[VIP专享]多相流计量及多相流量计简介R1

合集下载

第十三章_多相流计量技术

第十三章_多相流计量技术


测量相位速度和相位横截面分数
为了测量管道中三种组分的体积流量,需 要建立三个平均速度和三个相位截面。因此, 需要测量五个量(三个速度和两个相位分数)。
当然,这个难以达到的测量要求可以通过分离
或均相化来减少。

通过相分离,就没有测量截面持率的需要了,而 三个体积流量可以通过传统单相计量技术来测定。但 是,相分离是很昂贵的,而且在很多情况下很难实现。 如果通过使混合物均相化来均衡速度也可以把测量要 求减少到三个。这是更经济的选择而且是一些商用流 量计的核心。但是,能够达到均相化的范围总是有限 的。
测试持液率
测试各相速 度速度
测试各相 密度
体积流量
质量流量 图 1 油气水三相流量测试原理图
M=αγgσg+βγwσw+[1-(α+β)]γoσo

也常采用两种简化方式来降压上述测量的难度。两种方法 是部分分离和均相化。部分分离是将三相流体分离成气液 两相,以便更多的利用常规单相计量技术来计量分离相。 均相化是将流体在计量前均相处理,则可以认为名相流速 相等,整个横截面密度相等,这两种方法均降低了所需测 量数据的个数和难度。
多相流的计量主要计量其各组分含率和流速。

没有方法能够理论上预测这种关系,因此,一定要通 过校准来确定这些关系。但不可能在测量技术应用的 所有情况下校准,而且这种方法并不总是有效的。校 准方法通常可以通过神经网络技术来得到增强,这种 技术可以高精度地确定函数关系。然而,这种技术虽 然有用,但不能解决基本问题,也就是说校准只用于 实施校准的情况下。

因此,两种计量方法都有本质的缺陷, 正是由于这个原因迄今为止还没有获得
完全令人满意的计量方法。
三、测量方法

多相流领域的数值计算方法及应用

多相流领域的数值计算方法及应用

多相流领域的数值计算方法及应用随着工业化和科技的不断进步,多相流领域的研究和应用越来越受到重视。

物料在流动过程中会与其他物料或界面发生相互作用,这种复杂的流动状况被称为多相流。

多相流涉及到固体、液体和气体等不同物态的介质,因此其研究和应用需要使用复杂的数值计算方法。

一、多相流的特点多相流的研究和应用过程中涉及到很多行业,比如化工、能源、航空航天等领域。

多相流介质的物理性质不同,具有以下几个特点:1. 相互作用强烈不同相态的物料之间会发生相互作用,例如固体微粒在液体中的漂浮、液滴在气体中的破裂等。

2. 物料运动混乱多相流介质的物料运动速度和方向较难预测,因此多相流的运动模式通常非常复杂。

3. 传递规律复杂多相流介质中不同物料的传递规律复杂,例如液滴的运动、未熔化固体在熔体中的运动等。

4. 可能存在相变多相流介质因为具有不同物态的物料,因此可能存在相变现象,例如气体在液体中的溶解等。

二、多相流的数值计算方法多相流的复杂性使得其研究和应用需要结合各种学科,比如计算流体力学(CFD)、材料科学、传热学等。

在多相流的计算过程中,有两个重要的假设:连续介质假设和相间界面模型。

1. 连续介质假设连续介质假设认为多相流介质可以像单相流一样,被视为连续的流体。

在这种假设下,物理量如质量、动量、能量等可以通过微分方程来描述,以求解其全场的运动学性质。

2. 相间界面模型多相流中不同相态物质的相互作用,使得相界面的存在成为一大难点。

通过相间界面模型对相变的过程和相界面的运动进行数值模拟,从而模拟多相流介质中不同物理量的分布和传递规律。

目前,常见的多相流计算方法包括欧拉方法、拉格朗日方法和欧拉-拉格朗日复合方法。

3. 欧拉方法欧拉方法模拟多相流介质中的物理量在时间和空间上的分布规律。

该方法将不同相态之间的相互作用描述为源项,通过物理量的守恒方程,来求解多相流介质内各物理量的分布规律。

4. 拉格朗日方法拉格朗日方法着重于对多相流介质中物体的运动轨迹进行跟踪和计算。

【精选】多相流计量及多相流量计简介R1

【精选】多相流计量及多相流量计简介R1

【精选】多相流计量及多相流量计简介R1 多相计量技术Multiphase metering technology概述许多新开发的油田属于经济型边际油田,这种油田不能承担传统分离技术所引发的高昂的费用。

而多相流量计可以节省很多费用,因为使用它就不需要安装分离器,或者几个油田共用处理装置。

在油井管理方面:多相流量计可以提供持续的数据输出,给出油井动态的有价值信息,这样可以及时地发现油井产生的问题或变化,以便尽早地做出决定,而采用传统的处理技术却要慢一些。

中国船级社(CCS)要求参照《海上移动平台入级规范》第1篇第3章附录1 平台入级产品持证要求一览表:5.3:?级管系以及除5.1以外的阀和附件证件类型:制造厂证明(?级管系应提供工厂认可证书,除5.1以外的阀和附件应提供型式认可证书)认可模式:型式认可B(可选项:型式认可A)1. 在线多相流量计在线多相流量计依据对流体特性的一些测量得到油、气、水三相的各自流量。

