电流模式控制移相全桥零电压软开关(ZVS)DC-DC功率变换器

合集下载

改进型全桥移相ZVS-PWM DCDC变换器

改进型全桥移相ZVS-PWM DCDC变换器

改进型全桥移相ZVS-PWM DC/DC变换器摘要:介绍了一种能在全负载范围内实现零电压开关的改进型全桥移相ZVS-PWMDC/DC 变换器。

在分析其开关过程的基础上,得出了实现全负载范围内零电压开关的条件,并将其应用于一台48V/6V的DC/DC变换器。

关键词:全桥DC/DC变换器;零电压开关;死区时间引言移相控制的全桥PWM变换器是在中大功率DC/DC变换电路中最常用的电路拓扑形式之一。

移相PWM控制方式利用开关管的结电容和高频变压器的漏电感作为谐振元件,使开关管达到零电压开通和关断。

从而有效地降低了电路的开关损耗和开关噪声,减少了器件开关过程中产生的电磁干扰,为变换器提高开关频率、提高效率、降低尺寸及重量提供了良好的条件。

同时保持了电路拓扑结构简洁、控制方式简单、开关频率恒定、元器件的电压和电流应力小等一系列优点。

移相控制的全桥PWM变换器存在一个主要缺点是,滞后臂开关管在轻载下难以实现零电压开关,使得它不适合负载范围变化大的场合[1]。

电路不能实现零电压开关时,将产生以下几个后果:1)由于开关损耗的存在,需要增加散热器的体积;2)开关管开通时存在很大的di/dt,将会造成大的EMI;3)由于副边二极管的反向恢复,高频变压器副边漏感上的电流瞬变作用,在二极管上产生电压过冲和振荡,所以,在实际应用中须在副边二极管上加入R-C吸收。

针对上述问题,常见的解决方法是在变压器原边串接一个饱和电感Ls,扩大变换器的零电压开关范围[2][3]。

但是,采用这一方法后,电路仍不能达到全工作范围的零电压开关。

而且,由于饱和电感在实际应用中不可能具有理想的饱和特性,这将会导致:1)增加电路环流,从而增加变换器的导通损耗;2)加重了副边电压占空比丢失,从而增加原边电流及副边二极管电压应力;3)饱和电感以很高的频率在正负饱和值之间切换,磁芯的损耗会很大,发热严重。

改进型全桥移相ZVS PWMDC/DC变换器是针对上述缺点所提出的一种电路拓扑[4][5][6]。

基于饱和电抗器的ZCZVS移相全桥DC-DC变换器

基于饱和电抗器的ZCZVS移相全桥DC-DC变换器

基于饱和电抗器的ZCZVS移相全桥DC-DC变换器马骜;黄铂;王朋【摘要】零电压电流开关(ZCZVS)控制的DC/DC变换器在中大功率应用场合应用逐渐广泛,其较宽的开关范围及较低的损耗等优点令人瞩目.本文介绍了基于饱和电抗器的ZCZVS移相全桥的工作原理及基于UC3875的移相驱动和控制系统,并用该芯片完成一台输出50V/20A的ZCZVS移相全桥DC/DC变换器的样机设计,给出了电路主要参数的设计和初步的实验结果.【期刊名称】《电子设计工程》【年(卷),期】2014(022)009【总页数】4页(P173-176)【关键词】饱和电抗器;移相全桥;直流-直流变换器;零电压电流开关【作者】马骜;黄铂;王朋【作者单位】武汉科技大学城市学院,湖北武汉430083;武汉大学湖北武汉430072;武汉大学湖北武汉430072【正文语种】中文【中图分类】TN709直流电源在许多场合都发挥着重要作用,作为直流电源的一个重要环节,DC/DC 变换器的性能很大程度上决定了直流电源的成本和可靠性。

DC/DC变换器有多种结构,根据电源的功率需求,选择合适的变换器拓扑结构。

基本DC/DC变换器(如:Buck、Boost、Buck/Boost、Forward 等变换器)只应用在小功率场合,而在中大功率场合,一般采用半桥或全桥变换器。

全桥变换器是一种先经DC/AC高频逆变,再经AC/DC不控整流的两级DC/DC变换器。

高频变压器把直流负载与交流电网隔离,高频变压器输出侧直流LC滤波器重量和体积不大,输出直流电压纹波小,动态特性好,全桥变换器已成为较大功率DC/DC变换器的最佳技术方案之一[1]。

经过几十年的发展,在中大功率应用中,移相全桥软开关DC/DC变换器逐渐成熟,已成为DC/DC变换器的主流,与其他DC/DC变换器相比,移相全桥软开关拓扑结构充分利用了电路本身的寄生参数,通过控制PWM脉冲的相位使开关管工作在软开关状态,降低了开关损耗,提高了变换器的效率。

移相控制全桥ZVS—PWM变换器的分析与设计

移相控制全桥ZVS—PWM变换器的分析与设计

移相控制全桥ZVS—PWM变换器的分析与设计摘要:阐述了零电压开关技术(ZVS)在移相全桥变换器电路中的应用。

分析了电路原理和各工作模态,给出了实验结果。

着重分析了主开关管和辅助开关管的零电压开通和关断的过程厦实现条件。

并且提出了相关的应用领域和今后的发展方向。

关键词:零电压开关技术;移相控制;谐振变换器0 引言上世纪60年代开始起步的DC/DC PWM功率变换技术出现了很大的发展。

但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。

因此,在上世纪80年代初,文献提出了移相控制和谐振变换器相结合的思想,开关频率固定,仅调节开关之间的相角,就可以实现稳压,这样很好地解决了单纯谐振变换器调频控制的缺点。

