六年级数学下册圆柱圆锥难题练习题(最新整理)
六年级下册数学《圆柱与圆锥》专项练习题50道精品(实用)
六年级下册数学《圆柱与圆锥》专项练习题50道一.选择题(共10题,共21分)1.一个底面直径是8cm,高是6cm的容器,小明将这个容器装满水,再把一个底面积是3.14平方厘米、高3cm的圆锥体铁块浸入容器的水中.会溢出()立方厘米的水。
A.301.44B.9.42C.3.14D.6.282.圆柱的表面有个()面,圆锥的表面有()个面。
A.2B.3C.4D.63.下面图中,哪个不是圆柱体?()A. B. C.D.4.用一块长25.12厘米,宽18.84厘米的长方形铁皮,配上下面()圆形铁片正好可以做成圆柱形容器。
(单位;厘米)A.r=1B.d=3C.r=4 D.d=55.一个圆柱的底面半径是8厘米,高是7厘米,这个圆柱的体积是()cm3。
6.压路机的前轮转动一周能压多少路面就是求压路机前轮的()。
A.表面积B.侧面积C.体积7.它是由()。
A.两个大小不同的圆和曲面围成的圆柱B.由直角梯形旋转而得到的C.由半圆旋转而得到的8.旋转能得到()A.圆柱B.圆锥C.一个空心的球9.下面叙述中,有()句话是正确的.(1)分母是质数的最简分数,不能化成有限小数(2)任何长方体,只有相对的两个面才完全相等(3)爸爸跑100米用了13分钟(4)长方形的周长一定,长和宽不成比例(5)因为圆周长C=πd,所以,圆周长一定,π和d成反比例(6)圆锥体体积比与它等底等高的圆柱体体积少三分之二A.1B.2C.3D.410.圆锥的体积比与它等底等高的圆柱体积少()。
A. B. C.2倍 D.3倍二.判断题(共10题,共20分)1.圆柱体的高扩大3倍,体积就扩大6倍。
()2.一个圆柱的底面半径是8厘米,它的侧面展开正好是一个正方形,这个圆柱的高是16厘米。
()3.一个圆柱的底面半径扩大4倍,高不变,它的侧面积就扩大16倍。
()4.一个圆柱的体积是282.6立方厘米,底面积是31.4平方厘米,这个圆柱的高是9厘米。
()5.如果把一个圆柱的底面半径扩大到原来的3倍,高不变,那么他的体积就扩大到原来的9倍。
2023-2024学年人教版六年级数学下册圆柱与圆锥常考易错应用题训练(附参考答案)
2023-2024学年六年级下册数学圆柱与圆锥常考易错应用题训练1.一个圆柱体,如果把它的高截短4dm,它的表面积减少125.6dm²。
这个圆柱体积减少多少立方分米?2.一个正方体包装箱,从里面量棱长是4.1dm。
用它装一件底面周长是12.56dm,体积是62.8dm3的圆柱形玻璃器皿,能否装得下?3.乐乐将一个铁皮油桶在地上滚动一圈,量得其痕迹长12.56分米、宽6分米。
制作这个油桶至少需要铁皮多少平方分米?(桶口和盖忽略不计)4.把一块长10厘米、宽8厘米、高3.14厘米的长方体铁块完全浸没在一个盛有水的圆柱形玻璃容器内,容器的底面直径为20厘米,容器内的水面会上升多少?(已知水不会溢出)5.工地有一堆圆锥形沙土,底面周长是31.4m,高1.5m,把这堆沙土用渣土车运出工地,每辆渣土车每次运8m3,用一辆渣土车运出这些沙土,大约需运多少次?6.一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米7.节约用水是我们每个人的义务,学校的自来水管内直径为0.2分米,自来水的流速是每秒5分米,若忘记关上水龙头,一分钟将浪费多少升水?8.下图中,以红色线为轴,快速旋转后会形成一个立体图形,请求出这个立体图形的体积。
9.下面是一个圆柱的展开图,制作这样的一个圆柱至少需要铁皮多少平方分米?10.一个无盖的圆柱形铁皮水桶,底面直径是30厘米,高是50厘米。
(得数保留整数) (1)做这样一个水桶,至少需用铁皮多少平方厘米?(2)这个水桶最多能盛水多少升?11.一个圆锥形沙堆,底面周长是12.56米,高是1.8米,把这些沙铺在6米宽的公路上,如果沙后2厘米,可以铺多长?12.一个圆锥形沙堆,底面周长是37.68m,高是5m,用这堆沙在10m宽的公路上铺5cm 厚的路面,能铺多长?,做这个水桶至少13.一个无盖的圆柱形铁皮水桶,高为10分米,底面直径是高的25用铁皮多少平方分米?(得数保留整数)14.把一个高是64厘米的圆柱按照5:3的比截成了两个圆柱,截后的表面积比原来增加了484平方厘米。
人教版数学6年级下册 第3单元(圆柱和圆锥)单元真题练习(含答案)
12.【答案】182.8736
【考点】圆柱的侧面积、表面积
【解析】【解答】底面半径为:12.56÷3.14÷2=2(厘米)
表面积:12.56×12.56+3.14×2²×2
=157.7536+25.12
(20
=28.26×10
=282.6(立方厘米)
282.6立方厘米=282.6毫升
答:一个圆柱形饮料罐的容积约是282.6毫升。
(3)解:6×4=24(厘米)
6×3=18(厘米)
(24×18+24×10+18×10)×2+600
=(432+240+180)×2+600
【解析】【解答】解:10÷2=5(厘米)
3.14×5×5×6÷3=157(立方厘米)
10×10×6-157=471-157=443(立方厘米)
故答案为:157;443。
【分析】正方形的边长是圆锥的直径,圆锥的直径÷2=圆锥的半径,π×半径的平方×高÷3=圆锥体积,长方形体积-圆锥的体积=削去部分的体积。
