的资金较少,缺乏基础研究积累和人才,我国在风力发电机组的研发能力上还有待提高,总体来说还处于跟踪和引进国外的先进技术阶段;目前国内引进的许可证,有的是国外淘汰技术,有的图纸虽然先进,但受限于国内配套厂的技术、工艺、材料等原因,导致国产化的零部件质量、性能需要一定时间才能达到国际水平;购买生产许可证技术的国内厂商要支付昂贵的技术使用费,其机组性能价格比的优势在初期不明显;在研发风电机组过程中注重于产品本身,而对研发过程中需要配套的工作重视不够;由于试验和测试手段的不完备,有些零部件在实验室要做的工作必须总装后到风电场现场才能做;风电机组的测试和认证体系尚未建立;风电机组配套零部件的研发和产业化水平较低,这样增加了整机开发的难度和速度;特别是对于变桨变速型风机,国内相关零部件研发、制造方面处于起步阶段,如变桨距系统,低速永磁同步发电机,双馈式发电机、变速型齿轮箱,交直交变流器及电控系统,都需要进行科技攻关和研发;成本和上网电价比较高基本条件设定:根据目前国内风电场平均水平,设定基本条件为:风电场装机容量5万千瓦,年上网电量为等效满负荷2000小时,单位千瓦造价8000-10000元,折旧年限年,其他成本条件按经验选取;财务条件:工程总投资分别取4亿元8000元/千瓦、亿元9000元/千瓦和5亿元10000元/千瓦,流动资金150万元;项目资本金占20%,其余采用国内商业银行贷款,贷款期15年,年利率%;增值税税率为%,所得税税率为33%,资本金财务内部收益率10%;风电成本和上网电价水平测算:按以上条件及现行的风电场上网电价制度,以资本金财务内部收益率为10%为标准,当风电场年上网电量为等效满负荷2000小时,单位千瓦造价8000~10000元时,风电平均成本分别为~元/千瓦时,较为合理的上网电价范围是~元/千瓦时含增值税;成本在投产初期较高,主要是受还本付息的影响;当贷款还清后,平均度电成本降至很低;风电场造价对上网电价有明显的影响,当造价增加时,同等收益率下的上网电价大致按相同比率增加;我国幅员辽阔,各地风电场资源条件差别很大,甚至同一风电场址内资源分布也有较大差别;为了分析由风能资源引起的发电量变化对成本和平均上网电价影响,分别计算年等效满负荷小时数为1400、1600、1800、2200、2400、2600、2800、3000的情况下发电成本见表1,上网电价见表2;如果全国风电的平均水平是每千瓦投资9000元,以及资源状况按年上网电量为等效满负荷2000小时计算,则风电的上网电价约每千瓦时元,比于全国火电平均上网电价每千瓦时元高一倍;电网制约风电场接入电网后,在向电网提供清洁能源的同时,也会给电网的运行带来一些负面影响;随着风电场装机容量的增加,以及风电装机在某个地区电网中所占比例的增加,这些负面影响就可能成为风电并网的制约因素;风力发电会降低电网负荷预测精度,从而影响电网的调度和运行方式;影响电网的频率控制;影响电网的电压调整;影响电网的潮流分布;影响电网的电能质量;影响电网的故障水平和稳定性等;由于风力发电固有的间歇性和波动性,电网的可靠性可能降低,电网的运行成本也可能增加;为了克服风电给电网带来的电能质量和可靠性等问题,还会使电网公司增加必要的研究费用和设备投资;在大力发展风电的过程中,必须研究和解决风电并网可能带来的其他影响;四、政策建议1.