初中数学定理公式归纳汇总
初中数学公式定理总结汇总归纳大全
初中数学公式定理总结汇总归纳大全
一、代数公式
1、二元一次方程的解法:
解:二元一次方程的解为:x=(-b±√(b2-4ac))/2a
2、单项式的展开式:
解:单项式展开式有(x+y)^n=ΣCn,mx^(n-m)y^m
其中Cn,m为组合数,即Cn,m=n!/(m!(n-m)!)
3、二次函数的一般式:
解:二次函数一般式为:y=ax2+bx+c
其中a,b,c为实数,a≠0
4、分式的乘法:
解:分式相乘法则为:
(a/b)×(c/d)=ac/bd
5、分式的除法:
解:分式相除法则为:
(a/b)÷(c/d)=ad/bc
6、二次函数的极值:
解:当ax2+bx+c=0时,函数的极值为-(b±√(b2-4ac))/2a
7、二次函数的开口方向:
解:a>0时开口向上,a<0时开口向下
8、多项式的展开式:
解:多项式的展开式为:
(x+y)^n=ΣΣ(A)n,mx^(n-m)y^m
其中A)n,m为组合数,即A)n,m=n!/(m!(n-m)!)
9、二次函数的解析式:
解:解析式为:y=a(x-x1)(x-x2)
其中a为系数,x1和x2为极值点
二、几何公式
1、直线与圆的位置关系:
解:直线与圆的位置关系分为内切、外切、相交(内切外切)、切点相离
2、平行线定理:
解:如果两条直线互相垂直,则它们是平行的。
3、垂线定理:。
初中数学定理公式定律大全
初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。
-分配率:a×(b+c)=a×b+a×c。
-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。
-幂的乘法:(a^m)×(a^n)=a^(m+n)。
2.平方根公式-设a≥0,则√a×√a=a。
-若a≥0,则√(a^2)=a。
3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。
- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。
4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。
-三角形内角和定理:一个三角形的内角之和等于180°。
-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。
5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。
-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。
-三角形内角和定理:一个三角形的内角之和等于180°。
-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。
6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。
-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。
-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。
-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。
-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。
7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。
-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。
-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。
初中数学48个公式
初中数学48个公式1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方,就像一个直角三角形的两条小短腿的平方加起来就等于那条大长腿的平方,a² + b² = c²。
2. 完全平方公式:(a + b)² = a² + 2ab+ b²,可以想象成(a和b)这两个人去参加一个平方派对,a自己先平方,b自己先平方,然后他俩还互相拥抱两次(2ab)。
3. 平方差公式:a² b²=(a + b)(a b),就好像是a的平方和b的平方在玩捉迷藏,a 平方减b平方就等于(a + b)和(a b)把它俩抓住了。
4. 一元二次方程的求根公式:对于ax²+bx + c = 0(a≠0),x=(-b±√(b²4ac))/(2a),这就像是一个神秘的钥匙,能打开一元二次方程的解的大门。
5. 三角形内角和定理:三角形的内角和等于180°,不管这个三角形是胖是瘦,是高是矮,它里面的三个角加起来就是180度,就像三个小伙伴凑在一起就是180的欢乐值。
6. 平行四边形的面积公式:S = ah(a是底,h是高),平行四边形就像一个被压扁的长方形,它的面积就是底乘以高,就像底是一排小士兵,高是有几排这样的小士兵。
7. 三角形的面积公式:S=(1)/(2)ah(a是底,h是高),三角形的面积是平行四边形面积的一半,因为它就像是平行四边形被一刀切成了两半。
8. 梯形的面积公式:S=((a + b)h)/(2)(a、b是上底和下底,h是高),梯形就像一个上底和下底不一样长的怪形状,它的面积就是上底和下底加起来乘以高再除以2,就像是把梯形变成一个大平行四边形再除以2。
9. 同底数幂相乘:a^m× a^n=a^m + n,底数相同的幂相乘,指数就像好朋友一样相加,就好像m个a相乘再乘以n个a相乘,总共就是(m + n)个a相乘。
初中数学所有定理与公式
初中数学所有定理与公式初中数学中的定理与公式有很多,以下是一些重要的定理和公式:一、整数与出列1.整数与负数相乘,结果为负数。
(定理)2.出列法则:同号相乘为正,异号相乘为负。
(公式)二、整式的加减与乘除1.加法交换律:a+b=b+a。
(定理)2.减法可加法运算:a-b=a+(-b)。
(公式)3.乘法交换律:a×b=b×a。
(定理)4.乘法分配律:a×(b+c)=a×b+a×c。
(定理)5.除法公式:a÷b=a×(1/b)。
(公式)6.乘幂公式:a^m×a^n=a^(m+n)。
(公式)三、因式分解与倍数与公约数1.因式分解:将一个多项式写成几个因式相乘的形式。
(规则)2.公约数:能同时整除两个或多个数的数。
(定义)3.最大公约数:一组数的公约数中最大的一个。
(定义)4.最小公倍数:一组数中能被所有数整除的最小整数。
(定义)四、平方根与勾股定理1.平方根的性质:如果a²=b,则√b=,a。