【解析】【分析】(1)搭建这个大棚至少要用塑料薄膜的面积=圆柱的侧面积÷2+圆柱的底面积,其中圆柱的侧面积=2πr×长,据此代入数值作答即可;
(2)大棚内的空间=πr2×长÷2,据此代入数值作答即可。
21.【答案】(1)解:3.14×6×10
=18.84×10
=188.4(平方厘米)
答:至少需要188.4平方厘米的商标纸。
B:正方形是特殊的长方形,正方形和长方形都是特殊的平行四边形。此选项正确;
C:圆锥和圆柱的两种独立的图形。此选项不正确;
冀教版六年级下册数学第四单元-圆柱和圆锥-测试卷(精华版)
冀教版六年级下册数学第四单元圆柱和圆锥测试卷一.选择题(共6题, 共12分)1.下面叙述中, 有()句话是正确的.(1)分母是质数的最简分数, 不能化成有限小数(2)任何长方体, 只有相对的两个面才完全相等(3)爸爸跑100米用了13分钟(4)长方形的周长一定, 长和宽不成比例(5)因为圆周长C=πd, 所以, 圆周长一定, π和d成反比例(6)圆锥体体积比与它等底等高的圆柱体体积少三分之二A.1B.2C.3D.42.一个圆柱体和一个圆锥体, 底面周长的比是2:3, 它们的体积比是5:6, 圆柱和圆锥高的最简单的整数比是()。
A.5:8B.8:5C.15:8D.8:153.下图扇形的半径是r。
请你想象, 用这个扇形围成一个高为h的圆锥(接缝处不计)。
圆锥的高h与扇形半径r之间的关系是()。
A.h>rB.h<rC.h=rD.无法确定4.求做一只油桶需要多少铁皮是求()。
A.表面积B.体积C.容积5.下列说法, 正确的有多少个?()①圆锥的体积等于圆柱体积的三分之一②长方体有12条棱和8个顶点③圆的半径扩大5倍, 周长也扩大5倍④直线外一点与直线上各点连接的所有线段中, 垂线段最短A.1个B.2个C.3个D.4个6.两块同样的长方形纸板, 卷成形状不同的圆柱(接头处不重叠), 并装上两个底面, 那么制成的两个圆柱体的()相等。
A.底面积B.侧面积C.表面积二.判断题(共6题, 共12分)1.把一团圆柱体橡皮泥揉成与它等底的圆锥高将缩小3倍。
()2.一个圆柱的直径和高相等, 则圆柱体的侧面展开图是正方形。
()3.表面积相等的两个圆柱, 它们的侧面积也一定相等。
()4.圆柱的底面周长扩大2倍, 高不变, 侧面积也扩大2倍。
()5.等高的圆柱和圆锥的底面半径之比是3∶1, 则圆柱和圆锥体积之比为9∶1。
()6.一个圆柱的底面积扩大3倍, 高也扩大3倍, 它的体积就扩大到9倍。
()三.填空题(共6题, 共11分)1.一个圆柱形油桶, 从里面量的底面半径是20厘米, 高是3分米, 这个油桶的容积是()升。
人教版数学六年级下册圆柱和圆锥专项练习题附答案
圆柱和圆锥练习一、单选题(每道小题 5分共 20分 )1.、等底等高的圆柱、正方体、长方体的体积相比较. [ ]A.正方体体积大 B.长方体体积大C.圆柱体体积大 D.一样大2、圆柱体的体积和底面积与一个圆锥体相等, 圆柱体的高是圆锥体的[ ]3.、24个铁圆锥, 可以熔铸成等底等高的圆柱体的个数是: [ ]A.12个B.8个 C.36个 D.72个4. 圆柱体的底面半径和高都扩大3倍, 它的体积扩大的倍数是: [ ]A.3B.6C.9D.27二、填空题1. 用一张边长是20厘米的正方形铁皮, 围成一个圆柱体, 这个圆柱体的侧面积是().2. 直圆柱的底面周长6.28分米, 高1分米, 它的侧面积是( )平方分米, 体积是()3. 一个圆柱体的底面直径和高都是0.6米, 它的体积是( )立方分米.4. 一个圆锥体和它的等底等高的圆柱体的体积相差12立方厘米, 圆锥体的体积是()。
5. 一个圆柱形铅块, 可以熔铸成( )个和它等底等高的圆锥形零件.6. 做一个圆柱体, 侧面积是9.42平方厘米, 高是3厘米, 它的底面半径是()。
7. 一个圆锥体体积是2立方米, 高是4分米, 底面积是( ).8. 一个圆柱体和一个圆锥体的体积与高都相等, 圆柱的底面积是18平方厘米, 圆锥的底面积是( )平方厘米.9. 一个圆柱体和一个圆锥体的底面积和高都相等.已知圆锥体的体积是7.8立方米, 那么圆柱体的体积是( ).10. 一个圆锥的体积是76立方米, 底面积是19平方米, 这个圆锥的高是()。
11. 把一个高6厘米的圆柱体削成最大圆锥体, 这个圆锥的体积是9.42立方厘米, 它的底面积是( ).12. 一个圆锥的体积是62.4立方厘米, 它的体积是另一个圆锥的4倍.如果另一个圆锥的高是2.5厘米, 这个圆锥的底面积是( ).14. 一个圆柱体削成一个与它等底等高的圆锥体, 削去的部分是圆锥体的()%。