加强风电前期工作;建立风电正常的前期工作经费渠道,每年安排一定的经费用于风电场风能资源测量、评估以及预可研设计等前期工作,满足年度开计划对风电场项目的需要;2.制定“可再生能源法”的实施细则,规定可操作的政府合理定价,按照每个项目的资源等条件,以及投资者的合理回报确定上网电价;同时也要规定可操作的全国分摊风电与火电价差的具体办法;3.加速风电机组本地化进程,通过技贸结合等方式,本着引进、消化、吸收和自主开发相结合的原则,逐步掌握兆瓦级大型风电机组的制造技术;引进国外智力开发具有自主知识产权的机组,开拓国际市场;4.建立风电制造业的国家级产品检测中心、质量保证控制体系以及认证制度,不断提高产品质量,降低成本,完善服务;5.制定适应风电发展的电网建设规划,研究风电对电网影响的解决措施;五、“十一五”和2020年风电规划我国电源结构70%是燃煤火电,而且负荷增长迅速,环境影响特别是减排二氧化碳的压力越来越大,风能是清洁的可再生能源,我国资源丰富,能够大规模开发,风电成本逐年下降,前景广阔;风电装机容量规划目标为2005年100万千瓦,2010年400~500万千瓦,2020年2000~3000万千瓦;2004年到2005年,“十五计划”后半段重点建设江苏如东和广东惠来两个特许权风电场示范项目,取得建设大规模风电场的经验,2005年底风力发电总体目标达100万千瓦;2006年到2010年;“十一五规划”期间全国新增风电装机容量约300万千瓦,平均每年新增60~80万千瓦,2010年底累计装机约400~500万千瓦;提供这样的市场空间主要目的是培育国内的风电设备制造能力,国家发展改革委于2005年7月下发文件,要求所有风电项目采用的机组本地化率达到70%,否则不予核准;此后又下发文件支持国内风电设备制造企业与电源建设企业合作,提供50万千瓦规模的风电市场保障,加快制造业发展;目前国家规划的主要项目有广东省沿海和近海示范项目31万千瓦;福建省沿海及岛屿22万千瓦;上海市12万千瓦;江苏省45万千瓦;山东省21万千瓦;吉林省33万千瓦;内蒙古50万千瓦;河北省32万千瓦;甘肃省26万千瓦;宁夏19万千瓦;新疆22万千瓦等;目前各省的地方政府和开发商均要求增加本省的风电规划容量;2020年规划目标是2000~3000万千瓦,风电在电源结构中将有一定的比例,届时约占全国总发电装机10亿千瓦容量的2~3%,总电量的1~%; 2020年以后随着化石燃料资源减少,成本增加,风电则具备市场竞争能力,会发展得更快;2030年以后水能资源大部分也将开发完,近海风电市场进入大规模开发时期;。