(定理)2.勾股定理:在直角三角形中,a²+b²=c²。
(定理)五、百分数及其应用1.百分比:以百为基数的计数单位。
(定义)2.百分数计算:a%=a/100。
(公式)3.利率计算:利息=本金×利率×时间。
(公式)4.百分数的增减:数据增加或减少的百分比计算。
(公式)六、方程与不等式1. 一元一次方程:ax + b = 0,x = -b/a。
(定理)2. 一元二次方程求解公式:x = (-b ± √(b² - 4ac))/(2a)。
(公式)3.不等式的性质:同意负号,异号取反,非负数平方不小于0。
(定理)七、平行线与相交线1.平行线的性质:同位角相等,内错角相等,外错角相等。
(定理)2.相交线的性质:同位角互补,内错角互补,外错角互补。
(定理)八、三角形与四边形1.三角形内角和为180°。
初中数学公式大全总结归纳
初中数学公式大全总结归纳一、代数部分1. 有理数- 有理数加法法则:- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,( -3)+(-5)=-(3 + 5)=-8。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:3+( - 5)=-(5 - 3)=-2,( - 3)+5 = 5-3 = 2。
- 一个数同0相加,仍得这个数。
- 有理数减法法则:减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
- 有理数乘法法则:- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)=-15。
- 任何数同0相乘,都得0。
- 有理数除法法则:- 除以一个不等于0的数,等于乘这个数的倒数。
即adiv b=a×(1)/(b)(b≠0)。
- 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
2. 整式的加减- 合并同类项:同类项的系数相加,所得结果作为系数,字母和指数不变。
例如:3x+2x=(3 + 2)x=5x。
- 去括号法则:- 如果括号前面是“+”号,去括号时括号里面各项不变号。
例如:a+(b - c)=a + b-c。
- 如果括号前面是“-”号,去括号时括号里面各项都变号。
例如:a-(b -c)=a - b + c。
3. 一元一次方程- 一元一次方程的标准形式:ax + b = 0(a≠0)。
- 求解一元一次方程的步骤:- 去分母(方程两边同时乘以各分母的最小公倍数)。
- 去括号。
- 移项(把含未知数的项移到等号一边,常数项移到等号另一边,移项要变号)。
- 合并同类项。
- 系数化为1(方程两边同时除以未知数的系数)。
4. 二元一次方程组- 二元一次方程组的解法:- 代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
初中数学公式定理大全
初中数学公式定理大全
一、比例
1、比例定义:两个量的比值称为比例。
2、反比例定理:如果两个数中,一个数的倒数与另一个数成正比,则称这两个数成反比。
3、比例的乘法定理:如果两个比例的乘积等于1,则称这两个比例互相等数。
4、比例的加法定理:若两个比例的和为1,则称这两个比例是相等数。
5、三比例定理:若有三个比例a:b:c,他们的和为1,那么
a+b:b+c:c+a=1
二、平行线定理
1、平行线定义:两条直线不相交,且均与同一平行线相平行,则称这两条直线相平行。
2、平行线分割叉定理:若有两条平行线与另一直线相交,则这两条射线所成的四边形的面积是相等的。
3、垂直平分线定理:若有一条直线与另一条直线相垂直,则这二条直线的中垂线所成的四边形的面积是相等的。
4、向量平分定理:若有两条向量,它们的和所成的新向量与该向量成反比,则称这两条向量相平分。
三、三角形定理
1、三角形定义:三点不共线时,连接这三点构成的图形称为三角形。
2、勾股定理:在直角三角形中,斜边的平方等于两条直角边的平方和。
3、相似三角形定理:若两个三角形的各边按比例相等,则称这两个
三角形是相似的。
4、三角形的中线定理:在直角三角形中。
初中数学常用公式和定理大全
初中数学常用公式和定理大全
一、一元二次方程公式
一元二次方程的解一般式:
$$ax^2+bx+c=0$$
解为: $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
其中,a、b、c都是实数,且a≠0
二、立方根公式
定理:任意一个非负数都可以表示为三个整数立方根之和的形式也就是:$$a=x^3+y^3+z^3$$
其中,x,y,z都是整数
三、勾股定理
定理:在直角三角形中,斜边的平方等于两个直角边的平方和
也就是:
$$c^2=a^2+b^2$$
其中,a、b、c分别表示直角三角形的三边
四、三角函数公式
正弦定理:
在任意直角三角形中,有
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$$
其中,a、b、c分别是直角三角形的三边,A、B、C是其对应的角,R
是三角形的外接圆半径。
余弦定理:
在任意直角三角形中,有
$$a^2=b^2 + c^2 -2bc\cos A $$
$$b^2=a^2 + c^2 -2ac\cos B $$
$$c^2=a^2 + b^2 -2ab\cos C $$
其中,a、b、c分别表示直角三角形的三边,A、B、C分别表示其对
应的角。
五、椭圆面积公式
定理:椭圆的面积可以用下面公式计算:
$$S=\pi ab$$
其中,a和b分别表示椭圆的长半轴和短半轴的长度,π表示圆周率。
27条初中数学公式定理集锦
一、有理数1、相反数与绝对值(1)数a的相反数是-a。
若a、b互为相反数,则a+b=0;反之,若a+b=0,则a、b互为相反数.a(a>0),(2)绝对值计算∣a∣= 0(a=0),-a(a<0),a(a≧0),a(a>0),或∣a∣=或∣a∣=-a(a<0),-a(a≦0)2、两个有理数大小的比较(1)在数轴上,右边的数总比左边的数大.(2)正数大于0,负数小于0,正数大于一切负数.(3)两个负数比较,绝对值大的负数反而小.3、有理数的运算4、有理数运算律5、科学记数法把一个大于10的数记作a ×10n的形式,其中a 大于或等于1且小于10,即1 ≤| a| <10,n 是正整数.二、整式的加减1、合并同类项的法则合并同类项时,将同类项的系数相加,所得的和作为系数,字母与字母的指数不变.2、去括号法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 3、整式的加减法则整式的加减实质就是去括号、合并同类项,若有括号,就要先去掉括号,然后再合并同类项,直到结果中没有同类项为止.