现在有许多这样的计量技术,可大致分为两大类:速度或总流量测量和相分率测量。

速度或流量测量通常是通过压差计量或一个特殊信号的互相关,即压力或导电率来获得。

许多流量计也采用滑动模块,这说明了气体通常比液体流速快的事实。

在垂直管道上安装的一些在线多相流量计一般通过在其上游装一个盲三通来减少水的紊动,以此最大限度地减少滑动。

相分率可以通过测量三相混合物的物性来获得,据此推算出三相各自的流量。

伽马射线能量衰减法是一种常用的方法,它的原理是油、气、水不等同地削弱伽马射线的能量。

伽马射线能量在两个能量级放射高能量级对气/液比更敏感,而低能量级对液相中的水/油比较敏感。

可以用这两个能量衰减量来确定三相混合液的相分率。

第三个能量级也可以用来确定水相的含盐量。

电容和电导技术可以用来确定液相中的含水量。

电容传感器用于测量连续油流的介电常数并确定含水量,电导传感器用于连续水流的测量。

这种方法适于气体体积分数大环境,但缺点是:如果流体在水连续流和油连续流之间不停转换,那么流量计就很难跟踪到这个变化。

多相流量计量技术综述

多相流量计量技术综述
2008 年 第 37 卷 石 油 矿 场 机 械 第 5 期 第 59 页 OIL FIELD EQUIPMENT 2008 , 37(5):59 ~ 62
·技术综述 ·
文章编号 :1001-3482(2Байду номын сангаас08)05-0059-04
相关流量测量技术与过程层析成像技 术相结 合 , 可以通过过程层析成像技术识别流型 , 有针对性 地改变相关流量计的工作参数或选择不同种的相关 流量计 , 必然会有助于增加相关流量计的使用范围 和应用领域 , 在二相或多相流领域产生新一代的智 能化的在线检测仪器 。过程成像系统构成如图 2 。
图 2 过程成像系统构成
近年来 , 油气开发向海洋 、沙漠和极地等地区扩 展 , 开发的油层更深 、油的粘度更高 , 使开发成本不 断上升 。 多相计量技术摒弃造价昂贵的基于测试分 离器的计量站(测试分离器)和计量管汇 , 从而节省 大量的投资 、缩短建设周期 、降低操作费用和改善油 藏管理等 , 对降低新油气田的开发成本起到了重要 作用 。
2 相关测量技术的发展现状
1961 年 , But terfield 等人利用热轧带钢表面存 在的微小凹凸不一致性在运动过程中所引起的随机 噪声信号 , 首先提出并实现了热轧钢速度的相关测 量系统 。而后 , 英国 、西德 、美国 、日本等许多国家的 测量技术及仪表工作者相继展开了相关流量测量技 术的研究 。 1968 年 M .S .Beck 和 A .P lasko w ski[ 1] 采用电容传感器技术 , 成功地实现了在线气 、固二相 流的非接触式相关方法测量 。 70 年代初期 , 研制快 速而又廉价的在线流量测量用相关仪器成为重要课 题 , 目前已有几种产品投入了市场 。
Abstract :Well li quid belong s t o m ul tiphase fluid .T he tradi tional met hod of measuring it costs a lot , but t he eff iciency is low .T he measurement of multi phase flo w i s mo re eco nom ic .T he principles of related f low measurement technolog y and development of the applicatio n of well liquid' s on-line measurement are int roduced in this paper .It uses the w ay of com bini ng the process t omog raphy technolo gy and related f low m easurement technology , t o improve the measurement accuracy t o ±5 %, t he requirem ent s o f t w o-phase f low pat terns under di ffe rent flow measurement are sati sfied . Key words:relevant analysi s ;mul ti-phase f low ;f low measurement ;pro cess t omo graphy

多相流量计原理

多相流量计原理

*
文丘里流量计 ——基本计算公式
差压式流量计的基本方程:
Qv ——体积流量; Qm ——质量流量; C——流出系数(Discharge coefficient); E——渐进速度系数; d——节流元件内径(如喷嘴喉部); ε——流束膨胀系数,对于液体ε=1; ρ1——节流件上游流体工作状态下的密度; ΔP—节流件前后的压差; β——节流件内径与测量管内径之比 β=d/D; D——测量管内径。
典型的测量准确度
5
准确度 重复性
6
毛液量 ±5-10%(相对误差) ±5%
气量 ±10% (相对误差) ±5%
含水率 ±2% (绝对误差) ±1%
置信度为90%
海默多相流计性能及结构 海默MFM2000 LG型(低含气型)
数据处理系统组成
压力变送器、温度变送器
双能伽马传感器
文丘里流量计
C
B
A
D
海默多相流计性能及结构 ——海默MFM2000 LG型(低含气型)
仪表测量范围
含水率测量范围 0-100%
含气率测量范围 0-15%
流量测量范围 8:1
典型的测量准确度
5
准确度 重复性
DUAL
DP
TT
PTLeabharlann DPDPQmass total
Q oil = ( 1-GVF ).( 1-WLR ) . Q total Q water = ( 1-GVF ).WLR . Q total Q gas = GVF . Q total
ag
SINGLE
3’’ Venturi Meter
GROSS FLOW
2
通过对分离器的压力控制进行气体排放并对气体进行计量