中国风能资源概况

中国风能资源概况

中国风能资源概况2007-10-9 23:29:10 世界风力发电网信息中心我国幅员辽阔,海岸线长,风能资源比较丰富。

据中国气象科学研究院估算,全国平均风功率密度为100W/m2,风能资源总储量约32.26亿kW,可开发和利用的陆地上风能储量有2.53亿kW(依据陆地上离地10m高度资料计算),海上可开发和利用的风能储量有7.5亿kW。

中国风能资源主要分布在东南沿海及附近岛屿,新疆、内蒙古和甘肃走廊、东北、西北、华北和青藏高原等部分地区,每年风速在3m /s 以上的时间近4000小时左右,一些地区年平均风速可达7m/s以上,具有很大的开发利用价值。

我国面积广大,地形地貌复杂,故而风能资源状况及分布特点随地形、地理位置不同而有所不同,据此可将风能资源划分为四个区域(包括海上建设的风电场)。

(1) 北部(东北、华北、西北)地区风能较丰富带风功率密度在200~300W/m2以上,有的可达500W/m2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁、承德围场等,可利用的小时数在5000小时以上,有的可达7000小时以上。

这一风能较丰富带的形成,主要是由于北部地区处于中高纬度的地理位置。

由于欧亚大陆面积广大,北部地区气温又低,是北半球冷高压活动最频繁的地区,而我国地处欧亚大陆东岸,正是冷高压南下必经之路。

北部地区是冷空气入侵我国的前沿,在冷锋(冷高压前锋)过境时,在冷锋后面200km附近经常可出现6~10级(10.8~24.4m/s)大风。

对风能资源利用来说,就是可以有效利用的高质量大风。

这一地区的风能密度,虽较东南沿海为小,但其分布范围较广,是我国连成一片的最大风能资源区。

(2) 沿海及其岛屿地区风能丰富带沿海及其岛屿风能丰富带,年有效风功率密度在200W/m2以上,风功率密度线平行于海岸线,沿海岛屿风功率密度在500W/m2以上,如台山、平潭、东山、南鹿、大陈、嵊泗、南澳、马祖、马公、东沙等,可利用小时数约在7000~8000小时。

我国风能分布情况现状小结

我国风能分布情况现状小结

我国风能分布情况现状中国陆地10m高度层的风能总储量为32.26亿千瓦,实际可开发的风能资源储量为2.53亿千瓦,近海风场的可开发风能资源是陆上的3倍,据此,我国可开发的风能资源约为10亿千瓦。

资料一、中国风能分区及占全国面积百分比指标丰富区较丰富区可利用区贫乏区年有效风能密度(W/m2) >200 200-150 <150-50 <50年风速≥3m/s累计小时数(h) >5000 5000-4000 <4000-2000 <2000年风速≥6m/s累计小时数(h) >2200 2200-1500 <1500-350 <350占全国面积的百分比(%)8 18 50 24 风能最佳区:东南沿海、山东半岛、辽东半岛及海上岛屿,内蒙古、甘肃北部,黑龙江南部、吉林东部风能较佳区:西藏高原中北部,东南沿海,三北的南部区风能可利用区:两广沿海(包括福建50~1000km的沿海地带)、大小兴安岭山区,中部地区等风能贫乏区:云贵川、甘南、陕西、湘西、鄂西和福建、两广的山区等;塔里木盆地、雅鲁藏布江各地资料二、我国风能密度分布图一、东南沿海及其附近岛屿我国风能资源丰富地区,有效风能密度大于或等于200W/m2的等值线平行于海岸线;沿海岛屿有效风能密度在300W/m2以上,全年中风速大于或等于3m/s的时数约为7000~8000h,大于或等于6m/s的时数为4000h。

沿海岛屿风能功率密度在500瓦/米2以上如台山、平潭、东山、南鹿、大陈、嵊泗、南澳、马祖、马公、东沙等,这一地区特别是东南沿海,由海岸向内陆是丘陵连绵,所以风能丰富地区仅在海岸50km之内,再向内陆不但不是风能丰富区,反而成为全国最小风能区,风能功率密度仅50瓦/米2左右,基本上是风能不能利用的地区。

东南沿海又受台湾海峡的影响,每当冷空气南下到达时,由于狭管效应的结果使风速增大,这里是我国风能资源最佳的地区。

中国风能分布及风电

中国风能分布及风电

1风能资源中国风能资源丰富,具有良好的开发前景,发展潜力巨大。

据最新风能资源普查初步统计成果,中国陆上离地10 m高度风能资源总储量约43. 5亿kW ,居世界第1位。

其中,技术可开发量为2. 5亿kW ,技术可开发面积约20万km ,此外,还有潜在技术可开发量约7 900万kW。

另外,海上10 m高度可开发和利用的风能储量约为7. 5亿kW。

全国10 m高度可开发和利用的风能储量超过10亿kW,仅次于美国、俄罗斯居世界第3位。

陆上风能资源丰富的地区主要分布在三北地区(东北、华北、西北)、东南沿海及附近岛屿。

1. 1“三北”(东北、华北、西北)地区风能丰富带包括东北三省、河北、内蒙古、甘肃、青海、西藏和新疆等省/自治区近200 km宽的地带,风功率密度在200~300 W /m 2以上,有的可达500 W /m 2以上,可开发利用的风能储量约2亿kW ,占全国可利用储量的80%。

