【结构设计】框架结构的延性设计详解

合集下载

延性框架的设计

延性框架的设计

延性框架的设计钢筋混凝土框架结构是最常用的结构形式。

结构抗震的本质就是延性,提高延性可以增加结构抗震潜力,增强结构抗倒塌能力。

为了利用结构的弹塑性变形能力耗散地震能量,减轻地震作用下结构的反应,应将钢筋混凝土框架结构设计成延性框架结构。

钢筋混凝土结构的各类构件应具有必要的强度和刚度,并具有良好的延性性能,避免构件的脆性破坏,从而导致主体结构受力不合理,地震时出现过早破坏。

因此,可以采取措施,做好延性设计,防止构件在地震作用下提前破坏,并避免结构体系出现不应有的破坏。

参考文献:1 前言在现代房屋结构设计中,延性研究越来越显得重要,钢筋混凝土结构延性的研究是塑性设计方法和抗震设计理论发展的基础。

所谓延性是指材料、构件和结构在荷载作用下,进入非线性状态后在承载能力没有显著降低情况下的变形能力。

描写延性常用的变量有:材料的韧性,截面的曲率延性系数,构件或结构的位移延性系数,塑性铰转角能力,滞回曲线,耗能能力等。

试验和非线性计算分析表明:构件的结构的破坏由受拉钢筋引起的,常表现出良好的延性,如适筋梁、大偏心受压柱等;而破坏由混凝土拉断、剪坏和压溃控制的常表现为脆性,如素混凝土板、超尽梁、地震作用下剪切破坏的短柱等。

对于建筑结构系统来说,一方面,钢筋混凝土构件的功能依赖于整体结构系统功能,任何构件一旦离开整体结构,就不再具有它在结构系统中所能发挥的功能;另一方面,构件又影响整体结构系统的功能,任何构件一旦离开整体结构,整体结构丧失的功能不等于该构件在结构系统中所发挥的功能,可能更大,也可能更小。

在地震作用下,有可能由于部分构件的破坏乃至退出工作,整个结构体系会因此破坏,这里的部分构件包括了结构构件以及非结构构件。

在地震作用下,混凝土结构或构件的破坏可分为脆性破坏和延性破坏两种,其中脆性破坏的危害时非常大的,设计上是一定要避免的,而延性破坏时指构件承载力没有显著降低的情况下,经历很大的非线性变形后所发生的破坏,在破坏前能给人以警示。

钢筋混凝土框架结构延性设计的探讨

钢筋混凝土框架结构延性设计的探讨

钢筋混凝土框架结构延性设计的探讨0.引言在我国当前的高层建筑当中,对于钢筋混凝土的运用是非常广泛和普遍的,而钢筋混凝土的框架结构因为具有十分稳定的延性,所以使得其也成为了现代很多高层建筑所主要采用的结构形式之一。

这种建筑结构在当前来说,更多的运用在了地震的防护区域,因为这种结构形式具有非常好的抗震性能,但是如果这种框架结构不进行有效的延性设计,那么在较大的自然灾害发生的时候或者是在地震到来的时候,就会产生比较严重的后果,甚至会诱发更大的灾害。

接下来,笔者将在本研究中将主要以建筑钢筋混凝土框架结构延性设计为例,对建筑钢筋混凝土狂接结构设计方面的问题做出简要分析,并简单谈一谈自己的主观看法。

1.建筑钢筋混凝土框架结构的设计原则在高层建筑的框架结构设计当中,应该遵循刚柔相互协调的这一原则,这可以保证高层建筑拥有一定的延性[1]。

而且,笔者认为在抗震撼方面还需要遵循多道设计的原则,这样,如果第一道抗侧力构件受到了破坏,那么接下来的第二道防线和第三道防线就会立即作出接替,这样便能够更好地挡住各种震撼力的冲击。

对于保证建筑物不会因为震撼而倒塌起到了一定的支撑作用。

此外,笔者认为在高层建筑的抗震设计当中还需要对选择作出一定的规定,在选材上,高层建筑要遵循轻质量高强度的原则,建筑材料不单单需要具备足够的形变能力和强度,而且材料的自重也应当尽可能的轻一些[2]。