本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200W的DC/DC变换器。

1 电路原理和各工作模态分析1.1 电路原理图1所示为移相控制全桥ZVS—PWM谐振变换器电路拓扑。

Vin为输入直流电压。

Si(i=1.2.3,4)为第i个参数相同的功率MOS开关管。

Di和Gi(i=l,2,3,4)为相应的体二极管和输出结电容,功率开关管的输出结电容和输出变压器的漏电感Lr作为谐振元件,使4个开关管依次在零电压下导通,实现恒频软开关。

S1和S3构成超前臂,S2和S4构成滞后臂。

为了防止桥臂直通短路,S1和S3,S2和S4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。

S1和S4,S2和S3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。

Lf和Cf构成倒L型低通滤波电路。

图2为全桥零电压开关PWM变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压VAB、变压器副边电压V0以及变压器原边下面对电路各工作模态进行分析,分析时时假设:(1)所有功率开关管均为理想,忽视正向压降电压和开关时时间;(2)4个开关管的输出结电容相等,即Ci=Cs,i=1,2,3,4,Cs为常数;(3)忽略变压器绕组及线路中的寄生电阻;(4)滤波电感足够大。

第六章 软开关技术(移相全桥ZVS软开关电路分析)

第六章 软开关技术(移相全桥ZVS软开关电路分析)

td (lead ) 2CleadVin / I1
在这段时间里,原边电流等于折算到 原边的滤波电 ) / K
4.开关模态3 在 t2 时刻,关断 Q4,原边电流 i p 转 移到 C2和 C4中,一方面抽走 C2上的 电荷,另一方面又给 C4充电。 由于C2 和C4 的存在,Q4的电压是从零 慢慢上升的,因此 Q4是零电压关 断。这段时间里谐振电感 Lr 和C2 及 C4在谐振工作。原边电流 i p 和 C4 的电压分别为: 电容C2 ,

2.开关模态1 在 t 0 时刻关断Q 1,原边电流 i p 从 Q 1中转移到到 C3和 C1 支路中,给

C1充电,同时 C3被放电。 电容 C1 的电压从零开始线性上升
电容 C3 的电压从 Vin开始线性下降 Q 1是零电压关断。
i p (t ) I p (t0 ) I1
vC1 (t )
到 t4 时刻,原边电流从 I p (t3 )下降到 零,二极管 D2和 D3自然关断。 持续时间为: t L I (t ) / V
34 r P 3
Vin i p (t ) I p (t3 ) (t t3 ) Lr
in
6. 开关模态5 在 t 4 时刻,原边电流流经 Q2和 Q3。 由于原边电流仍不足以提供负载 电流,负载电流仍由两个整流管 提供回路,因此原边绕组电压仍 然为零,加在谐振电感两端电压 是电源电压Vin ,原边电流反向线 性增加。

到 t5 时刻,原边电流达到折算到原 I Lf (t5 ) / K 值,该开 边的负载电流 关模态结束。 持续时间为: L I (t ) / K
Vin i p (t ) (t t4 ) Lr
t45

新型 ZVS 软开关直流变换器的研究

新型 ZVS 软开关直流变换器的研究

第 10 卷第 6 期 2007 年 6 月
POWER SUPPLY TECHNOLOGIES AND APPLICATIONS
Vol.10 No.6 June 2007
关器件用于高压上。这种新型拓扑结构的出现,为 高压大容量功率变换器应用开辟了一条新的道路 [3][4]。与半桥电路的硬开关相比,三电平变换器巧妙 结合移相电路的特点,利用变压器漏感(或外加谐 振电感) 和开关管的寄生结电容谐振实现开关管 的 ZVS。
(6)模式 5〔t5-t6〕国当变压器副边电压 V s 下降 到电容 Cr 两端的电压 V cr 时,二极管 Ds1 导通。变 压器副边电压被嵌位在 V cr。此电压反射到变压器 原边电压 V p 被嵌位在(Np/Ns)V cr,电容 Cr 加入到 原边的震荡回路和变压器原边电感 Lk 组成的谐 振回路。在电容 Cr 的电压 V cr 作用下,变压器原边 电流 ip 继续快速下降到零,即
零。 为了分析方便,假设电路中的电感和电容足
够大,开关器件的导通压降为零。图 7 给出了电路 在半个周期工作的主要波形和开关模态。
图 7 工作原理主要波形
(1)模式 0〔t0-t1〕国在 t0 以前,外管 S1 已经预
先导通。在 t0 时刻,开关管 S2 受控导通,V in/2 电压
已过 Cin,开关管 S1、S2、电感 Lk 和变压器 Tr 原边组
在本文中主要介绍一种耦合电感的零电压零 电流开关三电平直流变换电路。这种电路改变了 广为采用的以缓冲电容储能来实现零电流的设计 思路,而是由耦合电感传递用来实现零电流的能 量,并通过限流电感把用于电流回零的能量存储 于电容,这样就不会因为引入缓冲电容而造成副 边上很高的电压过冲[3][7]。这种电路的拓扑结构如 图 6 所示。

ZVS移相全桥双向DC/DC变换器

ZVS移相全桥双向DC/DC变换器
山西 电子 技术 21 0 0年第 1期
文 章 编 号 :64 7 (0 0 0 - 0  ̄2 17 45 8 2 1 ) 1 0 5 0
应 用 实践
Z S移 相 全 桥 双 向 D / C变换 器 V CD
张 波 ,曹丰文 ,索 迹 ,高金 生
( 苏州市职 业大 学 电子信 息工程 系, 苏 苏州 250 ) 江 114
用软开关技术 , 同样软开关技术还可 以显著减少开关过 程中
激起 的振 荡 , 可大幅地 提高开关 频率 , 更好地 实现 开关 电源
小 型 化 、 效 率 的 优 点 。 因 此 致 力 于 开 发 新 型 软 开 关 双 向 高 D — C变 换 器 的 研 究 很 有 必 要 , 时 软 开 关 双 向 D —C 变 CD 同 CD 换 器 是研 究 的 热 点 内 容 。
换 器 中使 用 最 多 的 一种 软 开 关 控 制 方 式 , 是 谐 振 变 换 技术 它
和P WM技术 的结 合 , 具有 容易 实现 Z S开 关 、 V 响应 速度 快 等优 点 , 自提 出以来获得 了广 泛的研究 。图 1中 D 1~/ 9 4分 别是 s ~s 1 . 4的内部寄生 二极 管 , 1~c C 4分别 是 . s S 1~. 4的 寄生 电容或其 寄生 电容 与外 接小电容的等效 , 中 C :C , 其 1 3
S l
图 1 桥 式 直 流 变 换 器
C 2