另外,该地区风电场地形平坦,交通方便,没有破坏性风速,是中国连成一片的最大风能资源区,有利于大规模开发风电场。

但是,建设风电场时应注意低温和沙尘暴的影响,有的地方联网条件差,应与电网统筹规划发展。

1. 2东南沿海地区风能丰富带东南沿海受台湾海峡的影响,每当冷空气南下到达海峡时,由于峡管效应使风速增大。

冬春季的冷空气、夏秋的台风,都能影响到沿海及其岛屿,是中国风能最佳丰富区。

中国有海岸线约1 800 km,岛屿6 000多个,是风能大有开发利用前景的地区。

沿海及其岛屿风能丰富带,年有效风功率密度在200 W /m2以上,风功率密度线平行于海岸线,沿海岛屿风功率密度在500 W /m2以上,如台山、平潭、东山、南麂、大陈、嵊泗、南澳、马祖、马公、东沙等,年有效风速(4~25 m /s)时数约在7 000~8 000h。

2这一地区特别是东南沿海,由海岸向内陆是丘陵连绵,风能丰富地区仅在距海岸50 km之内。

1. 3内陆局部风能丰富区在2个风能丰富带之外,风功能密度一般在100W/m 2以下,年有效风速( 4~25 m /s)时数在3 000 h以下。

风能

风能

风能开发及利用状况一、风能概述风能(wind energy)是因空气流做功提供给人类的一种可利用的能量。

空气流具有的动能称风能。

空气流速越高,动能越大。

人们可以用风车把风的动能转化为旋转的动作去推动发动机,以产生电力。

风的动能转变成机械能,再把机械能转化为电能,这就是风力发电。

风能是一种清洁能源,充分利用风能是解决目前能源与环境危机的有效途径之一。

我国风能资源丰富,可开发利用的风能储量约10亿kW,其中,陆地上风能储量约2.53亿kW(陆地上离地10m高度资料计算),海上可开发和利用的风能储量约7.5亿kW,共计10亿kW。

而2003年底全国电力装机约5.67亿kW。

二、风力发电原理我们把风的动能转变成机械能,再把机械能转化为电能,这就是风力发电。

风力发电所需要的装置,称作风力发电机组。

这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分,风力发电是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。

风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。

小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。

风力发电机由机头、转体、尾翼、叶片组成。

每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。

然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。

目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。

中国风能资源储量与分布

中国风能资源储量与分布
平洋,季风强盛,内陆还有 许多山系,地形复杂,加之青藏 高原耸立我国西部,改变了海陆 影响所引起的气压分布和大气环 流,增加了我国季风的复杂性。 冬季风来自西伯利亚和蒙古等中 高纬度的内陆,那里空气十分严 寒干燥冷空气积累到一定程度, 在有利高空环流引导下,就会爆 发南下俗称寒潮,在此频频南下 的强冷空气控制和影响下,形成 寒冷干燥的西北风侵袭我国北方 各省(直辖市、自治区)。
德意志银行最新发布的研究报告预计,全球风电 发展正在进入一个迅速扩张的阶段,风能产业将保 持每年20%的增速,到2015年时,该行业总产值将增 至目前水平的5倍。 从目前的技术成熟度和经济可行性来看,风能 最具竞争力。
海上有丰富的风能资源和广阔平坦的区域,使得近海风力发电技术成为近 来研究和应用的热点。多兆瓦级风力发电机组在近海风力发电场的商业化运行 是国内外风能利用的新趋势。随着风力发电的发展,陆地上的风机总数已经趋 于饱和,海上风力发电场将成为未来发展的重点。海上发电是近年来国际风力 发电产业发展的新领域,是“方向中的方向”。
风能最为一种安全可靠的、无污染的新能源,日 益受到国际上风能资源丰富的国家和地区的重视 和大规模发展,成为近年来世界上发展最快的能 源工业。 我国风能资源丰富和比较丰富的地区,一是东南 沿海及其岛屿;二是三北地区(东北、华北、和 西北的总称)地区。新疆达坂城、内蒙古和广东 南澳等风电场的装机容量都已分别超过5万千瓦, 占全国的50%以上。
地球表面大量空气流动所产生 的动能。由于地面各处受太阳辐照 后气温变化不同和空气中水蒸气的 含量不同,因而引起各地气压的差 异,在水平方向高压空气向低压地 区流动,即形成风。风能资源决定 于风能密度和可利用的风能年累积 小时数。风能密度是单位迎风面积 可获得的风的功率,与风速的三次 方和空气密度成正比关系。据估算, 全世界的风能总量约1300亿千瓦, 中国的风能总量约16亿千瓦。