15. 等底等高的圆柱体和圆锥体, 其中圆锥体的体积是126立方厘米, 这两个形体的体积之和是( ).三、应用题1. 一个圆锥形砂堆, 底面周长是31.4米, 高3米, 每方砂重1.8吨, 用一辆载重4.5吨的汽车, 几次可以运完? (得数保留整数)(5分)2. 一个圆形水池, 它的内直径是10米, 深2米, 池上装有5个同样的进水管, 每个管每小时可以注入水7.85立方米, 五管齐开几小时可以注满水池?3. 一个圆锥形的稻谷堆, 底周长12.56米, 高1.5米, 把这堆稻谷装进一个圆柱形粮仓, 正好装满.这个粮仓里面的底直径为2米, 高是多少米?4. 把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长是5厘米的正方体铁块, 熔铸成一个圆柱体, 这个圆柱体的底面直径是20厘米, 高是多少厘米?5. 一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?6. 一个圆柱体底面半径是2分米, 圆柱侧面积是62.8平方分米, 这个圆柱体的体积是多少立方分米?7. 用一张长2.5米, 宽1.5米的铁皮做一个圆柱形烟筒, 这个烟筒的侧面积是多少? (接口处忽略不计) 8. 一个无盖的圆柱形铁皮水桶, 高50厘米, 底面直径30厘米, 做一对水桶大约需用多少铁皮? (得数保留整数)9. 一个圆柱形水池, 底面半径3米, 池高1.5米, 这个水池最多可盛水多少吨? (1立方米的水重1吨)10. 晒谷场上有一个近似圆锥形的小麦堆, 测得底面周长为12.56米, 高1.2米.每立方米小麦约重730千克. 这堆小麦大约有多少千克? (得数保留整千克)。
2021-2022学年数学六年级下册圆柱和圆锥专项练习附答案【模拟题】
2021-2022学年数学六年级下册圆柱和圆锥专项练习一.解答题(共20题,共120分)1.在打谷场上,有一个近似于圆锥的小麦堆,高是1.2米,测得底面直径是4米。
每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克数)2.一个圆柱形钢材,截去10厘米长的一段后,表面积减少了314平方厘米,体积减少了多少立方厘米?3.在一个底面半径为10厘米的圆柱形杯里装满水,水里放了一个底面半径为5厘米的圆锥形铅锤,当铅锤从水中完全取出后,杯里的水面下降了0.5厘米,这个铅锤的体积是多少?4.一个装满玉米的圆柱形粮囤,底面周长6.28米,高2米。
如果将这些玉米堆成一个高1米的圆锥形的玉米堆,圆锥底面积是多少平方米?5.一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米。
6.一个圆柱和一个圆锥底面积比为2:3,体积比为5:6,求高的比。
7.一个无盖的圆柱形铁皮水桶,底面直径和高都是5分米,做这样一个水桶至少需用多少平方分米的铁皮?(得数保留整数)8.有一个圆锥形沙堆,底面半径是10米,高是4.8米,把这些沙子均匀地铺在一条宽20米,厚40厘米的通道上,可以铺多长?9.一个圆锥形沙堆,底面积是45.9m2,高1.2m.用这堆沙在12m宽的路面上铺3cm厚的路基,能铺多少米?10.一个圆锥形的煤堆,底面直径是8米,高1.4米,如果每立方米煤重2500千克,这堆煤共有多少千克?11.一个底面直径为20厘米的圆柱形容器里,盛有一些水。
把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升0.3厘米,这个铅锤的高是多少厘米?12.根据已知条件,完成下面各题。
(1)已知圆柱底面周长是25.12厘米,高是20厘米,求圆柱的表面积.(2)已知圆锥底面直径是8厘米,高是12厘米,求体积是多少?(3)如图是圆柱中挖去一个圆锥后的剩余部分,请计算它的体积.(单位:厘米)13.修建一个圆柱形的沼气池,底面直径是3米,深2米.在池子的四壁和下底面抹上水泥,抹水泥的面积是多少平方米?14.一个圆柱体水桶,从里面量,底面直径是32厘米,高是50厘米,这个水桶大约能盛水多少千克?(1dm3的水重1千克)15.张师傅要把一根圆柱形木料(如图)削成一个圆锥,削成的圆锥的体积最大是多少立方分米?16.一个圆柱形水池,在水池内壁和底部都镶上瓷砖,水池内部底面周长25.12m,池深2m,镶瓷砖的面积是多少平方米?17.一种圆柱形状的铁皮油桶,量得底面直径8dm,高5dm.做一个这样的铁皮油桶至少需多少平方米铁皮?(铁皮厚度不计,结果保留整数)18.一个圆柱铁皮油桶内装有半桶汽油,现在倒出汽油的后,还剩12升汽油。
苏教版2023-2024学年六年级数学下册第二单元:八种问题之圆柱与圆锥的切拼问题“综合版”专项练习
2023-2024学年六年级数学下册典型例题系列第二单元:八种问题之圆柱与圆锥的切拼问题“综合版”一、填空题。
1.两段同样的圆柱形铁锭叠放在一起,表面积减少了25.12cm2,若每个小圆柱的高是5厘米,叠放后圆柱体的表面积是( )cm2。
2.把一根圆柱形木料截成3段,表面积增加了45.12平方厘米,这根圆柱的底面积是( )平方厘米。
3.把一根5m长的圆木,横截成4段,表面积增加了3.6m2,原来圆木的体积是( )。
4.一根圆柱形木料底面半径是2dm,长2m,将它截成6段小圆柱,表面积比原来增加了( )2dm。
5.一个底面圆直径是4厘米、高5厘米的圆柱,沿底面直径把它切成两半,它的表面积增加了( )。
6.把一根底面半径为10厘米、高为1米的圆柱形木料切成完全相同的两部分,表面积最少增加( )平方厘米。
7.如图,把圆柱体平均分成若干份,再拼成一个近似的长方体。
已知长方体的长是12.56厘米,高是4厘米,这个圆柱体的侧面积是( )平方厘米,拼成的长方体表面积比圆柱体多( )平方厘米。
8.把一个圆柱形木棍的高截短3cm,表面积就减少了94.2cm2,这个圆柱的体积减少( )cm3。
二、解答题。