【技术】文丘里式流量计多相流动的计量方法

【技术】文丘里式流量计多相流动的计量方法

【技术】文丘里式流量计多相流动的计量方法文丘里式流量计具有计量准确,流体在流动过程中能量损失小,性能稳定便于后续的维护修理方便等诸多优点,因此在石油化工、冶金、军工等各个行业有着极为广泛的应用。

通常文丘里式流量计因其结构简单,可以直接安装在气液两相或者多相流的输运管线上,并且内部流动介质在不分离情况下借助先进的探测仪器进行测量,从而极大简化了生产流程,减少使用设备,降低生产成本。

在对文丘里管进行数值模拟研究时,国内外众多学者对其结构与空化现象的关联进行了研究分析,发现当文丘里管喉部周长与面积比值较大时,文丘里管内的气体积分数越大。

2009年英国人HASAN等使用“文丘里管+电导”当作重要检测元件,采取实验与理论结合的方法,解析探究了文丘里管内的气水二相流动。

在国内,天津石化有限公司已经对使用于文丘里皮托管流量计实现多相流动的计量方法开展了数据分析研发。

李恩贵等进行分析研发了环境温度变化对文丘里管流速系数的负面影响。

张丛林等研发了应用于重油流量计量的智能流量计。

罗凯凯对文丘里管进行了气液固三相模拟计算,对粒径、液体黏度、固体颗粒浓度等参数对于磨损的影响进行了研究。

CHEN发现局部颗粒浓度和颗粒沉积与流动有直接关系,在某些情况下,尽管总颗粒浓度较低,但由于流型的原因,局部颗粒浓度可能较高,从而影响磨损。

OKA等提出的磨损模型,粒径尺寸影响达到0.19次方。

CHEN等研究表明,空化活性往往随着粒径的增大而降低,气泡倾向于与颗粒相互作用,这意味着大颗粒很可能与多个气泡聚结,形成与该颗粒相互作用的单个气泡。

虽然近年来国内外大量学者对流量计进行了大量的研究,但是对其表面由于固液两相流造成的磨损形成破坏的过程和内部机理研究较少。

本研究运用CFD数值仿真计算方法,以文丘里式流量计过流部件内部固液两相流为研究对象,通过改变流量计内部的流动参数例如流量计进口速度、介质固体体积分数,固体颗粒粒径等,研究分析文丘里式流量计表面的磨损情况和DPM质量浓度分布情况,从而揭示文丘里式流量计流动规律和磨蚀情况,为文丘里式流量计的结构设计和预防磨损等提供理论参考。

多相流量计

多相流量计
北平台多相流量计
熊永亮
多相流量计的结构
多 相 流 量 计 的 结 构
多相流量计的结构
多相流量计的结构
多相流量计的结构
多相流量计的结构图
多相流量计的结构
多相流量计成橇外型尺寸: 长*宽*高 2612*2163*5420(mm) 总重 3.2吨 3.2吨 GLCC主体及进出口管线采用了10”160型 GLCC主体及进出口管线采用了10”160型 管线,材质为16Mn钢,标准壁最达到 管线,材质为16Mn钢,标准壁最达到 18mm。内壁具有8mm的腐蚀余量。外壁 18mm。内壁具有8mm的腐蚀余量。外壁 进行了喷砂处理,表面喷涂了两遍富锌底 漆和一遍面漆。
流量计算机说明
流量计算机主要包含CPU模块,触摸屏,A/D、 流量计算机主要包含CPU模块,触摸屏,A/D、 D/A模块及通讯模块等组成。CPU224XP本机集 D/A模块及通讯模块等组成。CPU224XP本机集 成了14DI/ 成了14DI/ 10DO,2AI/1AW,集成两个独立 10DO,2AI/1AW,集成两个独立 RS485通讯口(波特率19200kbps),共有6AI, RS485通讯口(波特率19200kbps),共有6AI, 3AO,留有少量的冗余。安装在一个具有防爆等 3AO,留有少量的冗余。安装在一个具有防爆等 级为DIIBT4,防护等级为IP56的现场型防爆控制 级为DIIBT4,防护等级为IP56的现场型防爆控制 箱内,实现PID控制、连锁控制、报警输出、气 箱内,实现PID控制、连锁控制、报警输出、气 液两相流量、含水率、系统压力的输出。可以通 过便携式计算机对内部参数进行整定,也可以通 过触摸屏对参数进行整定。
多相流量计说明
一、为了防止气相调节阀死锁,把零点设 定到了50%。 定到了50%。 二、从流量计算机上可以读出两条曲线, 含水率和液量,日常操作中可以根据这两 条曲线来判断多相流量计的分离效果。 三、液位、流量等控制仪表的设定值不允体采用了质量流量计,是通过密度 和脉冲两种方法共同来完成液体计量的, 两种方法各有所长,密度法长于油水比例 较大的环境下计量,而脉冲法长于油水比 例较小的环境下计量。这两种方法在流量 计算机中自动切换。 五、为了防止流量计和含水分析仪内部结 垢堵塞,厂家建议连续运行。