中国风能资源分布简介

中国风能资源分布简介

中国风能资源分布简介我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。

在这些地区,发展风力发电是很有前途的。

风是没有公害的能源之一。

而且它取之不尽,用之不竭。

对于缺水、缺燃料和交通不便的沿海岛屿、草原牧区、山区和高原地带,因地制宜地利用风力发电,非常适合,大有可为。

中国的风能资源我国幅员辽阔,海岸线长,风能资源比较丰富。

据国家气象局估算,全国风能密度为100W/m2,风能资源总储量约1.6X105MW,特别是东南沿海及附近岛屿、内蒙古和甘肃走廊、东北、西北、华北和青藏高原等部分地区,每年风速在3m/s以上的时间近4000h左右,一些地区年平均风速可达6~7m/s以上,具有很大的开发利用价值。

有关专家根据全国有效风能密度、有效风力出现时间百分率,以及大于等于3m/s和6m/s风速的全年累积小时数,将我国风能资源划分为如下几个区域。

1、东南沿海及其岛屿,为我国最大风能资源区。

这一地区,有效风能密度大于、等于200W/m2的等值线平行于海岸线,沿海岛屿的风能密度在300W/m2以上,有效风力出现时间百分率达80~90%,大于、等于8 m/s的风速全年出现时间约7000~8000h,大于、等于 6 m/s的风速也有4000 h左右。