_J _l
Cn — —_ ▲ J Cb l

D2
C 2=C , b 4 C 是隔直 电容 , 是为防止变压器铁心 因不对称 导致
直 流偏 磁饱 和 ,r 变 压器 原边 漏 电感 与外 串 电感之 和。 L是

移相全桥ZVZC软开关DC_DC稳压电源分析与设计_吕春锋

移相全桥ZVZC软开关DC_DC稳压电源分析与设计_吕春锋
断电容 Cb 放电,由于阻断电容 Cb 较大,其自身电压在放电过
(e)
4
(f)
5
图 3 换流过程模态
VDR2 流过负载电流。 要实现滞后桥臂零电流,原边电流需在滞后桥臂开通前
减小到零。由开关模态 2 可知,原边电流线性减小:
V (t ) − V (t ) ?V
(1)
i (t) − I ?V (t ? t ) / L
?V (t ) ? V (t ) ? 2 C V / C ?
V ? I ?t / C ? 2 C V / C ? ?V
(5)
一般 Cr垲Cb,式(5)可以简化为:
程中近似不变,而变压器原边电流近似线性减小。
V − I ?t / 2 C
(6)
如图 3(d)所示,开关模态 3 换流过程如下:[t2-t3]期间,阻
通常所说的硬开关,在开通和关断时会产生较大的开关 损耗,开关频率越高,损耗越大。软开关电源是在开关器件通 断条件下,加在其电压上电压为零,即零电压开关(ZVS),或者 通过开关器件的电流为零,即零电流开关(ZCS)。软开关技术 显著解决了元件开关时刻产生的损耗,可以更大幅度地提高 开关频率,这种软开关的方式为缩小电源体积和提高电源效 率创造了条件。移相全桥零电压零电流软开关(ZVZCS)DC-DC 变换器是在移相全桥 ZVS 的基础上发展而来的,其工作模式 基本上克服了 ZVS 和 ZCS 软开关模式的固有缺陷,使全桥变 换器的超前桥臂实现 ZVS,而滞后桥臂实现 ZCS,在中、大功 率开关电源中具有广泛的应用。其超前桥臂的零电压实现是 通过并联电容电压不能突变完成的,滞后桥臂的零电流是通 过串联隔直电容和漏感谐振,从而使电流能量转移到了电容 中,滞后桥臂串接的二极管阻止了关断后的反向电流,减弱了 环路损耗[1]。

移相全桥ZVS PWM DC/DC变换器的仿真分析

移相全桥ZVS PWM DC/DC变换器的仿真分析

移相全桥ZVSPWMDC/DC变换器的仿真分析作者:龙泽彪施博文来源:《消费导刊·理论版》2008年第17期[摘要]本文首先在研究硬开关的缺陷上,提出软开关技术。

对移相控制ZVS PWM DC/DC 变换器的工作原理进行分析研究的基础上,使用PSpice9.2计算机仿真软件对变换器的主电路进行仿真和分析,验证该新型DC/DC变换器的拓扑结构设计的正确性和可行性。

[关键词]软开关 DC/DC ZVS 移相控制 PSpice9.2作者简介:龙泽彪(1985-),男,湖北仙桃人,贵州大学电气工程学院在读硕士研究生,研究方向:异步电机控制;施博文(1985-),男,贵州大学电气工程学院在读硕士研究生,研究方向:电力电子与电气传动。

一、引言随着新型电力电子器件以及适用于更高频率的电路拓扑和新型控制技术的不断出现,开关电源朝着小型化、高效化、低成本、低电磁干扰、高可靠性、模块化、智能化的方向发展。

硬开关DC/DC变换器在电流连续工作模式下会遇到严重的问题,这一般都与有源开关器件的体内寄生二极管有关,其关断过程中的反向恢复电流产生的电流尖峰对开关器件有极大的危害。

本文在对DC/DC变换器的基本工作原理进行分析、研究的基础上,对已经出现的软开关DC/DC变换器拓扑结构进行分析研究,提出的一种新型的DC/DC变换器的拓扑结构,并进行深入的研究。

二、移相控制ZVS PWM DC/DC全桥变换器的工作原理移相控制ZVS PWM DC/DC全桥变换器(Phase-Shifted zero-voltage-switching PWMDC/DC Full-Bridge Converter,PS ZVS PWM DC/DC FB Converter),是利用变压器的漏感或原边串联的电感和功率管的寄生电容或外接电容来实现开关管的零电压开关,其主电路拓扑结构及主要波形如图1所示。

其中,D1~D4分别是S1~S4的内部寄生二极管,C1~C4分别是S1~S4的寄生电容或外接电容,Lr是谐振电感,它包含了变压器的漏感。

75kW移相全桥ZVS DC-DC变换器的设计共3篇

75kW移相全桥ZVS DC-DC变换器的设计共3篇

75kW移相全桥ZVS DC-DC变换器的设计共3篇75kW移相全桥ZVS DC/DC变换器的设计175kW移相全桥ZVS DC/DC变换器的设计随着电能的需求不断增加,直流(DC)与交流(AC)能量的转换变得越来越重要。