三、一元一次方程1、等式的基本性质(1)如果a=b ,那么a+c=b+c ,a-c=b-c(2)如果a=b ,那么ac=bc ;如果a=b ,那么a c =bc (c ≠0)2、解一元一次方程的步骤四、几何图形初步1、直线、线段公理(1)直线公理:两点确定一条直线. (2)线段公理:两点之间,线段最短. 2、角五、相交线与平行线1.相交线与垂线2.平行线3.命题、定理、证明六、实数1、平方根和立方根2、实数的性质(1)数a的相反数是-a,这里a表示任意一个实数.(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.七、平面直角坐标系各象限内点的坐标特点P(a,b)①点在第一象限,则a>0,b>0; ②点在第二象限,则a<0,b>0;○3点在第三象限,则a<0,b<0; ④点在第四象限,则a>0,b<0 角平分线上点的特点 P(a,b)①在一、三象限的角平分线上,a=b ; ②在二、四象限的角平分线上,a=-b平面直角坐标系中对称点的坐标特点 P(a,b) ①关于x 轴对称,横坐标相同,纵坐标互为相反数,即(a,-b );○2关于y 轴对称,横坐标互为相反数, 纵坐标相同,即(-a ,b ); ○3关于坐标原点对称,横纵坐标都互为相反数,即(-a,-b ) 与坐标轴平行的直线上的点的坐标特点○1与x 轴平行的直线上的所有点的纵坐标相同; ○2与y 轴平行的直线上的所有点的横坐标相同 八、二元一次方程组a 1x+b 1y=c 1, 对于二元一次方程组a 2x+b 2y=c 2.(1) 当a 1a 2 ≠b 1b 2(a 2,b 2≠0)时,方程组有唯一解.(2) 当a 1a 2 =b 1b 2 =c 1c 2 (a 2,b 2,c 2≠0)时,方程组有无数组解.(3) 当a 1a 2 =b 1b 2 ≠c 1c 2(a2,b2,c2≠0)时,方程组无解.九、不等式与不等式组1.不等式性质性质1:不等式的两边同时加(或减)同一个数或同一个含有字母的式子,不等号的方向不变,即如果a>b ,那么a ±m>b ±m.性质2:不等式的两边同时乘(或除)同一个正数,不等号的方向不变,即如果a>b 且m>0,那么am>bm 或a m >bm.性质3:不等式的两边同时乘(或除)同一个负数,不等号的方向改变,即如果a>b 且m<0,那么am<bm 或a m <bm.2.一元一次不等式组的解集不等式组(a<b )数轴表示解集口诀x>a ,x>bx>b同大取大x<a ,x<bx<a同小取小ababa ba b十、三角形1、三角形的分类2、三角形三边关系三角形中任意两边的和大于第三边,三角形中任意两边的差小于第三边.3、三角形内角和定理三角形三个内角的和等于180°.4、直角三角形的性质与判定性质;直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.5、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角.6、多边形的内角和与外角和(1)n边形的内角和是(n-2)×180°.(2)n边形的外角和为360°.十一、全等三角形1.全等三角形角形的判定2.角平分线的性质及判定(1)性质:角的平分线上的点到角的两边的距离相等.(2)判定:角的内部到角的两边距离相等的点在角的平分线上.十二、轴对称1.轴对称和线段垂直平分线的性质及判定2.三角形的性质及判定十三、整式的乘法与因式分解1.幂的有关法则2.乘法公式3.因式分解十四、分式1.分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即 A B =A ·M B ·M ,A B = A ÷M B ÷M (其中M 是不等于0的整式) 2.分式的运算法则(1) 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.即b a ·d c =bdac .(2) 除法法则:分式除以分式,把除式的分子、分母 颠倒位置后,与被除式相乘.即b a ÷d c =b a ·c d =bcad.(3) 乘方法则:把分子、分母分别乘方.为正整数).(4) 加减法法则:①同分母的分式相加减,分母不变,把分子相加减.即a c ±b c =a ±bc:②异分母分式相加减,先通分,变为同分母分式,再加减.即a b ±d c =ac bc ±bd bc =ac ±bdbc.十五、二次根式十六、勾股定理1.勾股定理如果直角三角形的两条直角边长分别是a ,b,斜边长为c,那么a 2+b 2=c 2.2.勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么 这个三角形就是直角三角形.十七、平行四边形1.几种特殊四边形常用的判定方法2.中位线三角形的中位线平行于第三边,并且等于第三边的―半.十八、一次函数1.正比例函数的图象和性质2.—次函数的图象和性质Oxy OxyOxyOxy Oxy Oxy十九、数据的分析1. 平均数(1) 平均数: 对于n 个数n 个数的平均数. (2) 加权平均数:若n 则x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n叫做这n 个数的加权平均数 2. 数据的波动程度(1) 极差:一组数据的最大值与最小值的差(2) 方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用s 2来表示,计算公式x 1-⎺x )2+(x 2-⎺x )2+…+(x n -⎺x )2]. (3) 标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.公式:. 二十、一元二次方程1. 一元二次方程的解法2. —元二次方程根的判别式ax 2+bx+c=0(a ≠0) 的判别式△= b 2-4ac .(1) △>0,一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根.(2) △=0,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根.(3) △<0,一元二次方程ax 2+bx+c=0(a ≠0) 没有实数根.3. 一元二次方程根与系数的关系已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2, 则有二十—、二次函数2. 二次函斂y=a(x-h)+k(a ≠0)的性质3. 二次函数y=ax +bx+c 的性质(1) a 的符号:由抛物线的开口方向确定 ○1开口向上○2开口向下。
初中数学公式定理大全