海默多相流计

海默多相流计

海默多相流计行业背景多相流是一个复杂的多变量随机过程,多相流计量技术长期以来被公认为一个世界性技术难题。

多相流量计的商业化应用始于本世纪初期,目前已经发展成为新的油气田开发中首选的计量技术。

由于传统测试分离器计量工艺复杂,设备庞大,投资较大,油井三相计量问题长期困扰着油田开发,制约了油田开发效率。

多相不分离计量技术为油藏管理和生产优化提供较可靠的计量数据,在油气田的开发计量中节省投资、降低操作费用以及明显改善油藏管理等提供了激动人心的可能性。

该技术被国际上列举为决定未来油气工业成功的五大关键技术之一。

多相流量计的主要优势在于对被测油气水混合物不用进行相分离, 现场安装工艺简洁, 结构紧凑, 占空间小; 测量为实时、连续测量, 基本上可以做到无人值守, 不用人员干预; 仪表具有良好的可靠性和适用的准确度; 一次投资和维护费用低, 在采油生产中, 尤其在海洋石油和油井测试中具有很大的经济效益。

多相流量计的功能就是在不分离的情况下, 依赖一些流体参数的测量以给出三相流的油、水、气流量。

其基本原理是通过确定每一种组分的瞬时速度和截面占有率, 从而确定每一组分的量。

因此实现多相测量的关键是测量相分率和相流率。

油公司需要通过对油井有效的测试/计量数据来了解其每一个单井的实际生产情况/能力,实施有效的油藏管理和生产优化管理,最终提供采收率。

用传统三相测试分离器进行计量,由于体积庞大、系统复杂、人工干预、费用昂贵,无法实现无人职守。

多相流计量技术作为一种单井生产测量革命性的计量设备,可以提供油井产物在不分离的情况下油、气、水的在线实时流量数据,多相流计量技术是被行业内公认的传统三相测试分离器一种最经济有效的替代技术。

常用测量方法有伽玛相分率、互相关测量方法以及Vent uri 流量计的优化组合将是最有希望成功的多相流量计。

海默多相流计工作原理及技术特点海默多相流量计采用伽玛传感器测量相分率,采用互相关、文丘里流量计, 或互相关+文丘里结合的方法测量相流速。

多相流量计的原理与开发应用简介

多相流量计的原理与开发应用简介

多相流量计的原理与开发应用简介国内外发展现状国内外多相流量计早在20世纪60年代就曾进行过研究,但由于当时的技术条件限制,未获得可供应用的成果。

近年来,相关流量测量技术、计算机自动控制和数据处理技术的发展,刺激了多相流测量技术的开发与研究,美国、挪威、法国、英国、俄罗斯等国家的一些大石油公司,相继投人大量的人力、财力进行多相流量计的研制和开发,并建立了一批多相流检定装置,使得这一技术获得实质性的进展,研制出一批可供生产应用的试验样机。

当然就目前来说,大多数的测试技术仅局限于实验室研究,为数不多的商品化的多相计量仪表在工业应用中也存在着一定的局限性,并且造价昂贵。

从计量方式看,多相流量计可以分为全分离式、取样分离式和不分离式三种。

全分离式多相流量计是在井液进入计量装置后先进行气液分离再分别计量气液两相的流量,测出液相的含水率,求出油气水各相含量。

其典型代表为Texaco 公司研制的SMS多相流量计,它是较早用于现场测试的一种多相流量计,它是将流体分成气、液两相,然后用流量计液相测液体流量,用微波监测仪计量液相的含水率,气相用涡轮式流量计计量。