近年来,随着电力电子技术的发展和高性能的半导体器件的不断进步,DC/DC变换器在工业和消费电子领域的应用越来越广泛。

75kW移相全桥ZVS DC/DC变换器是一种高性能变换器,能够实现高效率、高功率转换。

移相全桥ZVS DC/DC变换器的结构包括移相控制器、输人电感、输出电容、全桥开关和ZVS电路等。

其中,移相控制器的作用是控制全桥开关的相位移动,从而实现零电压开关(ZVS)控制,减少开关过程中的损耗和电磁干扰。

输人电感和输出电容则是负责滤波,保证输出电压的稳定性。

全桥开关通过不同配合的通断实现正负输出电流控制。

ZVS电路通过滤波和电容,实现电路的诸多物理参数计算协调,并通过工艺合理设计,降低待机功耗和回路波动影响。

在设计75kW移相全桥ZVS DC/DC变换器时,需要考虑诸多因素。

首先,应该确定输入电压和输出电压的范围,设计输人电感和输出电容的尺寸。

其次,需要确定最大输出功率、输出电源电流和开关频率,保证全桥开关的可靠性和ZVS电路的稳定性。

还需考虑系统的可扩展性和环境因素,以充分考虑变换器在工业应用和肆意使用中的优越性。

在开发过程中,需要充分利用仿真和实验测试,调整参数和设计方案,为最优的变换器性能和稳定性进行优化和调整。

因此,设计和发布75kW移相全桥ZVS DC/DC变换器需要对额定值、特殊应用等项指标有充分的认识、调试和经验,并充分考虑到指示等级、节约能源等重要性,超出标准数值要求的评定指数,以实现最优化控制。

总之,75kW移相全桥ZVS DC/DC变换器是一种高效、高功率、高稳定性的电能转换装置,能够在工业和消费电子领域得到广泛应用。

设计和发布此类设备需要充分考虑应用环境、指标要求和设计方案,充分利用仿真和实验测试,以实现最优化控制、最低化能量损耗和实时可调参数,为应用和发展带来更多的便利和效益综上所述,75kW移相全桥ZVS DC/DC变换器是一种具有巨大潜力和广泛应用前景的电能转换装置。

电流模式控制倍流整流器ZVS PWM全桥DC-DC变换器

电流模式控制倍流整流器ZVS PWM全桥DC-DC变换器

电流模式控制倍流整流器ZVS PWM全桥DC-DC变换器朱俊星;华伟
【期刊名称】《电子产品世界》
【年(卷),期】2003(000)10B
【摘要】采用电流模式移相PWM控制,在较大的负载范围内实现了开关器件的零电压软开关(ZVS)。

给出了实验结果。

【总页数】3页(P73-75)
【作者】朱俊星;华伟
【作者单位】北方交通大学电气工程学院
【正文语种】中文
【中图分类】TN624
【相关文献】
1.一种改进的倍流整流方式ZVS PWM全桥变换器 [J], 阮新波;王建冈;陈乾宏
2.电流模式控制倍流整流器ZVS PWM 全桥DC-DC变换器 [J], 朱俊星;华伟
3.改进型倍流整流方式ZVS PWM全桥变换器的设计 [J], 王建冈;阮新波;陈乾宏
4.倍流整流方式ZVS PWM全桥变换器的控制系统设计 [J], 孙强;郑湘渝;余娟
5.无损吸收倍流整流ZVS PWM 全桥变换器 [J], 段东东;郭庆吉;姬军鹏
因版权原因,仅展示原文概要,查看原文内容请购买。

48V_30A移相全桥ZVS DC_DC 变换器的设计

48V_30A移相全桥ZVS DC_DC 变换器的设计

17.1uH10470uFQ3FQA10N80CQ4 Q1Q2FQA10N80CDSEl2x61-06C330-400V53.7m HDSEl2x61-06CFQA10N80CFQA10N80C控制及驱动电路原理图:PC817VIN RAMP CLK SOFTS FREQSET DSET A-B DSET C-DUC3875VREF CS+VCOUTCOUTBOUTA OUTDCOMPEA- EA+SLOPEPGNDGNDC205C206RT U outCS+R206R202R203R205RsR204R201C201C203C204RTD1RTD2C202CR Css CTD1CTD2CT VINT1T2RgRg Rg RgD202D207D204D208D201D205D206D203VCVCG G S G GS电路各参数计算:一:高频变压器设计:(1).选择铁氧体材料的磁芯,设η=90%,其工作磁场强度取B m =0.12T ,电流密度取J =350 cm A 2/,k=0.4。

视在功率P T (全波结构时): )21(0+=ηP P T 。

kJ B f P APST 0m 4410⨯=代人参数得:AP =5.4 cm 4考虑到磁芯的温升及工作频率,取EE 型磁芯65x32x27(mm),则AP=30.7625(cm 4),Ae=535(mm 2),Aw=575(mm 2)。

具体参数如下表:(2).为了防止共同导通,取占空比D max =O.4,初级绕组匝数: N 1== A B f DU e S ∆mmax 1=AB f D U eS mmax 12其中:B ∆m 为磁通密度增量,B m 为工作磁通密度,B ∆m 应取一、三象限磁通密度的总增量,故BB 2m m=∆ ;A e 为磁芯有效面积(m2);fS为功率开关的工作频率(Hz)。