9.把一个高6分米的圆柱切拼成近似的长方体,表面积比原来增加了48平方分米,原来圆柱的体积是多少立方分米?10.把两根底面积相等的圆柱体钢材焊接成一根圆柱体钢材,表面积减少了0.8平方米,已知焊接后的钢材长3米,如果每立方米的钢材的质量为8.7千克,焊接后的这根钢材的质量为多少千克?11.将一个圆柱体木块沿上下底面圆心平均切成四块,表面积增加48平方分米。
若圆柱体平均切成三块小圆柱体,表面积增加50.24平方分米。
这个圆柱体木块的体积多少立方分米?12.一个圆柱高为15厘米,沿它的底面直径切成相等的两半,表面积增加240平方厘米,原来圆柱的体积是多少立方厘米?13.一个圆柱体(如图),如果把它的高截短3厘米,它的表面积减少94.2平方厘米。
北师大版六年级下数学一圆柱与圆锥练习(含答案)
北师大版六年级下数学一圆柱与圆锥练习(含答案)北师大版六年级下一圆柱与圆锥一.选择题(共6小题)1.求一个圆柱形水桶能盛多少水,就是求这个水桶的()A.体积B.表面积C.容积D.底面积2.一个圆柱和一个圆锥等底、等体积,它们的高之和是72厘米,圆柱的高是()厘米.A.18 B.24 C.36 D.543.一个高18厘米的圆锥形容器中装满水,把水倒入等底等高的圆柱形容器中,水深()厘米。
(容器厚度忽略不计)A.6 B.12 C.18 D.544.一长方形沿长和宽可以围成不同的圆柱。
如图,圆柱A的侧面积()圆柱B的侧面积。
A.等于B.大于C.小于D.无法确定5.正方体、圆柱和圆锥的底面积相等,高也相等,下面说法正确的是()A.圆柱的体积比正方体的体积小一些B.圆锥的体积是正方体体积的C.圆柱的体积与圆锥的体积相等D.正方体的体积比圆柱小一些6.如图1是一个底面半径为r高为h的圆柱展开图,老师在如图1的基础上把两个底面剪拼成长方形,与侧面的展开图拼接在一起如图2,根据这样的过程,下面哪个算式是计算这个圆柱的表面积。
()A.2πr(h+2r)B.πr(h+2r)C.2πr(h+r)D.πr(2h+r)二.填空题(共4小题)7.一个圆柱和一个圆锥的底面积相等,若它们的高之比是2:1,则它们的体积之比是________ .8.用一张长40厘米、宽20厘米的长方形纸卷成一个圆柱形纸筒,纸筒的高是________ 厘米,底面周长是________ 厘米。
9.一堆煤成圆锥形(如图),高是2m,底面周长是18.84m。
这堆煤的体积是________ m 3 。
10.把一个圆柱削成一个最大的圆锥,共削去18dm 3 ,圆锥的体积是________ dm 3 。
三.判断题(共4小题)11.圆柱底面半径缩小10倍,高扩大10倍,则体积扩大10倍.________ .12.一个圆柱与圆锥等底等高,圆柱的体积比圆锥多18m 3 ,圆锥的体积是9m 3 。
人教版六年级数学下册圆柱与圆锥体积专项练习题精选
人教版六年级数学下册圆柱与圆锥体积专项练习题精选1.把圆柱的侧面沿着高剪开,得到一个矩形,这个矩形的长等于圆柱底面的周长,宽等于圆柱的高,所以圆柱的侧面积等于底面周长乘以高。
2.单位换算:1升=1000毫升=1立方分米=1000立方厘米1平方米=平方分米,1公顷=平方米415平方厘米=41.5平方分米,4.5立方米=4500立方分米2.4立方分米=2400毫升,4070立方分米=4.07立方米3立方分米40立方厘米=3040立方厘米325立方米=立方分米,5380毫升=5.38升380毫升3.基础练:1.将4个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是20平方分米,体积是4立方分米。
2.一个圆柱底面半径2分米,侧面积是113.04平方分米,这个圆柱体的高是9分米。
4.把一根圆柱形木料截成3段,表面积增加了45.12平方厘米,这根木料的底面积是15.04平方厘米。
5.一个圆柱体的底面半径为r,侧面展开图形是一个正方形。
圆柱的高是r根2.6.一个圆柱的底面周长是12.56厘米,高是6厘米,那么底面半径是2厘米,底面积是4平方厘米,侧面积是75.36平方厘米,体积是50.24立方厘米。
7.一个圆柱和一个圆锥的底面积相等,高也相等,那么圆柱的体积是圆锥的3倍,圆柱的体积的2/3就等于圆锥的体积。
8.一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是4厘米。
9.等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是32立方米,圆锥的体积是16立方米。
10.一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是40立方厘米。
11.圆柱的底面半径是3厘米,体积是6.28立方厘米,这个圆柱的高是2厘米。
12.一个圆柱体高4分米,体积是40立方分米,比与它等底的圆锥体的体积多10立方分米。
这个圆锥体的高是6分米。
13.把一段圆钢切削成一个最大的圆锥体,切削掉的部分重8千克,这段圆钢重16千克。
六年级下册数学圆柱圆锥练习题(含答案)
六年级下册数学圆柱圆锥练习题(含答案)一、1. 一个圆柱的底面直径为8厘米,高为10厘米,求其体积和表面积。
解:圆柱的体积公式为V = πr^2h,表面积公式为S = 2πr(r+h)。
其中r为底面半径,h为高度。
先求出底面半径r = 8/2 = 4厘米。
体积V = π(4^2)×10 = 160π≈ 502.65 cm^3表面积S = 2π×4(4+10) = 2π×4×14 ≈ 351.86 cm^22. 一个圆锥的底面半径为6厘米,高为8厘米,求其体积和表面积。