初中数学公式定理大全1.代数公式- 两个数的乘积等于它们的积:ab = ba- 两个数乘积的倒数等于它们的倒数的乘积:(ab)^-1 = a^-1 * b^-1- 两个数的平方和等于它们的平方和的两倍加上它们的积:(a + b)^2 = a^2 + 2ab + b^2- 两个数的平方差等于它们的平方差的两倍减去它们的积:(a -b)^2 = a^2 - 2ab + b^22.平面几何定理- 锐角三角形的三条边的平方之和等于两倍的三个角的余弦值之和:a^2 + b^2 + c^2 = 2(abcosC + bccosA + cacosB)-三角形内角和定理:三角形的三个内角的和等于180度:A+B+C=180度-等腰三角形底角定理:等腰三角形的底角等于顶角的一半:A=B/2 -相似三角形的对应边成比例:a/b=c/d3.空间几何定理-空间直角三角形的斜边的平方等于两个直角边的平方的和:c^2=a^2+b^2-空间三角形内角和定理:空间三角形的三个内角的和等于180度:A+B+C=180度-垂直平分线定理:平面内相交的两条直线的垂直平分线互相垂直4.数列与数学归纳法-等差数列的通项公式:an = a1 + (n - 1)d-等差数列的前n项和公式:Sn = (n/2)(a1 + an)-等比数列的通项公式:an = a1 * r^(n - 1)-等比数列的前n项和公式(当r不等于1时):Sn=a1*(1-r^n)/(1-r) -数学归纳法:若数学命题在数的一部分上成立且下一部分数的成立是依赖于上一部分数的成立,则该数学命题在全体正整数上成立5.概率-事件的概率:P(A)=n(A)/n(S),其中n(A)表示事件A中的有利结果数,n(S)表示样本空间中的总结果数-互斥事件的概率和:P(A+B)=P(A)+P(B),其中A和B是互斥事件- 事件的相对频率概率:P(A) = lim(n(A) / n),其中n表示试验次数6.函数- 一次函数的解析式:y = kx + b,其中k表示斜率,b表示截距- 二次函数的解析式:y = ax^2 + bx + c,其中a表示二次项系数,b表示一次项系数,c表示常数项这只是初中数学常用的一些公式和定理的简要介绍,数学含有广泛且深奥的知识。
初中数学146个常见定理和公式大全
初中数学146个常见定理和公式大全1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边【戳下方链接↓↓↓,免费领取小学初中学习资料历年真题和试听课程!还能与其他同学家长一起交流分享学习经验哦!】16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23.角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24.推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理(SSS)有三边对应相等的两个三角形全等26.斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27.定理1在角的平分线上的点到这个角的两边的距离相等28.定理2到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31.推论1等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33.推论3等边三角形的各角都相等,并且每一个角都等于60°34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1三个角都相等的三角形是等边三角形36.推论2有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1关于条直线对称的两个图形是全等形43.定理2如果两个图形关于直线对称,那么对称轴是对应点连线的垂直平分线44.定理3两个图形关于直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247.勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1四边都相等的四边形是菱形68.菱形判定定理2对角线互相垂直的平行四边形是菱形69.正方形性质定理1正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过其中一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2相似三角形周长的比等于相似比98.性质定理3相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理不在同一直线上的三点确定一个圆。
初中数学公式定理大全
初中数学公式定理大全一、数的除法原则1.互除性:若a能整除b,b能整除c,那么a必然能整除c。
2.整除原理:给定两个整数a和b,如果a整除b且b整除c,则a 整除c。
二、运算定律1.加法和减法法则:(a+b)+c=a+(b+c)(加法结合律)a+b=b+a(加法交换律)a+0=0+a=a(加零律)a+(-a)=0(加法逆元)(a-b)-c=a-(b+c)(减法结合律)a-b≠b-a(减法不可交换)a-0=a(减零律)a-a=0(减法逆元)2.乘法法则:(a*b)*c=a*(b*c)(乘法结合律)a*b=b*a(乘法交换律)a*1=1*a=a(乘一律)a*0=0*a=0(乘零律)a*(b+c)=a*b+a*c(分配律)(a-b)*c=a*c-b*c(差的积)3.除法法则:a÷b=c且b≠0,那么a=b*c(乘法的逆运算)三、阿基米德原理阿基米德原理(也被称为浮力原理)表明任何浸没在液体中的物体所受到的浮力等于所排开的液体的重量,即Fb=ρVg,其中Fb为浮力,ρ为液体密度,V为液体中排开的体积,g为重力加速度。
四、平均数定理给定n个数a₁,a₂,...,aₙ,则它们的平均值为(a₁+a₂+...+aₙ)/n。
五、百分比和比例定理1.百分比定理:百分比指的是以100为基数进行计算的比例。
若a是一个数的百分之b,则a=b/100。
2.百分比的四则运算:a%=a/100a%+b%=(a+b)%(两个百分数的和)a%-b%=(a-b)%(两个百分数之差)a%×b%=(a×b)/100%(百分数的乘积)a%÷b%=(a/b)%(百分数的商)六、勾股定理在直角三角形中,设直角边分别为a和b,斜边为c,则有a²+b²=c²。
七、乘除法的分配律对于任意三个数a、b、c,有以下分配律成立:a×(b+c)=a×b+a×c(乘法对加法分配律)a×(b-c)=a×b-a×c(乘法对减法分配律)a÷(b+c)=a÷b+a÷c(除法对加法分配律)a÷(b-c)≠a÷b-a÷c(除法不可对减法分配律)八、线段分割定理线段分割定理也称为比例分割定理,对于线段AB上的一点M,有以下公式成立:AM/MB=AN/NB(如果N是另一个分割点)九、角的性质1.锐角:小于90°的角。