带入参数得:N 1=12.8 故取N 1=13匝。

那么初级绕组最大电流:ηUPI minin 0pmax ==4.85(A )初级绕组裸线面积:JI A xp pmax==1.39 (cm )(3).次级绕组匝数:AB f U N eSS m24==2.3 故取N S =3匝。

zvs软开关原理

zvs软开关原理

zvs软开关原理ZVS软开关原理ZVS软开关,也称零电压开关,是一种常用于电力电子系统中的开关技术。

它通过控制电压和电流的切换,实现高效能的能量转换。

本文将详细介绍ZVS软开关的原理及其工作过程。

一、ZVS软开关的基本原理ZVS软开关利用谐振现象,将开关管在零电压关闭和开启状态之间切换,以降低开关管的开关损耗和提高系统效率。

其基本原理如下:1. 谐振电路:ZVS软开关采用谐振电路,由电感L和电容C组成。

在开关管关闭时,电流通过电感L开始上升,同时电容C开始充电。

当电流达到峰值时,开关管打开,此时电容C开始放电,电感L中的电流开始减小。

2. 零电压关闭:在电容C放电的过程中,当电感L中的电流减小到零时,此时开关管可以被轻松关闭,实现零电压关闭。

这样可以避免开关管在高电压状态下关闭,减少开关管的损耗。

3. 零电压开启:在电容C放电完成后,当电流再次增大到峰值时,开关管可以被轻松打开,实现零电压开启。

这样可以避免开关管在高电压状态下开启,减少开关管的损耗。

二、ZVS软开关的工作过程ZVS软开关的工作过程可以分为两个阶段:充电阶段和放电阶段。

1. 充电阶段:当输入电压施加到谐振电路时,电感L和电容C开始工作。

电容C开始充电,电感L中的电流逐渐增大。

在这个阶段,开关管处于导通状态,电流通过开关管和电感L。

2. 放电阶段:当电容C充电完成后,电感L中的电流开始减小。

当电流减小到零时,开关管可以被关闭,实现零电压关闭。

在这个阶段,电容C开始放电,电流通过电容C和负载。

通过充电和放电阶段的切换,ZVS软开关实现了高效能的能量转换。

当谐振电路的频率和输入电压频率匹配时,ZVS软开关的效果更好。

三、ZVS软开关的应用ZVS软开关广泛应用于电力电子系统中,特别适用于高功率、高频率的应用。

以下是几个典型的应用领域:1. 电力变换器:ZVS软开关可以用于DC-DC变换器和DC-AC逆变器中,提高变换器的效率和稳定性。

2. 电力供应系统:ZVS软开关可以用于电力供应系统中的开关电源、逆变器和整流器等,实现高效能的能量转换和稳定的电压输出。

移相全桥ZVZCSDCDC变换器综述.

移相全桥ZVZCSDCDC变换器综述.

移相全桥ZVZCSDC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。

关键词:移相控制;零电压零电流开关;全桥变换器 1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。

ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。

图1 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。

即当原边电流减小到零后,不允许其继续反方向增长。

原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;图2 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。

图3 2 电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考。

图4 1)NhoE.C. 电路如图1所示[1]。

该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。

这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。

变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。

9种移相全桥ZVZCSDCDC变换器

9种移相全桥ZVZCSDCDC变换器

摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考.关键词:移相控制;零电压零电流开关;全桥变换器1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断.ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响.滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的.即当原边电流减小到零后,不允许其继续反方向增长.原边电流复位目前主要有以下几种方法:1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件;3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件.2电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考.1)NhoE.C.电路如图1所示[1].该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关.这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高.变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大.该电路可以工作在电流临界连续状态,但必须采用频率控制,不利于滤波器的优化设计.2)ChenK.电路如图2所示[2][3].该电路超前桥臂并联有串联的电感和电容.电感L1和L2很小,不影响开关管的ZVS,但有两个好处:一是限制振荡的电流峰值;二是在负载很小,开关管不能实现ZVS时,限制开关管的开通电流尖峰.该拓扑结构利用IGBT的反向击穿特性,解决了滞后桥臂IGBT关断时的电流拖尾问题,可以提高IGBT的开关频率,而且在负载很小时也能实现零电流开关.但是,这个电路也付出了代价,漏感L1k中的能量反向时漏感L1k中的能量全部消耗在反向击穿的IGBT中.3)原边加隔直电容和饱和电感的FB-ZVZCS-PWM变换器如图3[4]所示.它在基本的移相全桥变换器的基础上增加了一个饱和电感Ls,并在主电路上增加了一个阻挡电容Cb,阻挡电容Cb与饱和电感Ls适当配合,能使滞后桥臂上的主开关管实现零电流开关.在原边电压过零阶段,饱和电感工作在线性状态,阻止原边电流ip反向流动,在原边电压为Vin或-Vin时,它工作在饱和状态.尽管它有许多明显的优势,但也有不足之处,如最大占空比范围仍受到很多限制,特别是饱和电感上有很大的损耗,饱和电感磁芯的散热问题是一个必须解决的问题.4)副边采用有源箝位开关的FB-ZVZCS-PWM变换器如图4所示[5].这种电路没有使用耗能元件,在副边增加有源箝位开关S,并通过对有源箝位开关的适当控制,为滞后桥臂创造零电流开关条件.超前桥臂在零电压导通与关断的过程中,输出滤波电感Lf参与了谐振过程,而输出滤波电感通常具有很大的值,超前桥臂开关管可以在很大的负载范围内满足零电压开关条件,开关管的导通与关断的死区时间间隔受原边电压最大占空比的限制.在此种拓扑结构中,可能会出现副边整流输出电压的占空比大于原边电压最大占空比的现象,这种现象称为“占空比增大效应”(dutycycleboosteffect)这种现象是由箝位电容Cc和箝位开关的作用造成的.此电路的主要缺点是控制上稍微复杂一些,以及有源箝位开关采用的是硬开关,但是,有源箝位开关在一个开关周期中仅工作很短一段时间,对变换器整体效率影响很小.5)利用变压器辅助绕组的FB-ZVZCS-PWM变换器电路拓扑如图5所示[6].该电路通过在副边增加一个变压器辅助绕组和一个简单的辅助线路,无须增加耗能元件或有源开关来取得滞后桥臂ZCS.其副边整流电压可由箝位电容箝位,一般可将其限制在120%额定值内,该方案可在大功率场合应用.该电路拓扑的优点是负载范围宽,占空比损失小,器件的电压应力、电流应力小,成本低.但是它也有缺点,即副边结构复杂,设计时有些困难.6)副边带能量恢复缓冲电路的FB-VZCS-PWM变换器如图6所示[7].它的副边增加了由3个快恢复二极管和2个小电容构成的能量恢复缓冲电路,此电路在能量传递初始期间,电容Cs1和Cs2与漏感谐振,电容上的电压达到2nVin,超前桥臂开关管一关断,电容上电压就折合到原边,在漏感上产生一反压,使得原边电流下降.而且,通过能量恢复电路的低阻抗路径使副边整流二极管实现了ZVS.该结构稍微复杂些,最大缺点是,由于电容Cs1和Cs2与漏感谐振,使得副边整流电压几乎是正常电压nVin的2倍,增加了整流管的电压应力,并且由于存在大量环流,也增加了导通损耗.7)使用改进的能量恢复缓冲电路的FB-ZVZCS-PWM变换器如图7所示[8].它运用改进的能量恢复缓冲电路来减小循环电流和副边瞬间超压.除了增加二极管Ds4外,其工作原理和线路与6)相同.8)滞后桥臂中串入二极管的FB-ZVZCS-PWM变换器如图8所示[9].它利用串联二极管阻断电容电压可能引起的原边电流的反向流动.可以在任意负载和输入电压变化范围内实现滞后桥臂的零电流开关.9)副边利用简单辅助电路的FB-ZVZCS-PWM变换器如图9所示[10].此电路副边由一个简单辅助电路构成:包括一个小电容和两个小二极管,结构简单,整流电压不恒定,取决于占空比.该方案不含饱和电感,辅助开关,不产生大的环流,没有额外的箝位电路,这是因为,副边整流电压被箝位于箝位电容电压与输出电压之和.所用的元器件均在低电压,低电流下工作,还有负载范围宽,占空比损失小等优点,从而使此变换器具有高效率,低成本,解决了目前常见变换器的许多问题.在高功率场合很有发展前途.3结语综上所述可知,图2和图3电路使用耗能元件来复位原边电流,降低了总效率并阻碍功率超过5kW;图4电路通过副边增加有源箝位开关来复位原边电流,价格较贵并且控制复杂,有源箝位开关采用的是硬开关,开关频率是原边的两倍,开关损耗大;图5电路所有有源和无源元器件都工作在最小电流应力和电压应力下,有较宽的ZVZCS范围,较小的占空比损耗,不存在严重的寄生环流,功率超过5kW,但是辅助电路复杂;图6电路中电容Cs1和Cs2与漏感谐振引起大的循环能量,降低了总效率并使得副边整流电压几乎是正常电压nVs的二倍,增加了副边整流管的电流应力,变压器和开关的导通损耗也增加了;图7电路是对图6电路的改进,它减小了副边瞬间超压和环流,也能使开关损耗传到负载;通过比较图6和图7缓冲电路中Cs放电时间和漏感L1k 复位时间,可以看出吸收电容复位变压器漏感能量的能力和容量,后者比前者加倍,因而使用图7电路能扩展到重载范围.图9电路简化了前几种ZVZCS方案,仅仅增加由一个小电容和两个小二极管组成的简单辅助电路,无须增加耗能元件和有源开关实现ZVZCS,不仅为原边开关提供ZVZCS条件,而且箝位副边整流二极管,效率高而且价格便宜.。