目前其计量精度是,含水率精度±5% 、油和水流量精度±5%、气体流量精度±10%。

取样分离式多相流量计是在计量多相流总流量和平均密度的基础上,提取少量样液加以气体分离,并测定油气水各相的百分含量,通过计算获得油气水各相的流量。

其中Euromatic公司开发的多相流量计较有代表性,它是最早用于现场测试的一种多相流量计,它由透平式流量计和γ密度计组成。

透平式流量计用来测量流体的体积流量,γ密度计测量流体的密度。

透平式流量计附近装有旁通管线用于分离液体测取密度。

不分离式多相流量计是在不对井液作任何分离的情况下实现油气水三相计量,是多相流量计的发展主要方向。

其技术难度主要体现在油气水三相组分含量及各相流速的测定。

目前,相流速测量技术主要有混合+压差法、正排量法和互相关技术,其中互相关技术应用最多。

多相流及其应用

多相流及其应用

多相流及其应用
多相流是指在一个系统中,存在多种物质,每种物质都有自己的性质,并且可以在系统中相互作用。

多相流的特点是,它可以模拟复杂的物理现象,如液体、气体、固体和热等,从而更好地描述实际系统的运行情况。

多相流的应用非常广泛,它可以用于石油、化工、冶金、热能、环境保护、航空航天等领域。

例如,在石油工业中,多相流可以用于模拟油井的流动状况,以及油井中的油、气、水等物质的相互作用,从而更好地控制油井的生产。

在化工工业中,多相流可以用于模拟反应器的运行情况,以及反应器中的物质的相互作用,从而更好地控制反应器的生产。

在冶金工业中,多相流可以用于模拟冶炼过程中的流动状况,以及冶炼过程中的物质的相互作用,从而更好地控制冶炼过程的生产。

此外,多相流还可以用于热能工程、环境保护、航空航天等领域。

例如,在热能工程中,多相流可以用于模拟热能系统的运行情况,以及热能系统中的物质的相互作用,从而更好地控制热能系统的运行。

在环境保护领域,多相流可以用于模拟环境中的物质的运动情况,以及物质的相互作用,从而更好地控制环境的污染。

在航空航天领域,多相流可以用于模拟飞行器的运行情况,以及飞行器中的物质的相互作用,从而更好地控制飞行器的运行。

总之,多相流是一种重要的技术,它可以用于模拟复杂的物理现象,并且可以用于石油、化工、冶金、热能、环境保护、航空航天等领域,从而更好地控制实际系统的运行情况。

多相流量计原理

多相流量计原理
在化工生产过程中,多相流量计能够测量多种物料的流量,如液 体、固体和气体等。
保证产品质量
通过实时监测和控制,多相流量计有助于保证化工产品的质量和稳 定性。
提高安全生产水平
多相流量计能够实时监测和预警潜在的安全隐患,提高化工生产的 安全水平。
其他应用场景
能源行业
多相流量计在能源行业中 广泛应用于煤粉、生物质 等固体颗粒的测量。
靠性。
该多相流量计适用于多种多相 流体的测量,如油气水三相流 、气固两相流等,具有较广的 应用前景。
实验结果表明,该多相流量计 的测量精度和稳定性均优于传 统流量计,能够满足工业生产 的需求。
对未来研究的建议
01
进一步优化多相流量计的结构和测量算法,提高其测量精度和稳定性。
02
开展多相流量计在不同复杂工况下的应用研究,以拓展其应用范围。
详细描述
根据各相的体积含量,多相流体可分为均匀多相流和非均匀多相流;根据流动特 性,多相流体可分为层流和湍流;根据相态,多相流体可分为气液、气固、液固 等类型。
多相流体的流动特性
总结词
多相流体的流动特性比单相流体更为复杂,包括流动不稳定性、各相间的相互作用、相对运动等。
详细描述
多相流体的流动特性受到多种因素的影响,如各相的物理性质、体积含量、流动条件等。在流动过程 中,各相之间存在着相互作用,如曳力、摩擦力、质量传递等。此外,多相流体的流动不稳定,容易 出现流动分层、聚并等现象。
03 多相流量计的分类与工作 原理
电容式多相流量计
总结词
基于电容原理,通过测量混合流体介电常数的变化来计算流量。
详细描述
电容式多相流量计利用混合流体在两个平行板电极之间形成的电容场,通过测量电容值的变化来计算流量。由于 不同相态的介质具有不同的介电常数,因此可以通过测量电容值的变化来识别和计算各相态的流量。

多相流计量系统技术概述

多相流计量系统技术概述

石 2 0 油 和 化工 设 备
1 5 年第 1 8 卷
占液湿 气
: m


;二
单 向 漫 气流 量 计 … …… = : : : : ;

多相




岔气液 体
技 术 难 度 主要 体 现 在 油 、气 、水 三 相 组 分 含 量 及 各 相 流 速 的测 定 。相 分 率测 量 技 术 主 要 有 伽 马 射 线 技 术 、介 电常 数 测 量 、 电导率 测 量 、科 里 奥 利 法 ;各 相 流 速 测 量 技 术 主要 有 差 压 法 、互 相 关 技 术 、正排 量法及 超 声波法 。 1 . 2 . 1 组 分测 量方法
一ቤተ መጻሕፍቲ ባይዱ
( 1 1 部 分 分 离技 术 。与 完 全 分 离 相 比, 具有 体 积 小 、响应 速度 快 等优 点 ,更接 近 实时 的测 量 。
( 2 ) 在 线 不 分 离 技 术 。 取 代 了 传 统 的分 离 方 法 ,直 接在 管道 上测 量 各相 的流 量 。
流 、 气 量 波 动 )会影 响 测 试 的精 度 。所 以 ,测 井 的周 期 性 和 流体 特 性 的 变化 使 得 测 试 分 离 器 的结 果波 动较 大 、准确 性较 低 。
第1 0 期
一 5 5一
多相流计 量 系统 技术概 述
陈 艳 ,丁 越
( 中国石 油集 团工程设 计有 限责任公司北京分公司 , 北京 1 0 0 0 8 5 )
[ 摘
要] 本文 以国际规 范为依据 ,明确在线计量与传统计量 的区别 ,着重介 绍了多相 流计量 系统的构成和主要 测量方法,

多相流量计原理课件

多相流量计原理课件

其他多相流量计的优缺点
总结词
其他多相流量计如光学法多相流量计、电阻法多相流 量计等也具有各自的优缺点,需要根据实际应用需求 进行选择。
详细描述
除了上述几种常见的多相流量计外,还有光学法多相流 量计和电阻法多相流量计等其他类型。这些多相流量计 各有其优缺点,如光学法多相流量计具有非接触式测量、 测量精度高等优点,但同时也存在对流态敏感、易受光 学污染影响等缺点。电阻法多相流量计具有结构简单、 成本低等优点,但同时也存在测量精度低、稳定性差等 缺点。因此,在实际应用中需要根据具体需求进行选择。
智能化技术的应用
耐腐蚀材料的研发
针对不同介质和环境,研发具有耐腐 蚀性能的材料,提高多相流量计的使 用寿命。
结合人工智能和大数据分析,实现多 相流量计的远程监控和智能诊断。
应用领域的拓展
油气工业
多相流量计在油气工业中广泛应 用于油、气、水三相流量的测量,
提高了生产效率和管理水平。
化工领域
多相流量计在化工生产过程中对多 种流体进行精确测量,有助于实现 工艺流程的优化控制。
较高,这限制了其应用范围。
核磁共振多相流量计的优缺点
要点一
总结词
要点二
详细描述
核磁共振多相流量计具有测量精度高、无阻碍物影响等优 点,但同时也存在成本高、操作复杂等缺点。
核磁共振多相流量计利用核磁共振原理来测量多相流体的 流量。由于其测量精度高、无阻碍物影响等优点,核磁共 振多相流量计在石油、化工等领域得到广泛应用。然而, 核磁共振多相流量计成本较高,操作复杂,这限制了其应 用范围。
跨学科技术的融合
多相流量计的发展需要结合流体力学、化学、材料科学等多个学科 的前沿技术,实现跨学科的技术创新与融合。