这样,即便是因为很强大的震撼而造成高层建筑的坍塌,那么轻质的材料对人体所造成的伤害也会适当的降低很多。

2.建筑钢筋混凝土框架结构的延性设计2.1梁柱的延性设计如果想要保证建筑物的框架结构具有更高的延性,那么首先需要保证这个建筑物的框架梁祝具有足够的延性。

梁柱的延性和梁柱界面的塑性铰的转动力有十分重要的关系,所以框架结构的抗震设计最关键的就是对梁柱塑性铰进行设计。

笔者认为在对其进行设计的时候需要遵照强剪弱弯的原则。

钢筋混凝土梁柱在如果受到了较大的剪力,那么一般就会呈现出脆弱性的破坏[3]。

钢筋混凝土框架结构抗震延性设计要求

钢筋混凝土框架结构抗震延性设计要求

钢筋混凝土框架结构抗震延性设计要求钢筋混凝土框架结构是一种常见的建筑结构系统,其地震性能是非常关键的,而抗震延性是钢筋混凝土框架结构的一个重要设计要求。

抗震延性是指结构在地震荷载作用下,能够发挥一定的变形能力,从而将地震能量以合理的方式耗散掉,降低破坏和损伤的程度。

以下是钢筋混凝土框架结构抗震延性设计的主要要求和原则。

1.设计强度要求:在进行抗震延性设计时,首先需要满足结构的强度要求,确保结构在地震荷载作用下能够承受足够的弯矩、剪力和轴向力。

强度的设计应符合国家规范的要求,保证结构在地震作用下不发生严重的破坏。

2.延性要求:延性是指结构在地震作用下能够有一定的变形能力,从而耗散地震能量。

钢筋混凝土框架结构的抗震延性设计要求结构具有足够的延性,能够承受地震时的大位移和变形,减少结构的刚性反应,降低地震作用所引起的内力和应力。

3.抗震设计刚度:在设计过程中,需要对结构的刚度进行合理的控制。

过刚的结构容易发生脆性破坏,而过软的结构则容易发生塑性破坏。

通过控制结构的刚度,能够在一定程度上提高结构的延性和抗震性能。

4.塑性铰的形成和能量耗散:由于钢筋混凝土框架结构材料的非线性特性,设计时通常会考虑结构发生塑性变形。

为了保证结构的抗震延性,需要合理设置塑性铰,通过其形成和变形来吸收地震能量。

塑性铰的设置需要考虑材料的延性和变形能力,以及结构的布局和构造形式。

5.剪力墙的合理设置:剪力墙是一种能够提供较高延性和抗震性能的结构构件。

在设计中合理设置剪力墙,能够提高结构的抗震延性和整体稳定性。

剪力墙的位置、厚度和布局应根据地震作用的大小和方向进行确定。

6.连接节点的设计:连接节点是结构中容易形成塑性变形的部位,也是结构抗震延性的重要组成部分。

连接节点应设计合理,并采用适当的构造措施,确保其在地震作用下能够承受较大的变形和能量耗散,避免发生脆性破坏。

7.构件的延性设计:钢筋混凝土框架结构中的构件延性也是影响结构整体延性的因素之一、梁、柱和楼板等构件在设计过程中需要考虑其延性和变形能力,确保其在地震荷载下具有较好的性能。

钢筋混凝土框架结构的延性设计

钢筋混凝土框架结构的延性设计

可 有效 地 防 止斜 裂 缝 过 早 出现 。减 轻 混
凝 土 碎 裂程 度 。这 实 质 上也 是 对 构 件 最 小 截面 尺 寸的要 求 。
破坏 ,柱 的纵 向受 力 钢 筋总 配 筋 率不 得
少于 1 % 、0 8 0 .%、0 7 %、0 6 %、 ( 相
应 于 一 、二 、三 、四级 抗 震 等 级 ),角
混 凝 土 框 架 强 柱 弱 梁 的概 念 设 计
由 于 梁 截 面 高 度 较 高 , 且 与 现 浇
楼板 组成 T 截 面 构 件 共 同工 作 ,形 成 形 强梁 弱 柱 ,导 致 柱 子破 坏 ,房 屋倒 塌 。
限 制 剪 压 比 即 梁 、 柱 截 面 的平 均 剪 应 力 ,使 箍 筋 数量 不 至 于 太 多 , 同 时 ,也
具 体 的 做 法
第 一 , 剪 跨 比限 制 。 剪 跨比 反映 柱
了构件 截 面 承 受 的 弯矩 与 剪 力 的相 对 大
小 。它是影 响柱极 限变形能 力的主要 因素 之 一 ,对 构 件 的破 坏 形 态 有 很重 要 的 影 响。 因此柱 的剪跨 比宜控 制在 2 以上。 0
是 框 架 梁 、柱 的薄 弱部 位 。 当框架 柱 断
面相 对 较 大 ,在 梁 端 箍筋 加 密 ,形 成 弯
技术创新 l I N TEP E r 1 DRN I - ]E0 [广 N ER RS -
LJ C TURE UL
钢 筋 混 凝 土框 架 结 构 的 延 性 设 计
文, 廖辉 “ 柱 弱 梁 ” 、 “ 剪 弱 弯 ”等 是 强 强 建筑 结构设计 中非 常重 要 的概 念。 简单地
在最后 失效 ,我们故意 把梁设计 成相对 薄 弱的环 节 ,使 其破坏在 先 ,以最 大限 度减