解:圆锥的体积公式为V = 1/3πr^2h,表面积公式为S = πr(r+√(r^2+h^2))。
先求出底面半径r = 6厘米。
体积V = 1/3π(6^2)×8 = 96π≈ 301.59 cm^3表面积S = π×6(6+√(6^2+8^2)) ≈ 150.80 cm^2二、3. 一个圆柱的底面直径是12.6厘米,高是16厘米,求其体积和表面积。
解:首先计算底面半径r = 12.6/2 = 6.3厘米。
体积V = π(6.3^2)×16 = 633.6π≈ 1991.05 cm^3表面积S = 2π×6.3(6.3+16) ≈ 570.97 cm^24. 一个圆锥的底面直径是9.8厘米,高是12厘米,求其体积和表面积。
解:先计算底面半径r = 9.8/2 = 4.9厘米。
体积V = 1/3π(4.9^2)×12 ≈ 237.67 cm^3表面积S = π×4.9(4.9+√(4.9^2+12^2)) ≈ 145.55 cm^2三、5. 一个圆柱的底面半径是5厘米,高是18厘米,求其体积和表面积。
解:底面半径r = 5厘米。
体积V = π(5^2)×18 = 450π≈ 1413.72 cm^3表面积S = 2π×5(5+18) ≈ 376.99 cm^26. 一个圆锥的底面半径是7厘米,高是10厘米,求其体积和表面积。
六年级圆柱圆锥难题练习题
六年级圆柱圆锥难题练习题无论是在学校还是在社会中,我们很多时候都会有考试,接触到试题,试题是命题者根据测试目标和测试事项编写出来的。
一份什么样的试题才能称之为好试题呢?下面是小编为大家整理的六年级圆柱圆锥难题练习题,仅供参考,希望能够帮助到大家。
六年级圆柱圆锥难题练习题篇1一、填空:1、5.4平方分米=()平方厘米; 1.05立方米=()升;240立方厘米=()立方分米; 10.01升=()毫升。
2、圆柱的上、下两面都是()形,而且大小();圆柱的高有()条,圆锥的高有()条。
3、一个圆柱体,如果把它的高截短了3厘米,表面积就减少了94.2平方厘米,体积就减少()立方厘米。
X k B 1 . c o m4、一个圆锥的底面积是40平方厘米,高12分米,体积是()立方厘米。
5、一个圆柱的底面半径是3分米,高2分米,它的侧面积是()),体积是()。
6、一个圆柱的底面周长6.28厘米,高是3厘米,它的体积是(7、一个圆柱和一个圆锥等底等高,如果圆柱的体积是18)立方分米;如果圆锥的体积是18立方分米,那么圆柱的体积是(18立方分米,那么圆锥的体积是()立方分米。
8、把棱长为2)立方分米。
(结果保留两位小数)9、在一个高24厘米的圆锥形量杯里装满了水,如果将这些水倒入与它底面积相等的圆柱形量杯中,水面高(105段,表面积比原来增加()1 )ABC23倍,圆锥的体积是15立方分米,圆柱A3、圆柱的底面半径和高都乘3,它的体积应乘()。
A、3B、6C、9D、274、用一根小棒粘住直角三角形的一条直角边,旋转一周,这个三角形转动后产生的图形是()。
A、三角形B、圆形C、圆锥D、圆柱5、一个圆柱体杯中盛满15升水,把一个与它等底等高的铁圆锥倒放入水中,杯中还有()水。
A、5升B、7.5升C、10升D、9升6、把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体。
下面哪句话是正确的?()A、表面积和体积都没变B、表面积和体积都发生了变化C、表面积变了,体积没变D、表面积没变,体积变了三、应用题1、一根长2m的圆柱形木头,截去2分米的一段小圆柱后,表面积减少了12.56平方分米,那么这根木头原来的体积是多少?2、将一块长方形铁皮,利用图中阴影的部分,刚好制成一个油桶,求这个油桶的体积。
北师大版六年级数学下册第一单元《圆柱与圆锥》专项练习卷(含答案)
北师大版六年级数学下册第一单元《圆柱与圆锥》专项练习卷(全卷共7页,共36小题,建议110分钟完成)- - - - - - -☆- - - - - - ☆ - - - - - - ☆ - - - - - - ☆ - - - - - - -专项练习一:与圆柱表面积有关的生活实际问题1.做一个没有盖的圆柱形水桶,高是3.5dm,底面半径是2dm,做这个水桶至少要用铁皮多少平方分米?(得数保留整数)2.工厂新建的沼气池是圆柱形的,底面直径是4米,高是3米,要在下底面和内壁抹上水泥,抹水泥的面积是多少平方米?3.大厅里有4根圆柱体木桩要刷油漆,木桩底面周长2.5米,高4.2米。
1千克油漆6平方米,那么刷这些木桩要多少千克油漆?4.做一个高6分米,底面半径2分米的无盖圆柱形铁皮水桶,大约需要用多少铁皮?( 取3.14)5.公园里修一个圆柱形水池,直径为10m,深2m,要在水池内侧和底部抹一层水泥,抹水泥的面积是多少平方米?6.用白铁皮制作圆柱形通风管,每节长80厘米,底面半径5厘米,制作10节这样的通风管,至少需要多大面积的铁皮?7.一根圆柱形塑料水管,底面直径是24cm,长是6dm。
做100根这样的水管,至少需要多少平方米塑料?8.压路机的滚筒是一个圆柱体,它的底面直径是80厘米,长1.5米。
每分钟滚动24周,1小时能压多大面积的路面?9.用铁皮制作圆柱形通风管,每节长60cm,底面半径5cm,制作10节这样的通风管,至少需要多大面积的铁皮?10.养殖块要建一个圆柱形蓄水池,底面周长是25.12米,高是4米,沿着这个蓄水池的周围及底面抹水泥。