初中数学必背公式及定理
初中数学必背公式及定理初中数学中,有很多重要的公式和定理需要掌握。
下面是一些必备的公式和定理:一、基础运算法则:1.加法交换律:a+b=b+a2.减法的定义:a-b=a+(-b)3.减法与加法的关系:a-b=a+(-b)=a+(-1)×b4.乘法交换律:a×b=b×a5.乘法结合律:(a×b)×c=a×(b×c)6.乘法分配律:a×(b+c)=a×b+a×c二、整数运算公式:1.同号相乘,异号相反:正×正=正,负×负=正,正×负=负,负×正=负2.乘方运算:a^m×a^n=a^(m+n),(a^m)^n=a^(m×n)3.含有分数运算:a/b×c/d=(a×c)/(b×d),a/b÷c/d=(a×d)/(b×c)4.分数乘方运算:(a/b)^n=a^n/b^n,a^(1/n)=b,则a=b^n5.注意计算顺序:先乘方,再乘除,最后加减三、平方与立方公式:1. (a+b)² = a² + 2ab + b²2. (a-b)² = a² - 2ab + b²3.a²-b²=(a+b)(a-b)4. (a+b)³ = a³ + 3a²b + 3ab² + b³5. (a-b)³ = a³ - 3a²b + 3ab² - b³四、勾股定理:1.直角三角形的斜边平方等于两直角边平方和:c²=a²+b²五、等腰三角形定理:1.等腰三角形的两底边相等:AB=AC2.等腰三角形的两底角相等:∠B=∠C3.等腰三角形的顶角底角和为180°:∠A+∠B+∠C=180°六、平行线定理:1.同位角相等:如果两条直线被一条直线截断,同位角相等2.内错角相等:平行线被截断时,内错角相等3.顶角、底角和补角的关系:顶角与底角之和为补角4.平行线间的平行线相等:若有两条直线分别与另外两条直线平行,那么这两条直线也平行。
初中数学公式定理大全
初中数学公式定理大全1.数的性质定理1.1.任意整数的相反数仍是整数:对于任意整数a,-a也是整数。
1.2.0是任意整数的相反数:对于任意整数a,a+(-a)=0。
1.3.整数的减法转化为加法:a-b=a+(-b)。
1.4.任意正整数的平方大于自身:对于任意正整数a,a^2>a。
1.5.任意正整数的平方根小于自身:对于任意正整数a,√a<a。
2.数的运算定律2.1.加法交换律:a+b=b+a。
2.2.加法结合律:(a+b)+c=a+(b+c)。
2.3.加法的零元素:a+0=a。
2.4.加法的负元素:a+(-a)=0。
2.5.乘法交换律:a*b=b*a。
2.6.乘法结合律:(a*b)*c=a*(b*c)。
2.7.乘法的单位元素:a*1=a。
2.8.乘法的逆元素:a*a^(-1)=1、(a不等于0,a^(-1)是a的倒数)3.等式定理3.1.等式的传递性:如果a=b,b=c,那么a=c。
3.2.等式的对称性:如果a=b,那么b=a。
3.3.等式的反身性:对于任意数a,a=a。
3.4.等式两边的加减法:如果a=b,那么a+c=b+c,a-c=b-c。
3.5.等式两边的乘除法:如果a=b,c≠0,那么a*c=b*c,a/c=b/c。
4.两角和、差的三角函数关系4.1. 两角和的正弦公式:sin(a+b) = sin(a)cos(b) +cos(a)sin(b)。
4.2. 两角和的余弦公式:cos(a+b) = cos(a)cos(b) -sin(a)sin(b)。
4.3. 两角和的正切公式:tan(a+b) = (tan(a) + tan(b))/(1 - tan(a)tan(b))。
4.4. 两角差的正弦公式:sin(a-b) = sin(a)cos(b) -cos(a)sin(b)。
4.5. 两角差的余弦公式:cos(a-b) = cos(a)cos(b) +sin(a)sin(b)。
4.6. 两角差的正切公式:tan(a-b) = (tan(a) - tan(b))/(1 + tan(a)tan(b))。
初中数学定理公式大全
初中数学定理公式大全1. 勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
2. 三角形内角和定理:三角形内角和等于180°。
3. 同位角定理:平行线上的同位角相等;同位角的和等于180°。
4. 对顶角定理:对顶角相等。
5. 中线定理:三角形中线的长度等于其对边的一半。
6. 垂线定理:平行四边形中,对角线互相垂直。
7. 圆的面积公式:圆的面积等于πr²(r为半径)。
8. 圆的周长公式:圆的周长等于2πr(r为半径)。
9. 三角形面积公式:三角形的面积等于底边长度乘以高的一半。
10. 等腰三角形定理:等腰三角形的底角相等。
11. 相交弧定理:相交弧所对的圆心角相等。
12. 弧长公式:弧长等于圆心角的大小(弧度制)乘以半径。
13. 直线与圆的交点定理:垂直于半径的直线与圆相交于圆上的点。
14. 三视图投影定理:物体的三视图投影分别从正面、左侧面和上面观察时所得的形状组成的图形。
15. 垂直平分线定理:平面上任意一点到直线的垂线长度相等的点都在这条直线的垂直平分线上。
16. 二次函数顶点公式:二次函数的顶点坐标为(-b/2a,c-b²/4a)。
17. 三角恒等式:正弦定理、余弦定理和正切定理等。
18. 多面体欧拉定理:V-E+F=2(V,E,F分别为多面体的顶点数、边数和面数)。
19. 相似三角形定理:两个三角形如果对应角相等,则它们相似。
20. 圆锥体积公式:圆锥的体积等于1/3Πr²h(r为底面半径,h为高)。
21. 球体积公式:球的体积等于4/3Πr³(r为半径)。
22. 立方体积公式:立方体的体积等于边长的立方。
23. 直角梯形面积公式:直角梯形的面积等于上底加下底乘以高的一半。
24. 点到直线的距离公式:点到直线的距离等于点到直线的垂线长度。
25. 矩形面积公式:矩形的面积等于长乘以宽。
以上是初中数学定理公式大全,掌握这些定理和公式对初中数学学习非常重要。
初中数学公式大全总结(共9篇)
1. 代数公式加法交换律:a + b = b + a加法结合律:(a + b) + c = a + (b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a × (b × c)乘法分配律:a × (b + c) = a × b + a × c2. 平方差公式(a + b)(a b) = a^2 b^23. 完全平方公式(a + b)^2 = a^2 + 2ab + b^2(a b)^2 = a^2 2ab + b^24. 分式公式a/b × c/d = ac/bda/b ÷ c/d = ad/bc(a/b + c/d) = (ad + bc)/bd5. 一元一次方程ax + b = 0,其中a ≠ 0,解为 x = b/a6. 一元二次方程ax^2 + bx + c = 0,其中a ≠ 0,解为x = (b ± √(b^2 4ac)) / 2a7. 三角函数公式正弦函数:sin(θ) =对边/斜边余弦函数:cos(θ) = 邻边/斜边正切函数:tan(θ) = 对边/邻边8. 平面几何公式圆的周长:C = 2πr圆的面积:A = πr^2三角形面积:A = (底× 高) / 29. 立体几何公式长方体体积:V = 长× 宽× 高球体体积:V = (4/3)πr^3圆柱体积:V = πr^2h1. 平行线性质如果两条直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。