多相流流量计量综述

多相流流量计量综述

2831 多相流计量技术现状 相较于单相流,由于多相流中有多种流体,流体间流速、流体自身的性质各不相同,同时流动过程中流型也会发生变化,因此多相流会复杂的多。

流型不同,多相流的流动状态也会不同,而多相流流型的变化是由流体动力效应、瞬时效应、几何方向效应以及流体性质、流体流速、各流体占比综合作用产生的结果,众多的影响因素使得多相流流动状态变化复杂,也给多相流的计量造成了很大的困难。

从20世纪60年代开始,国内外进行了多相流测试技术的研究,现已有大量的多相流流量计应用于油田生产中。

然而从研究和应用情况看,已有的多相流量计往往用于特定的使用环境,当环境有变化时需重新标定流量计,从而使流量计精度在要求范围内。

但即便如此由于许多流量计大多还是针对特定的流型设置的,所以当被测流体流型改变时测量效果无法达到测量精度要求。

同时目前应用的产品还有一些问题:诸如制造费用较高,精度较低,对使用环境的适应性差等。

因此,多相流量计仍然需要进一步发展。

2 多相流计量分类 按照计量方式的不同,现已有的多相流流量计量可分为:完全分离式多相流计量、部分分离式多相流计量、不分离式多相流计量和取样分离式多相流计量四种。

其中,完全分离式多相流计量是油田生产中较为传统,同时也是应用较多的计量方式,这种方式先将待计量的流体进行完全气液分离,计量气相和液相的流量之后,再将两相汇集向下游管道输送,这种方法的缺点是占地面积大,耗时长,且无法及时反映油田生产状况。

部分分离式多相流计量在计量前也将气液两相分离,但与完全分离式不同的是,这种方法在进行气液分离时,只需将两相分离为以气相为主和以液相为主的两部分流体,再将这两部分流体用较为成熟的两相流计量计进行计量。

计量液相部分中的含气量和气相部分中的含液量是此种计量方式的关键。

相较于完全分离式多相流计量,这种方法占用的空间更小,但由于气液混合物并没有完全分离,因此这种计量方法对提高计量精度没有显著作用。

《多相流量计原理》课件

《多相流量计原理》课件

多相流量计的前景展望
工业4.0集成
随着工业4.0的发展,多相流量计将实现与智能工 厂的深度集成,提高生产效率和能源利用率。
标准化与规范化
未来多相流量计的研发和应用将更加标准化和规 范化,以提高产品的互换性和兼容性。
环境友好型设计
为满足日益严格的环保要求,多相流量计将更加 注重节能减排和资源循环利用。
04
多相流量计的挑战与展望
BIG DATA EMPOWERS TO CREATE A NEW
ERA
多相流量计面临的挑战
01
02
03
测量精度问题
由于多相流体的复杂性和 不确定性,多相流量计的 测量精度难以保证。
流体特性变化
多相流体的相分布、流速 和密度等特性随工况变化 ,对流量计的准确性造成 影响。
多相流量计的特点
精度高
01
多相流量计采用先进的传感器和算法,能够准确测量多相流体
的流量。
可靠性好
02
多相流量计具有较高的稳定性和可靠性,能够长期连续工作。
应用广泛
03
多相流量计适用于石油、化工、能源等领域,可用于测量油、
气、水等多种介质。
03
多相流量计的应用
BIG DATA EMPOWERS TO CREATE A NEW
多相流体的应用场景
总结词
多相流体广泛应用于石油、化工、能源等领域。
详细描述
在石油工业中,多相流体主要应用于油、气、水的输送和计量。在化工领域,多相流体用于各种反应器和管道中 的物质传递和热量交换。在能源领域,多相流体用于燃烧和热力学过程,如煤粉燃烧和核反应堆中的冷却剂。
02
多相流量计的原理
BIG DATA EMPOWERS TO CREATE A NEW
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多相计量技术Multiphase metering technology概述许多新开发的油田属于经济型边际油田,这种油田不能承担传统分离技术所引发的高昂的费用。

而多相流量计可以节省很多费用,因为使用它就不需要安装分离器,或者几个油田共用处理装置。

在油井管理方面:多相流量计可以提供持续的数据输出,给出油井动态的有价值信息,这样可以及时地发现油井产生的问题或变化,以便尽早地做出决定,而采用传统的处理技术却要慢一些。

中国船级社(CCS)要求参照《海上移动平台入级规范》第1篇第3章附录1 平台入级产品持证要求一览表:5.3:Ⅲ级管系以及除5.1以外的阀和附件证件类型:制造厂证明(Ⅲ级管系应提供工厂认可证书,除5.1以外的阀和附件应提供型式认可证书)认可模式:型式认可B(可选项:型式认可A)1.在线多相流量计在线多相流量计依据对流体特性的一些测量得到油、气、水三相的各自流量。