如果每平方米用水泥2千克,买400千克水泥够吗?11.学校大厅有4根圆柱形柱子,每根柱子的底面周长是25.12分米,高是5米.如果每平方米需要油漆费5元,那么漆这4根柱子需要油漆费多少元?12.李师傅做了50个直径是8dm高是12dm的圆柱形铁桶,每平方分米的铁桶重6.5kg,做好这些铁桶应该用多少千克的铁皮?专项练习二:与圆柱体积有关的生活实际问题1.一段长2m的圆柱形钢材,底面直径是20cm。
人教版六年级数学下册 第3单元 圆柱与圆锥 解决问题专项练习(含答案)
人教版六年级数学下册第3单元圆柱与圆锥解决问题专项练习时间:40分钟满分:100分班级:姓名:学号: .1.求下面图形的体积。
(单位:dm)2.计算下面物体的表面积。
(单位:dm)3. 把三角形ABC沿BC边和AB边分别旋转一周,得到2个圆锥(如下图),哪个圆锥的体积大?4.一个圆锥形小麦堆,底面周长是12.56米,高是1.5米,若每立方米小麦重0.7吨,这堆小麦重多少吨?5.制作底面直径0.2m,长1m的圆柱形通风管100根,至少需要铁皮多少平方米?6.把一个底面直径为6厘米的金属圆锥体投入到底面半径为9厘米的圆柱形杯内,杯中水面上升1.5厘米,金属圆锥的高是多少厘米?7.如图,在密封的容器中装有一些水,水面距底部的高度是10cm。
如果将这个容器倒过来,你能求出这时水面距底部的高度是多少厘米吗?6dm 8dm6cm 8cm4cm8.一个圆柱形玻璃容器里装有水,水中浸没了一个底面半径是3cm,高是10cm的圆锥形铁块(如图),如果把铁块从水中取出来,那么容器中的水面高度将下降多少厘米?9.红星广场有一个圆锥形玻璃罩,底面周长31.4米,高15米,这个玻璃罩的容积是多少立方米?(玻璃厚度忽略不计)10.某技工学校开展操作技能竞赛,要求把完全一样的圆柱形铁块平均切割成两块,且切成的零件不是圆柱体。
下图是张勇和李丽按要求切去一半后的形状,原来圆柱形铁块的体积是多少立方厘米?11.压路机的滚筒是个圆柱,它的宽是2米,滚筒横截面半径是0.6米,如果滚筒每分钟滚动5周,那么1小时可压路多少平方米?12.用塑料绳捆扎一个圆柱形的蛋糕盒(如下图),打结处正好是底面圆心,打结用去绳长10厘米。
(1)扎这个盒子至少用去塑料绳多少厘米?20cm40cm(2)在它的整个侧面贴上商标和说明,这部分的面积至少多少平方厘米?13.2021年7月各地汛情紧张,A市防汛指挥部在堤坝上围了一个圆柱形帐篷。
从外面测帐篷的直径为8米、高为6米。
最新北师大版小学六年级数学下册《圆柱与圆锥》重难点题型
六年级下册数学圆柱与圆锥的重难点题型一、高的变化引起表面积的变化底面积不变,圆柱高的变化引起表面积的变化,由于底面积没有变,所以实际上发生变化的是侧面积,由此可以求出底面周长,进而求出表面积。
【例题】一个圆柱被截去10厘米后(如下图),圆柱的表面积减少了628平方厘米,原来圆柱的表面积是多少平方厘米?(π取3.14)2、一个圆柱,如果把它的高截短3m,它的表面积就会减少94.2m²,那么这个圆柱的体积减少多少立方米?【练习】1、一个圆柱体,高减少2厘米,表面积就减少了50.24平方厘米,圆柱的底面积是多少平方厘米?2、一个圆柱的底面直径为4厘米,如果高增加1厘米,表面积增加多少平方厘米。
一个圆柱的底面周长和高相等,如果高缩短了2厘米,表面积就减少12.56平方厘米,求这个圆柱体原来的表面积?二:圆柱竖切引起的表面积变化垂直于底面切(竖切):多出的两个面是长方形,即以底面圆的直径为长,以圆柱的高为宽的长方形。
【例题】工人把一根高是1米的圆柱形木料,沿底面直径平均分成两部分,这时两部分的表面积之和比原来增加了0.8平方米。
求这根木料原来的表面积。
【练习】1、一个底面半径4cm,高5cm的圆柱,如果沿底面直径把它平均切成两半,它的表面积增加了多少平方厘米?2、把一个半径2分米、长1米的圆木平均截成3段,表面积共增加多少平方分米?3、把一个底面半径是40cm,长是12分米的圆柱形木头锯成长短不同的4小段圆柱形木头,表面积增加了多少平方分米?4、把一根长为1.2米的圆柱形钢材截成3段,表面积增加了6.28平方分米,原来这根钢材的体积是多少?5、底面直径是20厘米的圆钢,将其截成两段同样的圆钢,两段表面积的和为7536平方厘米,原来圆钢的体积是多少立方厘米?【例题】把一个底面半径是6cm的圆柱切拼成一个近似的长方体后(如图),表面积增加了180cm²,原来圆柱的体积是多少立方厘米?【练习】1、把一个高为1米的圆柱体切成底面是许多相等的扇形,再拼成一个近似的长方体,已知拼成后长方体表面积比原来圆柱表面积增加了40平方分米,原来圆柱体的体积是多少立方分米?2、把高5厘米的圆柱底面分成若干等份,把圆柱切开拼成一个近似的长方体,长方体表面积比圆柱增加20平方厘米。
苏教版六年级数学下册第二单元圆柱和圆锥全套专项练习
第1课时圆柱和圆锥的认识一、指出下面图形中哪些是圆柱,并指出圆柱的底面、侧面和高。
二、读出下面各圆柱的有关数据。
(图中单位:厘米)三、判断:对的打“√”,错的打“×”。
①圆柱体的高只有一条。
()②上下两个底面相等的圆形物体一定是圆柱体。
()③圆柱体底面周长和高相等时,沿着它的一条高剪开,侧面是一个正方形。