2. 相似三角形相似三角形的对应角相等,对应边成比例。
3. 毕达哥拉斯定理在直角三角形中,斜边的平方等于其他两边的平方和,即a^2 + b^2 = c^2。
4. 分数的加减乘除分数的加法:(a/b) + (c/d) = (ad + bc) / bd分数的减法:(a/b) (c/d) = (ad bc) / bd分数的乘法:(a/b) × (c/d) = ac / bd分数的除法:(a/b) ÷ (c/d) = ad / bc5. 平均数平均数是一组数据之和除以数据的个数。
数学初中定理公式大全
数学初中定理公式大全这里是一些初中数学常见的定理和公式:1.代数-一次函数的斜率公式:设直线上两点的坐标分别为(x₁,y₁)和(x₂,y₂),则直线的斜率k=(y₂-y₁)/(x₂-x₁)。
- 二次函数的顶点公式:设二次函数的标准形式为y = ax² + bx + c,其中a≠0,则二次函数的顶点坐标为(h,k),其中h = -b / (2a),k = c - b² / (4a)。
- 因式分解公式:①差平方公式:a² - b² = (a + b)(a - b);②三项和差公式:a³ + b³ =(a + b)(a² - ab + b²),a³ - b³ = (a -b)(a² + ab + b²)。
- 二次根式化简公式:平方根的乘法公式是:√(a) * √(b) =√(ab)。
-高斯消元法:利用初等列变换将线性方程组的增广矩阵化为阶梯矩阵,从而得到线性方程组的解。
2.几何-勾股定理:直角三角形的两条直角边的长度分别为a和b,斜边的长度为c,则有a²+b²=c²。
-等腰三角形的性质:等腰三角形的底边两边相等,顶角的平分线也是底边的中线和高。
-同位角定理和内错角定理:同位角之和等于180°,内错角之和等于180°。
-中线定理:三角形的三条中线交于一个点,并且这个点离三个顶点的距离都是顶点到中点连线的一半。
-外接圆和内切圆的性质:一个三角形的外接圆的圆心是三角形的垂心,内切圆的圆心是三角形的内心。
-三角形面积公式:设三角形三边长分别为a、b、c,则三角形的面积S=√(p*(p-a)*(p-b)*(p-c)),其中p=(a+b+c)/23.概率与统计-排列公式:从n个元素中取出m个元素进行排列,有A(n,m)=n!/(n-m)。
-组合公式:从n个元素中取出m个元素进行组合,有C(n,m)=n!/(m!(n-m)!)。
初中数学常见的146条定理和公式
初中数学常见的146条定理和公式
1、几何定理:
(1)直角三角形斜边长的平方等于两直角边长的乘积:a2=b2+c2(2)梯形面积=底边*高/2
(3)三角形面积=底边*高/2
(4)正方形的面积=边长的平方
(5)长方形的面积=长*宽
(6)圆形的面积=πr2
(7)椭圆的面积=πa*b
(8)任意多边形的面积=1/2*a*h
(9)平行四边形面积=对边乘积/2
(10)三角形的周长=a+b+c
(11)正多边形的周长=边数×边长
(12)圆的周长=2πr
(13)椭圆的周长=2π(a+b)/2
(14)正方体的表面积=6a2
(15)正方体的体积=a3
(16)长方体的表面积=2(a+b)h
(17)长方体的体积=a*b*h
(18)圆柱的表面积=2πr(r+h)
(19)圆柱的体积=πr2h
(20)圆锥的表面积=πrl+πr2
(21)圆锥的体积=πr2h/3
(22)球的表面积=4πr2
(23)球的体积=4/3πr3
2、数列定理:
(1)等差数列之和Sn=n(a1+an)/2
(2)等比数列之和Sn=a1(1-qn)/(1-q)
(3)调和数列之和Sn=n2/2(a1+an)
(4)加绝对值的调和数列之和Σ,a,=n(2a1+n-1da/2 ) 3、代数定理:
(1)多项式乘积与乘积分配律:(a+b)(c+d)=ac+ad+bc+bd (2)二次多项式求根公式:X1,2=[-b±√(b2-4ac)]/2a。
初中数学常用定理和公式
初中数学常用定理和公式一、几何定理和公式1.直角三角形定理:直角三角形的斜边的平方等于两个直角边的平方和。
2.勾股定理:直角三角形中,直角边平方和等于斜边平方。
3.边角和定理:三角形的三个内角和等于180度。
4.同位角定理:同位角相等。
5.内切圆定理:三角形的内切圆的半径等于三角形的面积除以半周长。
6.外接圆定理:三角形的外接圆的直径等于三角形的斜边。
7.直线的平行与垂直定理:两条直线互相平行,则其斜率相等;两条直线互相垂直,则其斜率的乘积为-18.余弦定理:在任意三角形中,任意一边的平方等于另外两边的平方之和减去这两边的乘积与该角的二倍积的余弦之积。
9.正弦定理:在任意三角形中,任意一边的长度与该边对应的角的正弦之比等于另外两边与其对应角的正弦之比。
10.钝角三角形中位线定理:对于任意一个钝角三角形,连接其钝角的两边中点所得线段是该钝角三角形的长边所对应的中线。
11.相似三角形定理:两个三角形对应角相等,则这两个三角形相似;两个三角形两对应边成比例,则这两个三角形相似。
二、代数定理和公式1. 分配律:对于任意实数a、b、c,有a(b+c)=ab+ac。
2.公因式提取法则:a×b+a×c=a×(b+c)。
3.差平方公式:(a+b)×(a-b)=a²-b²。
4. 二次根式性质:(a√b)²=ab。
5. 斜截式方程:y = kx+b。
6. 一次函数:y = kx + b。
7. 平方根性质:√a × √b = √(ab)。
8. 一元一次方程:ax + b = 0。
9. 一元二次方程:ax² + bx + c = 0。
10.因式分解法则:将一个多项式表示成几个因式的乘积。
11.高次方程根与系数的关系:对于一个n次方程,有n个复数根。
三、概率与统计定理和公式1.相对频率:其中一事件出现的次数与总次数的比值。
2.排列公式:n个元素中选取r个元素进行排列的方法数为nPr=n!/(n-r)。
初中数学146个常见定理和公式大全
初中数学146个常见定理和公式大全1.定理1:两点之间的距离公式两点A(x1,y1)和B(x2,y2)之间的距离公式为d=√[(x2-x1)²+(y2-y1)²]。