5kW移相全桥ZVSDCDC变换器的研究_图文(精)

5kW移相全桥ZVSDCDC变换器的研究_图文(精)

硕士学位论文5kW 移相全桥ZVS DC/DC变换器的研究RESEARCH ON 5kW PHASE-SHIFT FULL BRIDGEZVS DC/DC CONVERTER刘鑫哈尔滨工业大学2011年6月国内图书分类号:TM614 学校代码:10213 国际图书分类号:621.3 密级:公开工学硕士学位论文5kW 移相全桥ZVS DC/DC变换器的研究硕士研究生:刘鑫导师:马洪飞教授申请学位:工学硕士学科:电气工程所在单位:电气工程及自动化学院答辩日期:2011年6月授予学位单位:哈尔滨工业大学Classified Index:TM614 U.D.C:621.3Dissertation for the Master Degree in EngineeringRESEARCH ON 5kW PHASE-SHIFT FULL BRIDGEZVS DC/DC CONVERTERCandidate : Supervisor : Speciality :Liu XinAcademic Degree Applied for:Prof.Ma HongfeiMaster of EngineeringPower Electronics and Electric DriversSchool of Electrical Engineering and Automation June, 2011Affiliation : Date of Defence:Degree-Conferring-Institution : Harbin Institute of Technology哈尔滨工业大学硕士学位论文摘要DC/DC变换器是电力电子领域重要组成部分,在能源紧张的今天,提高DC/DC变换器的效率及功率密度,具有重要的意义。

功率器件的发展和软开关技术的提出使变换器高效高功率密度成为可能。

移相全桥ZVS DC/DC变换器是一种能够实现软开关和大功率能量变换的变换器。

移相ZVS-PWM全桥变换器综述

移相ZVS-PWM全桥变换器综述

移相ZVS-PWM全桥变换器综述移相ZVS-PWM全桥变换器概述摘要:移相ZVS-PWM DC/DC全桥变换器巧妙利用变压器漏感和开关管的结电容来完成谐振过程,使开关管实现零电压开关(ZVS),从而减少了开关损耗。

重点简述了该类变换器的基本原理,介绍了几种常见的拓扑,并简要地分析了它们的优缺点,最后指出了其发展方向。

关键词:移相全桥变换器零电压开关(ZVS)Overview of Phase Shift ZVS-PWM Full Bridge ConverterAbstract:Phase shift PWM DC/DC full bridge converter completing resonance procedure through leakage inductance of the transformer and junction capacitor of switch. It can make the switch achieve ZVS, decreasing the switching loss and interference .This paper describes the basi c principle of the converter, introduce several common topology, some common topologies as well as their advantages and drawbacks are discussed and analyzed. Finally it points out the development direction of the Converter.Key words:phrase shift,full bridge converter,ZVS引言全桥变换器广泛应用于中大功率的直流变换场合,近些年来,其软开关技术吸引了国内外学者的广泛关注,出现了很多控制策略和电路拓扑,其中移相控制是目前研究较多的控制方式,而以移相全桥零电压开关变换器(FB-ZVS-PWM)应用更为广泛。