但从这一地区向内陆,则丘陵连绵,冬半年强大冷空气南下,很难长驱直下,夏半年台风在离海岸50km时风速便减少到68%。

所以,东南沿海仅在由海岸向内陆几十公里的地方有较大的风能,再向内陆则风能锐减。

在不到100km的地带,风能密度降至50W/m2以下,反为全国风能最小区。

但在福建的台山、平潭和浙江的南麂、大陈、嵊泗等沿海岛屿上,风能却都很大。

其中台山风能密度为534.4W/m2,有效风力出现时间百分率为90%,大于、等于3 m/s的风速全年累积出现7905h。

换言之,平均每天大于、等于3 m/s的风速有21.3h,是我国平地上有记录的风能资源最大的地方之一。

国内外风能利用的情况和发展趋势

国内外风能利用的情况和发展趋势

国内外风能利用的情况和发展趋势
随着全球能源需求的不断增长,风能作为一种清洁、可再生的能源,受到越来越多的关注和重视。

本文将从国内外两个方面,分别探讨风能利用的情况和发展趋势。

一、国内风能利用的情况和发展趋势
1.风能利用的现状
中国是世界上风能资源最为丰富的国家之一,拥有巨大的风能资源潜力。

截至2020年底,中国风电装机容量已经达到了281.5GW,占全球总装机容量的一半以上。

其中,内陆地区的风能资源潜力巨大,但开发利用程度相对较低。

2.发展趋势
未来,中国风能行业将继续保持快速发展的态势。

政府将继续加大对风能行业的支持力度,推动风电技术的创新和升级,提高风电的发电效率和可靠性。

同时,随着新能源消纳能力的提高,风电的市场需求也将不断增加。

二、国外风能利用的情况和发展趋势
1.风能利用的现状
欧洲是全球风能利用最为成熟的地区之一,拥有丰富的风能资源和先进的风电技术。

截至2020年底,欧洲风电装机容量已经达到了217.5GW,占全球总装机容量的三分之一以上。

同时,美国、印度等国家也在积极推动风能的开发利用。

2.发展趋势
未来,国外风能行业将继续保持稳定发展的态势。

随着全球能源转型的加速,风能作为一种清洁、可再生的能源,将得到越来越多的关注和重视。

同时,随着风电技术的不断创新和升级,风能的发电效率和可靠性也将不断提高。

总体来说,风能作为一种清洁、可再生的能源,具有广阔的发展前景和巨大的市场潜力。

未来,国内外风能行业将继续保持快速发展的态势,为全球能源转型和可持续发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文章编号:0254-0096(2001)02-0167-04中国风能资源贮量估算薛 桁,朱瑞兆,杨振斌,袁春红(中国气象科学研究院,北京100081)摘 要:为了解决了我国风能资源贮量到底有多大这一基本背景问题,根据全国900余个气象台站实测资料作出的多年年平均风能密度分布图,首次完整细致地估算出各省及全国离地面10m高度层上的风能资源储量,我国的风能资源总贮量为32.26×1011W,实际可开发量为2.53×1011W。

从而从理论上进一步证实了我国风能资源具有巨大的开发潜力。

关键词:风能资源;风能密度;风能贮量;中国中图分类号:TK81 文献标识码:B0 引 言为了决策风能开发的可能性、规模和潜在能力,对一个地区乃至全国的风能资源贮量的了解是必要的。

风能资源的贮量取决于这一地区风速的大小和有效风速的持续时间。

风能利用究竟有多大的发展前景,对它的总贮量就需要有一个宏观的估计。

对全球风能贮量的估计早在1948年曾有普特南姆(Putnam)进行过估算,他认为大气总能量约为1014MW。

这个数量得到世界气象组织的认可,并在1954年世界气象组织在它出版的技术报告第4期“来自于风的能量”专集中(W MO,T.N,No.32,1954)进一步假定上述数量的1千万分之一是可为人们所利用的,即有107MW为可利用的风能。

它相当于当今全球发电能源的总需求,可见它是一个十分巨大的潜在能源库。

然而阿尔克斯(von Ar x.W.S., 1974)[1]认为上述的量过大,这个量只是一个贮藏量,对于可再生能源来说,必须跟太阳能的流入量对它的补充相平衡,其补充率较它小时,它将会衰竭,因此人们关心的是可利用的风的动能,他认为地球上可以利用的风能为106MW。

即使如此,可利用风能的数量仍旧是地球上可利用水力发电量的10倍。

因此在可再生能源中,风能是一种非常可观的、有前途的能源。

古斯塔夫逊(M.R.Gustavson,1979)[2]从另一个角度推算了风能利用的极限。

他认为,风能从根本上说是来源于太阳能,因此可以通过估算到达地球表面的太阳辐射有多少能够转变为风能,来得知有多少可利用的风能。

据他推算,到达地球表面的太阳能辐射流是1.8×1017W,即350W/m2,其中转变为风的转化率η=0.02,可以获得的风能为3.6×1015W,即7W/m2。

在整个大气层中边界层占有35%,也就是边界层中能获得的风能为1.3×1015W,即2.5W/m2。

较稳妥的估计,在近地层中的风能提取极限是它的1/10,即0.25W/m2,全球的总量就是1.3×1014W。

他估算了美国在大气边界层范围内风能获得量为2×1013W,而可以被提取利用的量是2×1012W,相当于美国发电总装机容量的3倍。

我国目前发电总装机容量约28×1010W,因此即使利用风能可提取量的1/100,那也将是一个非常可观的能量来源。

1 风能的估算1.1 风能公式风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能即风功率为:W=12ρv3(1)式中ρ———空气密度,kg/m3;v———风速,m/s; W———风功率,W/m2,此即惯称的风能密度公式。

1.2 平均风能密度和有效风能密度第22卷 第2期2001年4月太 阳 能 学 报ACTA ENERGIAE SOL AR IS SINICAVol.22,No.2Apr.,2001收稿日期:2000-04-10由于风速是一个随机性很大的量,必须通过一段时间的观测来了解它的平均状况。

因此在一段时间内的平均风能密度,可以将风能密度公式对时间积分后平均,即W=1T∫T012ρv3d t(2)W即该时段的平均风功率密度,即习称的平均风能密度[3]。