2.定理2:两点之间的中点公式两点A(x1,y1)和B(x2,y2)的中点公式为M[(x1+x2)/2,(y1+y2)/2]。
3.定理3:两条平行线之间的距离公式平行于x轴的直线l1和l2之间的距离公式为d=,y1-y2;平行于y 轴的直线l1和l2之间的距离公式为d=,x1-x24.定理4:勾股定理直角三角形的斜边的平方等于两直角边的平方和,即a²+b²=c²。
5.定理5:勾股定理的逆定理若三边长度满足a²+b²=c²,则该三边构成一个直角三角形。
6.定理6:正方形的性质正方形每条边的长都相等,且每个角的大小为90°。
7.定理7:矩形的性质矩形相对的边相等,且每个角的大小为90°。
8.定理8:平行四边形的性质平行四边形相对的边平行且相等,相邻角互补(和为180°)。
9.定理9:三角形内角和定理三角形内角和等于180°,即∠A+∠B+∠C=180°。
10.定理10:等腰三角形的性质等腰三角形的两边相等,两底角也相等。
11.定理11:等边三角形的性质等边三角形的三边相等,且每个角的大小为60°。
12.定理12:圆的周长公式圆的周长公式为C=2πr,其中r为圆的半径。
13.定理13:圆的面积公式圆的面积公式为A=πr²,其中r为圆的半径。
14.定理14:同心圆的面积公式半径分别为r1和r2的两个同心圆的面积之比为(r1/r2)²。
15.定理15:棱台的体积公式棱台的体积公式为V=(1/3)Ah,其中A为底面积,h为高。
16.定理16:平行四边形的面积公式平行四边形的面积公式为A = bh,其中b为底边长,h为高。
初中数学公式定理大全
初中数学公式定理大全一、数学公式1. 一元二次方程公式:设ax² + bx + c = 0 (a ≠ 0),求根公式为:x = (-b ± √(b² - 4ac)) / 2a2.二项式定理:设a和b为实数,n为正整数,则对于任意非负整数k,有:(a+b)ⁿ=C(n,0)aⁿb⁰+C(n,1)aⁿ⁻¹b¹+C(n,2)aⁿ⁻²b²+...+C(n,k)aⁿ⁻ᵏbᵏ+... +C(n,n)a⁰bⁿ3.三角函数的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)4.直角三角形中分辨率的定义:sinA = 对边/斜边cosA = 临边/斜边tanA = 对边/临边5.三角函数的平方和差公式:sin²A + cos²A = 11 + tan²A = sec²A1 + cot²A = csc²A6.图形的面积公式:长方形的面积为长×宽平行四边形的面积为底边×高三角形的面积为底边×高的一半圆的面积为πr²二、数学定理1.质因数分解定理:每个大于1的整数都可以唯一地表示为一系列质数的乘积。
2.最大公约数和最小公倍数的性质:对于任意正整数a,b,c,有以下定理:(1) gcd(a, b) = gcd(b, a);lcm(a, b) = lcm(b, a)(2) gcd(a, b) × lcm(a, b) = a × b(3) gcd(a, b) × lcm(a, b) × gcd(b, c) × lcm(b, c) ×gcd(c, a) × lcm(c, a) = lcm(a, b, c) × gcd(a, b, c) = a × b × c3.因式定理:如果a是b的因数,那么a也是b的因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学定理、公式归纳汇总1、过两点有且只有一条直线。
2、两点之间线段最短。
3、同角或等角的补角相等;同角或等角的余角相等。
4、过一点有且只有一条直线和已知直线垂直。
5、直线外一点与直线上各点连接的所有线段中,垂线段最短。
6、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
7、如果两条直线都和第三条直线平行,这两条直线也互相平行。
8、同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
9、两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
10、定理:三角形两边的和大于第三边。
推论:三角形两边的差小于第三边。
11、三角形内角和定理三角形三个内角的和等于180°。
推论1:直角三角形的两个锐角互余。
推论2:三角形的一个外角等于和它不相邻的两个内角的和。
推论3:三角形的一个外角大于任何一个和它不相邻的内角。
12、全等三角形的对应边、对应角相等。
13、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等。
14、角边角公理(ASA):有两角和它们的夹边对应相等的两个三角形全等。
推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等。
15、边边边公理(SSS):有三边对应相等的两个三角形全等。
16、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。
17、定理:在角的平分线上的点到这个角的两边的距离相等。
逆定理:到一个角的两边的距离相同的点,在这个角的平分线上。
角的平分线是到角的两边距离相等的所有点的集合。
18、等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。
推论2:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
推论3:等边三角形的各角都相等,并且每一个角都等于60°。
19、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
20、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
21、直角三角形斜边上的中线等于斜边上的一半。
22、定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
23、轴对称性质定理1:关于某条直线对称的两个图形是全等形。
定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
24、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222a b c +=。
勾股定理的逆定理:如果三角形的三边长a 、b 、c 有关系222a b c +=,那么这个三角形是直角三角形25、定理:四边形的内角和等于 360°;四边形的外角和等于360°。
26、多边形内角和定理:n 边形的内角的和等于(2)180n -⨯︒。
推论:任意多边的外角和等于360°。
27、平行四边形性质定理1:平行四边形的对角相等。
平行四边形性质定理2:平行四边形的对边相等。