第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器

第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器
34 r P 3 in
开关模态5 在 t 4 时刻,原边电流流经 Q 2和 Q 。 由于原边电流仍不足以提供负载电 流,负载电流仍由两个整流管提供 回路,因此原边绕组电压仍然为零, 加在谐振电感两端电压是电源电 压 V ,原边电流反向线性增加。 in
6.
3
i p (t )
V in Lr
(t t4 )
4.开关模态3 在 t 2 时刻,关断 Q 4,原边电流 i p 转 移到 C 2和 C 4中,一方面抽走 C 2上的 电荷,另一方面又给 C 4 充电。 由于C 2 和C 4 的存在,Q 4 的电压是从零 慢慢上升的,因此 Q 4是零电压关 断。这段时间里谐振电感 L r 和C 2 及 C 4在谐振工作。原边电流 i p 和 C 4 的电压分别为: 电容C 2 ,
1.实现ZVS的条件 要实现开关管的零电压开通,必须有足够的能量: ①抽走将要开通的开关管的结电容(或外部附加电容)上的电荷; ②给同一桥臂关断的开关管的结电容(或外部附加电容)充电; 考虑到变压器的原边绕组电容,还要有能量用来: ③抽走变压器原边绕组寄生电容C R T 上的电荷。

要实现开关管的零电压开通,必须满足下式:
到 t 5 时刻,原边电流达到折算到原 边的负载电流 I L f ( t 5 ) / K 值,该开 关模态结束。 持续时间为:
t45 Lr I Lf (t5 ) / K V in
7. 开关模态6 在这段时间里,电源给负载供电 原边电流为:

i p (t )
V in K V 0

i p (t ) I 2 c o s (t t2 )
v C 4 ( t ) Z P I 2 s in ( t t 2 )

ZVS移相全桥变换器设计

ZVS移相全桥变换器设计

电气工程学院课程设计说明书设计题目:系别:年级专业:学生姓名:指导教师:电气工程学院《课程设计》任务书课程名称:电力电子与电源综合课程设计基层教学单位:电气工程及自动化系指导教师:朱艳萍说明:1、此表一式三份,系、学生各一份,报送院教务科一份。

2、学生那份任务书要求装订到课程设计报告前面。

电气工程学院教务科电力电子与电源课程设计组内自评表摘要首先,本文阐述PWM DC/DC变换器的软开关技术,且根据移相控制PWM全桥变换器的主电路拓扑结构,选定适合于本论文的零电压开关软开关技术的电路拓扑,并对其基本工作原理进行阐述,同时给出ZVS软开关的实现策略。

其次,对选定的主电路拓扑结构进行电路设计,给出主电路中各参量的设计及参数的计算方法,包括输入、输出整流桥及逆变桥的器件的选型,输入整流滤波电路的参数设计、高频变压器及谐振电感的参数设计以及输出整流滤波电路的参数设计。

然后,论述移相控制电路的形成,对移相控制芯片进行选择,同时对移相控制芯片UC3875进行详细的分析和设计。

对主功率管MOSFET的驱动电路进最后,基于理论计算,对系统主电路进行仿真,研究其各部分设计的参数是否合乎实际电路。

搭建移相控制ZVS DC/DC全桥变换器的实验平台,在系统实验平台上做了大量的实验。

实验结果表明,本文所设计的DC/DC变换器能很好的实现软开关,提高效率,使输出电压得到稳定控制,最后通过调整移相控制电路,可实现直流输出的宽范围调整,具有很好的工程实用价值。

行分析和设计。

关键词开关电源;高频变压器;移相控制;零电压开关;UC3875目录摘要 (4)第1章绪论 (6)第2章PWM DC/DC全桥变换器软开关技术 (7)2.1 PWM DC/DC全桥变换器 (7)2.1.1全桥变换器的基本工作原理 (7)2.1.2 PWM DC/DC全桥变换器的软开关实现 (8)2.2 PWM DC/DC全桥变换器实现ZVS (9)2.3整流二极管的换流情况 (10)2.4本章小结 (12)第3章PWM DC/DC变换器控制回路设计的设计 (13)3.1移相控制电路原理 (13)3.2 移相控制芯片UC3875 (14)3.2.1 控制芯片引脚功能介绍 (14)3.3 控制方案分析 (15)第4章仿真与参数设计 (17)4、1参数设计 (17)4.1.1主电路参数设计 (17)4.1.2高频变压器的设计 (17)第1章绪论早期提出的软开关变换器是谐振变换器,准谐振变换器和多谐振变换器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言
随着计算机与通信技术的飞速发展,作为配套设备的开关电源也获得了长足进步,并随着新器件、新理论、新电磁材料和变换技术以及各种辅助设计分析软件的不断问世,开关电源的性能不断提高。