对于风能转换装置而言,可利用的风能是在“起动风速”到“切出风速”之间的风速段,这个范围的风能即通称的“有效风能”,该风速范围内的平均风功率密度即“有效风功率密度”,即习称的“有效风能密度”,其计算公式为:W e=∫v2v112ρv3P′(v)d v(3)式中v1———起动风速,v2———切出风速,P′(v)———有效风速范围内风速的条件概率分布密度函数,其关系[4]:P′(v)=P(v)P(v1≤v≤v2)=P(v)P(v≤v2)-P(v≤v1)(4)1.3 利用气象观测资料计算风能潜力根据风的气候特点,过短的观测资料不能准确反映该地的风况,必须有足够长时间的观测资料才有较好的代表性。

一般来说,需要有5~10年的观测资料才能较客观的反映该地的真实状况。

为此,必须进行数量庞大的资料收集和计算。

根据我们实际大量计算结果检验表明,在计算风能时可以选取10年风速资料中年平均风速最大、最小和中间的3图1 全国年平均风能密度(W/m2)分布图Fig.1 The map of annual total wind power density(W/m2)in China168 太 阳 能 学 报 22卷个年份为代表年份,分别计算该3个年份的风能然后加以平均,其结果与长年平均值十分接近。

一地的平均风能密度计算式为:W =∑12N i ρv 3iN (i =1,2,3,…)(5)式中,v i 为根据观测记录将风速分成的若干个等级值,如0,1,2,3,….m /s ,N i 为相应等级风速v i 的出现次数,即累积小时数,N 为总次数,即总时数。

根据上述原则我们计算了全国900余个气象台站的年平均风能密度值,绘制成全国年平均风能密度分布图(见图1)。

从而可以宏观的看出全国各地区风能资源分布状况,即反映出各个地区风能资源开发潜力的大小。

2 全国风能资源贮量的估算为了进一步具体估算我国风能资源的贮量,力求客观准确地反映各省区所具有的风资源潜力,我们根据上述绘制完成的全国年平均风能密度分布图,对我国各省及全国的风能贮量进行了细致的估算。

必须说明的是该贮量估算值是指离地10m 高度层上的风能资源量,而非整层大气或整个近地层内的风能量。

另外所有计算值均只计算了陆地上空的风能量,而不包括海面上的风资源量。

因此本估计值与前述普特南姆、古斯塔夫逊等人的估算值不属同一概念,不能直接与之比较。

即使如此,本工作所计算的结果是根据实测资料作出的,从而较准确地反映了10m 高度上的风能资源量,并可进一步用来推断其它高度上的风能资源量。

2.1 估算的方法首先在全国年平均风能密度分布图上划出10、25、50、100、200W /m 2各条等值线。

考虑一个单位截面积(如1m 2)的风能转换装置,风吹过后必须经前后、左右各10倍直径距离后才能恢复到原来的速度。

因此在1km 2(106m 2)范围内对于1m 2直径叶片风力转换装置,只能装置106/(10×10)=104台。

对于一个面积为S (单位:m 2),平均风能密度为W (单位:W /m 2)的区域,其风能贮量R 由下式估算:R =WS /100(单位:W )(6)为此,我们使用求积仪逐省量取了:<10、10~25、25~50、50~100、100~200、>200W /m 2各等级风能密度的区域的面积S i ,然后分别乘以各等级风能密度的代表值W i ,再按R =∑W i S i /100计算出每一省的风能贮量。

2.2 结 果按上述方法经过仔细量取和计算后,各省的风能贮量与全国风能总贮量可分别作出(见表1)。

据测算,我国风能总贮量(10m 高度层)为322.6×1010W ,这个贮量为“理论可开发总量”。

实际可供开发的量按上述总量的1/10估计,并考虑风力机叶片的实际扫掠面积(对于1m 直径风轮的面积为0.52×π=0.785m 2),因此再乘以面积系数a =0.785,即为“实际可开发量”:R ′=0.785R /10(7)由此,得到全国风能实际可开发量为2.53×1011W 。