现在有许多这样的计量技术,可大致分为两大类:速度或总流量测量和相分率测量。

速度或流量测量通常是通过压差计量或一个特殊信号的互相关,即压力或导电率来获得。

许多流量计也采用滑动模块,这说明了气体通常比液体流速快的事实。

在垂直管道上安装的一些在线多相流量计一般通过在其上游装一个盲三通来减少水的紊动,以此最大限度地减少滑动。

相分率可以通过测量三相混合物的物性来获得,据此推算出三相各自的流量。

伽马射线能量衰减法是一种常用的方法,它的原理是油、气、水不等同地削弱伽马射线的能量。

伽马射线能量在两个能量级放射高能量级对气/液比更敏感,而低能量级对液相中的水/油比较敏感。

可以用这两个能量衰减量来确定三相混合液的相分率。

第三个能量级也可以用来确定水相的含盐量。

电容和电导技术可以用来确定液相中的含水量。

电容传感器用于测量连续油流的介电常数并确定含水量,电导传感器用于连续水流的测量。

这种方法适于气体体积分数大环境,但缺点是:如果流体在水连续流和油连续流之间不停转换,那么流量计就很难跟踪到这个变化。

微波衰减也可以用来计量液相中的含水量,它的好处是对气体体积分数(GVF - Gas Volume Fraction,即:工况条件下气相所占总体积比)不是很敏感,并且既可以在油连续流也可以在水连续流中工作。

经多年在NEL和油田的试验表明,虽然流量计性能随GVF和含水率会发生很大变化,在线流量计在某些情况下各相的精度可以达到2.15%~10% ,而其他参数(例如压力、液体速度)和含盐量在很大程度上也会影响流量计性能。

2.分离流量计分离流量计或分离系统可以采用各种分离等级,但大部分还是采用小型分离器实施部分分离。

在按体积计算时,这样做会导致液流含气量达30%,气流含液量不超过1%~2%,但是在极端的情况下特别是段塞流严重的情况下,含液量可以达到10%;分离流量计一般采用小型旋流分离器进行分离利用位于进出口处的控制阀来调节液位。

大部分分离流量计都采用在主液流上安装一个标准在线多相流量计,在气流上安装一个标准气体流量计,例如涡流流量计或科里奥利流量计。

如果气流的含液量高则可以安装一个能够计量液体和气体流量的湿气流量计。

最近几年在NEL和油田的试验表明:分离流量计系统可以确保各相计量精度好于5%,与在线流量计相比受GVF的影响要小。

它的主要缺点是其尺寸、重量和依赖分离器中的快速液位控制阀使得这种分离器不适合在海底应用。

3.多相流量测量的基本原理在油气混输管线中,油井产出的原油、伴生天然气和矿化水形成了一种相态和流型复杂多变的多相流,是一个多变量的随机过程。

一般地,多相流量计需要用以下的参数来计算各相流量:1.各相在管道截面上所占据的面积A1;2.各相的流速V i;3.各相的温度T i和压力P i4.各相的体积流量可根据下式计算:Q i=A i V1 (1)式中Q i——各相的体积流量根据各相的温度T i和压力P i,利用状态方程可以将实际状况下的体积流量转换成标准状况下的体积流量。

根据实际情况,我们可以得到以下的关系式:A=Ao+Ag+Aw (2)(3)(4)上述式中:A——管道截面面积;A o——油相所占的面积;A g——气相所占的面积;A w——水相所占的面积;αg——管道中油气水三相流的截面含气率;αw——油水混合液中的含水率。

综合上述四式,油、气、水三相在实际状况下的体积流量Q o、Q g、Q w可以分别由下列计算式求得:Q o=V o A(1-αg)(1-αw)(5)Q g=V g Aαg(6)Q w=V w A(1-αg)αw(7)由此可见,油、气、水三相在实际状况下的体积流量的测量可以通过对各相流速、油、气、水三相截面上的含气率和含水率等流动参数的在线监测来实现。