本文介绍一种新型的高频DC/DC开关变换器,并成功地应用在军用充电机上。

DC/DC变换器主电路
改进型移相全桥ZVS DC/DC变换器主电路结构和各点波形对照如图1、图2所示。

由于电路工作状态在一个周期内可以分为两个完全一样的过程,所以以下仅仅分析半个周期的情况,而这半个周期又可分为以下三种开关模态。

● 开关模态1,t0<t<t1,其中t1=DT s/2
此时Q1和Q4同时导通,变压器副边电感L1和整流管D S2导通,原边能量向负载端传递。

此模态的等效电路见图3。

其中,a为变压器变比,V in是直流母线电压,I1和I2分别是电感L1和L2电流(L1=L2=LS),此时有等式(1)成立。

(1)
(2)
I p(t)=aI1(t)(3)
当Q4关断时该模态过程结束。

● 开关模态2,t1<t<t2,其中t2≤T s/2
在t1时刻关断Q4,此时副边电感L1中储存的能量给Q4电容(或并联电容)充电,同时将Q3两端电容电荷放掉。

为了实现软开关,Q4关断和Q3开通之间至少
要存在一死区时间Δt1,使得在Q3开通前D3首先导通,且有下式成立。

I p1Δt1=2C eff V in(4)
其中C eff是开关管漏源两端等效电容,I P1为t1时刻变压器原边流过电流。

当D3导通后,变压器副边两个二极管D S1和D S2同时导通,电路工作在续流状态。

此时等效电路如图4所示。

此时有如下电路方程成立。

(5)
(6)
(7)
(8)
r t=r mosfet+r xfmr (9)
其中D为脉冲占空比,f S为电路工作频率,L’ik为主边变压器漏感(或与外接电感的串联值),rt是变压器原边等效电阻,τ是原边等效电流衰减时间常
数,Vfp是反并联二极管导通压降。

● 开关模态3,t2<t<t3,其中t3=Ts/2
处于该模态时,电路原边导通情况与以上的模态2一致。

此时由于换流过程结束,D S2关断,所以等效电路如图5所示。

此时有电路方程如下。

这时I1、I2与模态2相同,但是D S1中将流过全部的负载电流。

当Q1关断时该模态结束,此时副边电感L2中存储的能量同时给开关管Q1和Q2漏源端电容充电和放电。

Q1关断后,D2和D3将导通,这时候就可以给Q2和Q3以开通触发信号了,当电流反向后,Q2、Q3导通,能量再次从原边传递到副边,于是Q2、Q3都是零电压开通。

由于对称性,剩下的半个周期的工作状况与以上完全相同。

由此可以得到负载端输出电压,注意它与一般的全波整流电路之间的1/2倍的关系。

(13)
由工作原理可以得到如下结论。

● 超前臂开关管和滞后臂开关管的ZVS都利用了次级输出滤波电感的能量来实现,因此串联在原边的电感值可以大大减小,甚至可以不需要串联电感,只用变压器的原边漏感。

● 软开关实现时能量由副边电感和原边电感共同提供,因此可以在较宽的负载范围内实现ZVS。

● 超前臂开关管和滞后臂开关管实现软开关ZVS的条件没有基本型电路苛刻,并且由于副边电感的影响,它们之间的软开关实现条件的差异较之基本型电路大大减小。

变换器控制电路设计
该控制系统通过采集原边母线电流、副边侧输出电压来构成电流内环和电压外环两个控制闭环,原理框图如图6所示。

UCC3895是美国TI公司生产的一种高性能电流/电压移相PWM控制器,是UC3875(79)的改进型,适合于移相全桥电路,同时配合零电压开关工作以实现在高频时的局部软开关性能,除了具有
UC3875(79)的功能外,最大的改进是增加了自适应死区设置,以适应负载变化时不同的准谐振软开关要求,BCDMOS工艺使得芯片的功耗更小,工作频率更高。

从图6所示的原理框图可以看出,原边母线电流通过电流互感器隔离采集得到,该信号再通过滤波以及斜坡补偿电路后得到电流控制信号,而输出电压信号经过TL431调节后经过光耦隔离,再与设定电压参考值比较得到电压控制信号。

电流和电压控制信号输入移相PWM控制器UCC3895后经由芯片内部比较器以及脉冲产生电路得到四路PWM控制信号,但是有一点必须注意,那就是UCC3895的驱动能力很弱,所以必须将这些控制信号加以功率放大并隔离,然后才能驱动主电路的两个桥臂中的开关管。

其中,采用母线电流的好处是它能反映同一桥臂上下开关管的导通情况,从而为开关管的保护电路提供一定的依据。

另外,该方案成功与否的关键就是斜坡补偿电路以及隔离驱动电路。

仿真结果
PSPICE是电子辅助设计(EDA)中用来分析电路的工具之一,它不仅可以通过计算机来模拟电路的直流工作点、增益、频率特性等,还可以用来仿真数字电路的逻辑运算,还拥有傅立叶分析、蒙特卡罗分析、最坏情况分析等特殊功能,使初步的电路设计完全可以在计算机上完成。

该电路的输入电压参数可以通过改变输入交流电压的幅值来设置,仿真电路如图7所示,仿真的主要参数如下。

电路工作频率为100kHz,输入直流母线电压为250~360V,谐振电感为
10μH,主变压器变比为1:1,副边倍流整流器电感为30μH,母线电流互感器电流采样比例为1:20,负载电阻为10.7Ω,仿真设置时间为10ms。

电路软起动波形如图8所示,注意图中的小方块是该软件所设定的标注。

由图可以看出,在上电后PWM脉冲波形是逐渐展开的,这一点对于防止主变压器的偏磁非常重要。

而且在软起动过程中,eap端电压V(EAP)和外接软起动电容两端电压VSS之间的箝位关系,图中V(R32:1)是负载端电压。

软开关的效果图如图9、图10所示,通过图中时间标注虚线可以看出该开关管是零电压开通电压关端的。

在开通时,栅源电压上升到栅平台时漏源电压已经为零,而电流在经过反并联二极管的反向恢复后开始由零值处上升;而在关断时,由于IGBT少数载流子存储效应产生的电流拖尾,所以软关断不很明显。

结语
该电路设计方案结合了电流模式控制、移相PWM控制、倍流整流器电路、最新驱动芯片以及专门设计的开关器件的一些优点。

从实验波形来看,变换器的超前与滞后桥臂开关器件均能很好地实现零电压软开关,并且零电压软开关的实现条件以及两个桥臂软开关的差异也比基本型电路小。

除此之外,采用倍流整流器电路后,变换器的设计也更加简单。

采用仿真手段能给开关电源设计提供极大的帮助,尤其是在采用新方案或是新电路拓扑时。

相关文档
最新文档