()四、根据圆锥的特征,判断下面图形中哪些是圆锥?五、说出下面各圆锥的高:六、下面图形以红色线为轴旋转后会得到圆锥吗,如果是说出圆锥的高和底面半径。
第2课时圆柱的表面积一、填空1.把圆柱体的侧面展开,得到一个(),它的()等于圆柱底面周长,()于圆柱的高。
2.一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是()平方厘米。
3.一个圆柱体,底面半径是2厘米,高是6厘米,它的侧面积是()平方厘米。
4.一个圆柱体的侧面积是12.56平方厘米,底面半径是2分米,它的高是()厘米。
5.把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米。
6.把一张边长为5.5厘米的正方形白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米。
二、判断1.圆柱的侧面展开后一定是长方形。
()2.6立方厘米比5平方厘米显然要大。
()3.一个物体上、下两个面是相等的圆面,那么,它一定是圆柱形物体。
()4.把两张相同的长方形纸,分别卷成两个形状不同的圆柱筒,并装上两个底面,那么制的圆柱的高、侧面积、表面积一定相等。
()三、求下面各圆柱体的侧面积1.底面半径是3厘米,高是15厘米。
2.底面直径是2.5分米,高是4分米。
3.底面周长是6分米,高是3.5分米。
四、应用题1.一个圆柱体的高是12厘米,底面半径是3厘米。
它的侧面积是多少?它的表面积是多少?2.一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?3.一个圆柱体,高减少2厘米,表面积就减少18.84平方厘米,这个圆柱的上、下两个底面和是多少平方厘米?4.把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?第3课时练习课一、填空题。
北师大版六年级下册数学第一单元 圆柱与圆锥应用题专题训练(含答案)
北师大版六年级下册数学第一单元圆柱与圆锥应用题专题训练1.航天运载火箭有一个重要组成部分是整流罩,整流罩外形通常由近似的圆柱和圆锥组成。
下图是某型号运载火箭的简约示意图(整流罩本身的厚度不计),该整流罩的容积是多少?2.一堆玉米堆成圆锥形,底面周长是12.56米,高是1.8米。
(1)这些玉米的体积是多少?(2)如果每立方米玉米重750千克,这些玉米有多少吨?3.一个圆锥谷堆,底而直径为6米,高1.2米。
这堆稻谷的体积是多少立方米?如果每立方米稻谷的质量是800千克,这堆稻谷有多少吨?4.将一个底面半径是10厘米的圆锥形金属全部浸没在底面直径40厘米的圆柱形玻璃容器中,这时水面比原来上升了1.5厘米。
这个圆锥形金属的高是多少厘米?5.把一个长、宽、高分别为9cm、7cm、3cm的长方体铁块和一个棱长为5cm的正方体铁块,熔铸成一个底面直径为10cm的圆锥形铁块,圆锥形铁块的高是多少厘米?6.一个用塑料薄膜搭成的蔬菜大棚(如图),长20m,横截面是一个半径为2m的半圆,如果前后面都算的话,①搭成这个大棚至少需要塑料薄膜多少平方米?②这个大棚的种植面积是多少平方米?7.一个圆柱形蓄水池,底面直径20m,深2m,在水池的侧面和池底抹上水泥,抹水泥的面积有多少m2?这个水池最多能蓄水多少m3?8.有甲、乙两个不同形状的杯子(如下所示),用甲杯盛满水倒入乙杯中,这样倒4次后,乙杯中水的高度是多少厘米?9.工地上有一堆圆锥形沙堆,高1.5米,底面直径是6米。
(1)这个沙堆的占地面积是多少?(2)如果每立方米沙约重1.7吨,这堆沙约重多少吨?10.今天是笑笑的生日,同学们送给她一个大蛋糕,蛋糕盒是圆柱形,做蛋糕的阿姨说要配上十字形丝带才更漂亮(如下图),打结处要用25cm。
(1)捆扎这个蛋糕盒至少需要多长的丝带?(2)在它的侧面贴上商标纸,商标纸的面积至少是多少平方厘米?11.如图,一个醋瓶,底面直径为8cm,瓶里醋深12cm,把瓶盖盖紧后倒置(瓶口向下),无水部分高10cm。
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷带答案(完整版)
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷一.选择题(共6题, 共12分)1.边长是1厘米的正方形卷成一个圆柱体, 它的体积是()。
A.立方厘米B.立方厘米C.立方厘米D.立方厘米2.一个圆柱体的侧面展开图是正方形, 这个圆柱体的底面直径与高的比是()。
A.1∶πB.π∶1C.1∶2π3.它是由()。
A.两个大小不同的圆和曲面围成的圆柱B.由直角梯形旋转而得到的C.由半圆旋转而得到的4.圆柱的底面半径扩大3倍, 高不变, 体积扩大()。
A.3倍B.9倍C.6倍5.一个圆柱形容器内注有水, 它的底面半径是r厘米, 把一个圆锥形铜锤浸在水中, 水面上升h厘米, 这个圆锥形铜锤的体积是()。
6.圆锥的体积一定, 圆锥的底面积与高成()比例。
A.正B.反C.不成二.判断题(共6题, 共12分)1.如下图, 圆柱的底面是椭圆形。
()2.圆柱的侧面沿着高展开后会得到一个长方形或者正方形。
()3.圆锥的底面积扩大2倍, 体积也扩大2倍。
()4.圆锥的体积等于圆柱体积的。
()5.圆锥的侧面展开图是圆形。
()6.如果一个正方体和一个圆柱的底面积和高都相等, 那么它们的体积也相等。