4.多相流计量中的复杂因素和关键技术1复杂因素精确计量多相流的难度要比单相计量大得多。

单相计量可通过测得压力、流动粘度、压缩性和测量装置的几何尺寸来测得流量。

如果在多相流动中,每相的变化都是相同的,那处理起来要方便些。

但多相计量在以下几个方面与单相计量作用方式存在着差异:(1)各相并非混合均匀。

水与油混合的不好,气体与液体分离。

(2)各相以不同的速度流动,各相之间存在着界面效应和相对速度,相界面在时间和空间上变化比较大,对于液相和气相以不同的速度流动是正常。

(3)混合是不规则的。

各相混合时,结果难以预料,粘度和总量会发生变化。

(4)相与相之间的相互作用。

气体能从溶液中析出或者溶解在液体中,蜡和水溶物将在流体中沉淀。

(5)流动状态非常复杂,特征参数也比单相流系统多,它取决于各相之间的相对速度、流体特性、管路结构和流动方向。

为解决以上难点,关键所在是建立合理的测量模型,重视特征参数的选取,选用可靠的仪器,应用先进的数据处理方法。

2关键技术由多相流测试的原理分析可知,其技术的关键有两点:一是应将三相视为液相总量和气相两相计量,二是进行液相组分测量。

将油气、水视为气。

液两相流,测试方法主要有:(1)相关法:互相关测量方法是多相流量计中使用比较普遍的一种方法,几乎一半以上的多相流量计都使用了这种技术。

互相关流量测量是基于两个随机信号之间统计相似性的测量,互相关流量计由上游传感器、下游传感器和互相关器等组成。

当流体从管道中流过时,沿管道轴向相隔距离为L的两点上安装的上下游传感器,在各自的测量点上从流动的非均匀流体中检测到两个在时间上相差τo的流动噪声信号。

建立两信号的互相关函数,进而求出τo,则可得平均流速V=L/τo。

(2)混合测量法:将油、气、水三相在静态混合器中进行混合,然后使气和液以相同速度进入文丘利管。

文丘利管的基本原理是:当管路中液体流经文丘利管时,液流断面收缩,在收缩断面处流速增加,压力降低,使文丘利管前后产生压差。

在选择一定的文丘利管时,液体流量越大,它流经文丘利管产生的压差也就越大,因而可以通过测量压差来计量流量的大小。

(3)核磁共振法:核磁共振法的实质就是核对射频能的吸收。

在气、液两相流测量中,由于核磁共振信号强度与空隙率成线性关系,故在各种流型下均能精确测量空隙率。

核磁共振法能够测量平均流速、瞬时流速、流速分布等。

其具有非接触测量,与被测流体的电导率、温度、粘度、密度和透明度等物性参数变化无关等特点。

通过对相分率的测量,再与前面提到的流速测量技术相结合,便可得到每一相的流量。

测量组分的办法主要有:(1)微波衰减测量法。

这是一种测量含水率的基本技术,这种技术的基本原则是流体中对微波能量的频率响应取决于液体中的含水率。

在这种多相流量计中,一般由以下基本部件组成:发射仪、天线、探测器。

通过探测器测量井液对仪器所发出微波信号的吸收来确定并液流体中水的含率。

(2)伽马源吸收测量法。

伽马源吸收测量法利用了流体的物理特性,即在不同流体中有不同的伽马源吸收特性。

这一特性与混合物的密度有关,利用这种方法可以确定气液流体中的气分率。

在油、气、水三相流体中,通常使用双能伽马射线来确定油、气水含率。

另外,在一些正在研制的多相流量计中,则使用了三能或多能伽马技术来确定组分含量。

(3)电介质特性测量法。

现在一些多相流量计应用了连续波、振荡和单频率的原理,用频率小于15GHz的电磁波技术来测量电介质常数,与传统的电容测量系统相比,电介质测量应用范围更加广阔,并能提供一些附加信息。

物质的电介质常数与物质的折射指数有关,电介质常数是描述物质电磁性能的参数之一。

由于水的电介质常数与油的电介质常数相差很大,因此用测量电介质常数的方法来确定油和水相分率是很有发展潜力的一种方法。

(4)短波持水率计。

工作频率为几十兆赫,在集流状态下,该仪器能在0%~100%的持水率范围内有灵敏度,测量精度为±10%,但测量受水的矿化度影响。

5.性能检验关于哪种方法最适合检验多相流量计性能的话题已经讨论了许多年。

最简单的方法就是什么也不做,希望流量计继续工作。

另外一种方法是由流量计厂商进行一个基本性能测试。

这种方法比较简单,只要确认流量计可以识别油、气、水的静态取样,或者是使用厂商的流量设施进行流量试验。

由于缺乏独立自主性,许多用户不愿意把这种试验当作是流量计性能的证明。

基于上述原因,通常在一个独立实验室来进行流量试验。

在最近几年里,NEL公司已经为一些用户在它的多相流实验室进行了许多类似的验收试验。

这种实验室在10年前是专门为多相流量计评价和测试而建立的。

一个有信用的独立实验室的优点是参比流量计将会十分精确和完全可追踪的,并且独立组织和厂商或终端用户没有任何关系。

对采用什么样类型的试验流体也有争议。

在气体没有溶解在石油中,各相没有随着压力或温度发生变化的情况下,采用“死”流体。

NEL公司就采用了这种做法,它的优点是参比流量的不确定性小,某些人指出了其缺点,即:现场流体实验不可重复。

使用含气原油和天然气更现实些,但这意味着气体很易于溶解在石油中,使得参比计量比较困难。

如果测试流量计的压力和/或温度与参比流量计不同的话,就表明气体溶解到石油中或从石油中溶解出来。

如果流体性能已知,在实验室发生的相分率变化必须用油气复杂的物理PVT (压力—体积—温度)分析或模拟PVT行为来说明。

采用任何一种方法都会不可避免地导致参比流量的不确定性更高。

还有一种常用的方法是根据一个现有的三相测试分离器来校验海上流量计。

这种做法的好处是在预定安装的位置测试流量计,并且使用实际上将要被计量的流体。

然而,最大的缺点就是这种方法会潜在地造成参比流量不确定性高。

分离器性能对计量精度有很大的影响。

除了使用含气流体会造成不确定性外,由于比较差的分离还会造成携带液体或夹带气体的产生,这些都会导致液体和气体流量出现较大误差。

多相流量计Multiphase Flowmeter1.Flowsys 多相流量计现场仪表主要由四部分组成:(1)电容或电导传感器:在油连续相混合液时,采用电容传感器测量乳化油的介电常数;对于水连续相混合液时,采用电导传感器测量水的电导率,用以确定含水率。

相关文档
最新文档