推论:夹在两条平行线间的平行线段相等。
平行四边形性质定理3:平行四边形的对角线互相平分。
28、平行四边形判定定理1:两组对角分别相等的四边形是平行四边形。
平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。
平行四边形判定定理3:对角线互相平分的四边形是平行四边形平行四边形判定定理4:一组对边平行相等的四边形是平行四边形。
29、矩形性质定理1:矩形的四个角都是直角。
矩形性质定理2:矩形的对角线相等。
30、矩形判定定理1:有三个角是直角的四边形是矩形。
矩形判定定理2:对角线相等的平行四边形是矩形。
31、菱形性质定理1:菱形的四条边都相等。
菱形性质定理2、菱形的对角线互相垂直,并且每一条对角线平分一组对角。
32、菱形面积=对角线乘积的一半,即12S ab 。
33、菱形判定定理1:四边都相等的四边形是菱形。
菱形判定定理2:对角线互相垂直的平行四边形是菱形。
34、正方形性质定理1:正方形的四个角都是直角,四条边都相等。
正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
35、中心对称性质定理1:关于中心对称的两个图形是全等的。
定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
36、等腰梯形性质定理1:等腰梯形在同一底上的两个角相等。
等腰梯形性质定理2:等腰梯形的两条对角线相等。
37、等腰梯形判定定理1:在同一底上的两个角相等的梯形是等腰梯形。
等腰梯形判定定理2:对角线相等的梯形是等腰梯形38、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。
推论:经过三角形一边的中点与另一边平行的直线,必平分第三边。
39、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
40、梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半。
41、(1)比例的基本性质:如果a cb d=,那么ad bc=;如果ad bc=,那么a cb d=。
(2)合比性质:如果a cb d=,那么a b c db d±±=。
(3)等比性质:如果a c e mkb d f n=====L(0b d f n++++≠L),那么a c e mkb d f n++++=++++LL。
42、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。
推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等。
43、定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
44、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。
45、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
46、相似三角形判定定理1:两角对应相等,两三角形相似。
直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
判定定理2:两边对应成比例且夹角相等,两三角形相似。
判定定理3:三边对应成比例,两三角形相似。
47、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
48、相似三角形性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。
性质定理2:相似三角形周长的比等于相似比。
性质定理3:相似三角形面积的比等于相似比的平方。
49、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。
50、圆是到定点的距离等于定长的点的集合。
圆的内部可以看作是圆心的距离小于半径的点的集合。
圆的外部可以看作是圆心的距离大于半径的点的集合。
51、同圆或等圆的半径相等。
52、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线。
到已知角的两边距离相等的点的轨迹,是这个角的平分线。
到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线。
53、定理:不在同一直线上的三点确定一个圆。
54、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
55、圆是以圆心为对称中心的中心对称图形。
56、定理、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
57、定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
58、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
<;59、①直线l和⊙O相交:d r=;②直线l和⊙O相切:d r>。
③直线l和⊙O相离:d r60、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
61、切线的性质定理:圆的切线垂直于经过切点的半径。
推论1:经过圆心且垂直于切线的直线必经过切点。
推论2:经过切点且垂直于切线的直线必经过圆心。
62、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
63、圆的外切四边形的两组对边的和相等。
64、弦切角定理:弦切角等于它所夹的弧对的圆周角。
推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
65、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
66、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
67、如果两个圆相切,那么切点一定在连心线上。
68、①两圆外离:d R r >+;②两圆外切:d R r =+;③两圆相交:()R r d R r R r -<<+>;④两圆内切:()d R r R r =->;⑤两圆内含:()d R r R r <->。
69、定理:相交两圆的连心线垂直平分两圆的公共弦。
70、定理:把圆分成(3)n n ≥(1)依次连结各分点所得的多边形是这个圆的内接正n 边形。
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形。