()三.填空题(共6题, 共12分)1.一个直角三角形的两条直角边分别长6cm、8cm, 以8cm的直角边为轴旋转一周, 得到的立体图形是(), 它的体积是()cm3。
2.圆柱的两个底面是两个大小()的圆, 如果一个圆柱的底面周长和高相等, 那么它的侧面展开是一个()。
3.如右图所示, 把高是10厘米的圆柱切成若干等份, 拼成一个近似的长方体。
这个长方体的表面积比原来增加80cm2, 那么原来圆柱底面积半径是()厘米, 体积是()cm3。
4.一个圆锥体的体积是31.4立方分米, 高是5分米, 它的底面积是()平方分米。
5.有等底等高的圆柱和圆锥容器各一个, 将圆柱容器内装满水后, 倒入圆锥容器内。
当圆柱容器里的水全部倒光时, 溢出了36.2毫升, 这时圆锥容器里有水()升。
六下 第三单元圆柱与圆锥提高题和奥数题(附答案)
六下第三单元圆柱与圆锥提高题和奥数题(附答案)板块一圆柱的认识例题1.选择哪些材料恰好能做成一个圆柱形的盒子?d=2cm d=3cm d=4cmA B C练习1.在下面的材料中,选择()能做成圆柱。
3号4号 5号A.1号、2号和3号B.1号、4号和5号C.1号、2号和4号例题2.一个圆柱的底面直径是6.28cm,高是4.5cm.如果沿底面直径垂直于底面把这个圆柱切成完全相同的两半,那么切面的面积是多少?练习2.(1)一个底面周长是9.42厘米,商是5厘米的圆柱,沿底面直径垂直于底面把它切割成两个半圆柱后,切面的面积一共是多少平方厘米?(2)把一个圆柱的侧面沿高展开后得到一个正方形,这个圆柱的商与底面直径的比是多少?例题3.一个圆柱形蛋糕盒的底面直径是20厘米,高是15厘米,用彩绳将它捆扎(如右图),打结处在圆心,打结部分长30厘米。
求所用彩绳的全长是多少厘米?练习3.一个圆柱形蛋糕用彩绳捆扎,如果打结部分用了35厘米,打结处在圆心,一共用了多长彩绳?板块二圆柱的表面积例题1.一块长方形的钢板,利用图中阴影部分刚好能做成一个圆柱形的带盖水桶(接头处忽略不计),求这个水桶的表面积。
练习 1.(1)如下图,有一张长方形铁皮,剪下两个圆及一个长方形,正好可以做成一个圆柱,这个圆柱的底面半径为10厘米,原来这张长方形铁皮的面积是多少平方厘米?(2)有一张长方形铁皮(尺寸如图所示),剪下阴影部分正好能围成一个圆柱,求圆柱的表面积是多少。
例题2.工人师傅要在一个零件(如右图)的表面涂一层防锈材料。
这个零件是由两个圆柱构成的,小圆柱的直径是4厘米,高是2厘米;大圆柱的直径是6厘米,高是5厘米。
这个零件涂防锈材料的面积是多少?练习2.用3个高都是2分米,底面半径分别为2分米、1分米和0.5分米的圆柱组成一个物体(如图),求该物体的表面积。
例题3.如图,是长为8,宽为4的长方形,以长方形的长为轴旋转一周。
求所形成的立体图形的表面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学下册圆柱圆锥难题练习题
一、填空:
1、5.4平方分米=()平方厘米; 1.05立方米=()升;
240立方厘米=()立方分米; 10.01升=()毫升。
2、圆柱的上、下两面都是()形,而且大小();圆柱的高有()条,圆锥的高有()条。
3、一个圆柱体,如果把它的高截短了3厘米,表面积就减少了94.2平方厘米,体积就减少()立方厘米。
4、一个圆锥的底面积是40平方厘米,高12分米,体积是()立方厘米。
5、一个圆柱的底面半径是3分米,高2分米,它的侧面积是(),表面积是
(),体积是()。
6、一个圆柱的底面周长6.28厘米,高是3厘米,它的体积是()立方厘米。
7、一个圆柱和一个圆锥等底等高,如果圆柱的体积是18立方分米,那么圆锥的体积是
()立方分米;如果圆锥的体积是18立方分米,那么圆柱的体积是()立方分米;如果它们的体积相差18立方分米,那么圆锥的体积是()立方分米,圆柱的体积是()立方分米。
8、把棱长为2分米的正方体木块,削成一个最大的圆锥,圆锥的体积约是()立方分米。
(结果保留两位小数)
9、在一个高24厘米的圆锥形量杯里装满了水,如果将这些水倒入与它底面积相等的圆柱形量杯中,水面高()厘米。
10、一根长4米,横截面半径为2分米的圆柱形木料截成同样长的5段,表面积比原来增加()平方分米。
二、应用题
1、一根长2m的圆柱形木头,截去2分米的一段小圆柱后,表面积减少了12.56平方分米,那么这根木头原来的体积是多少?
2、将一块长10cm、宽6cm、高8cm的长方体木块,切割成体积尽可能大的圆柱体木块,求
这个圆柱体木块的体积。
3、小明新买了一支净含量54cm3的牙膏,牙膏的圆形出口的直径为6mm,他早晚各刷一次牙,每次挤出的牙膏长约20mm,这支牙膏估计能用多少天?
4、甲、乙两个体积相等的圆柱,两个圆柱的底面半径比为3:2,乙比甲高25厘米,两个圆
柱各高多少厘米?
5、把一个圆柱体切开,拼成一个与它等底等高的长方体,这个长方体的表面积比圆柱体多
20平方厘米,若圆柱的底面周长是15厘米,圆柱的体积是多少立方厘米?
6、甲乙两个圆柱体容器,底面积之比是2:3,甲中水深6厘米,乙中水深8厘米,现在往
两个容器中加入同样多的水,直到两容器中的水深相等,求这时容器中水的高度是多少厘米?
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。