在计算中我们取值时考虑偏保守一点的,因此实际蕴藏量可能比这一估计值还要大些,即使如此,这一数字仍相当于我国目前发电总装机容量。

可见我国风力发电作为电力行业一个新的方面军,是具有很大潜力和很强的生命力的,必将成为未来能源结构中一个举足轻重的重要组成部分。

表1 全国及各省风能储量Table 1 Total and provincial wind energy reserves ×1010W省份风能密度等级区间/W ·m -2<1010~2525~5050~100100~200>200理论可开发量实际可开发量平均单位面积储量/kW ·km -2内蒙-0.39043.648024.800040.25609.600078.69406.1775695.48辽宁-0.13331.28332.23334.0667-7.71660.6058514.44黑龙江-0.47682.722011.59667.1513-21.94671.7228477.10吉林-0.19661.04444.97611.9044-8.12150.6375451.19青海0.00661.76075.48188.738214.8582-30.84552.4214428.41续表169 2期薛 桁等:中国风能资源贮量估算省份风能密度等级区间/W ·m -2<1010~2525~5050~100100~200>200理论可开发量实际可开发量平均单位面积储量/kW ·km -2西藏0.74351.58488.592414.967326.1442-52.03224.0845423.88甘肃0.10081.18182.64173.96266.6738-14.56071.1430373.35台湾--0.49500.66000.1800-1.33500.1048370.83河北(含北京、天津)-0.55122.26872.21832.7561-7.79430.6119357.87山东-0.30641.93091.43621.3404-5.01390.3936334.26山西-0.03192.47342.36170.0638-4.93080.3871328.72河南-0.45901.48212.7410--4.68210.3675292.63宁夏-0.00451.39180.4939--1.89020.1484286.39江苏(含上海)-0.04312.18370.61510.1845-3.02640.2376286.05新疆-6.243916.057612.47507.80491.151543.73293.4330273.33安徽-0.23412.37200.5853--3.19140.2505245.49海南-0.13830.38890.17290.1153-0.81540.0640239.82江西0.05310.38132.26561.0313--3.73130.2929233.21浙江-0.60360.76920.23670.35500.11832.08280.1635208.28陕西0.23050.72891.52620.4984--2.98400.2342157.05湖南0.08051.19171.8681---3.14030.2465149.54福建0.21650.43300.23200.24740.37110.24741.74740.1372145.62广东0.39320.48931.10680.32040.1748-2.48450.1950138.23湖北0.10811.07491.2720---2.45500.1927136.39云南0.51151.85552.3035---4.67050.3666122.91四川(含重庆)1.10832.67691.7662---5.55140.435899.130广西0.46581.16840.29210.2152--2.14150.168193.110贵州0.54240.53280.2062---1.28140.100675.380全国合计322.600125.3000[参考文献][1] Von Arx W S .Energy :natural limits and abundances .E OS ,Trans ,Amer .Geophys .Union ,1974,55:828—832.[2] M R Gustavson .Limits to wind power utilization .Science ,1979,204:13—17.[3] 朱瑞兆,薛 桁.我国风能资源.太阳能学报.1981,2(2):117—224.[4] 朱瑞兆,薛 桁.中国风能区划.太阳能学报.1983,4(2):123—132.ASSESS MENT OF WIND ENERGY RESERVES IN CHINAXue Heng ,Zhu Ruizhao ,Yang Zhenbin ,Yuan Chunhong(Chinese Academy of M eteo rological Sciences ,Beijing 100081,China )A bstract :Using the map annual mean wind power density in China which is based on the meteorological data of 900sta -tions ,the wind ener gy reserves in China as well as in each province are assessed .The conclusion recommends that the to -tal reserve is 3.226×1012W and the exploitable capacity is 2.53×1011W on 10m height above the ground level in Chi -na .From theor etical point of view ,China possesses huge exploitable wind potentialities .Keywords :wind energy resources ;wind power density ;wind energy r eserves170 太 阳 能 学 报 22卷。

相关文档
最新文档