论框架结构抗震的延性设计

论框架结构抗震的延性设计

够 的强度 、 良好 的延 性和较强 的整体 性, 目前广 泛用于地 震设 性的结构可 降低对 结构的承载 力要 求 , 可 以说 , 也 延性结构是
防地 区, 具有 良好 的抗 震性 能, 然而未经合 理设计的框架 结构 用 它的变形 能力来抵抗罕遇地震作用。反之, 如果结构 的延性 会在地震作用下产生较严重的震害 。
s ac . 1 9 , 9 7 : 8 7 1 0 e rh 9 5 2 () l 0 ~ 8 9
好氧组合工艺对呈强碱性的印染废水 的适性和处理性均好。
五 、 论 结
在印染废水处理 技术中 , 生物法具有运行 成本低 , 处理效
果较 为稳定等优点 ,但生物法存在度和 C D脱 除效 率不 高的 【】 O 6曾国驱 , 任随周 , 许玫英 等.A R结 合 S R处理 印染废 水的研 究 B B 缺 点, 且反应时间长, 因而一般不单独应用。实践证 明, 根据 印 [ .微生物学通报.2 0 ,2() 6 ~7 J ] 0 5 3 6 :8 3
J ] 0 4 2 1) 3 ~3 O 5 / 去除率为 5 %~9 %。对 比水解酸化、 . mg 9 L, O 8 接触氧化及水 [ .中国给水排水.2 0 ,0(2 :3 6
3黄瑞敏 , 德贤 , 林 谢春生等 .混凝 脱色——悬浮 曝气生物滤池 处理 解酸化一接触氧化相结合三种工艺 。处理的印染废水 , 明水 【】 表
解 酸化 . 接触氧化 工艺组合 工艺不但 具有 对 C D更好的处理 O
效果, 而且对原水水质 的 p H有强的适应能力 。据报道 , 厌氧 .
印染废水【 ,工业用水 与废水 .2 0 , 7 1 : 1 3 J ] 0 6 3 () 8 ~8
[ 刘建 荣, 国庆, 4 ] 吴 牛志卿等 .磁态厌氧 流化床处理 印染废水【 .中 J 】 国环境科学.19 ,6 1: 4 7 9 6 1 () 6 ~6

如何实现建筑框架结构抗震延性

如何实现建筑框架结构抗震延性

如何实现建筑框架结构抗震延性结构抗震的本质就是结构在地震作用下通过塑性变形耗散和吸收能量的能力,提高结构的变形能力和结构抗震性能。

本文结合现行《混凝土结构设计规范》和《建筑抗震设计规范》相关规定,分析了钢筋混凝土框架结构延性设计的基本思想和基本公式要求,以及保证结构抗震延性的基本构造措施。

一、框架结构的延性设计框架结构主要由框架梁、框架柱和梁柱节点组成。

框架结构的延性很大程度上取决于框架梁和框架柱构件本身的延性和屈服弯矩。

在地震作用下,框架经历加载和卸载的过程,即吸收和释放能量的循环,循环能量的差值即为结构或构件在地震作用下耗能的过程。

结构吸收的地震能量可以由力—位移曲线所包围的面积来表示,如图1。

(a)力-位移曲线的前期(b)力-位移曲线的后期图1力—位移曲线1.1框架梁的延性設计框架梁的延性设计可以从正截面抗弯和斜截面抗剪两个方面进行设计。

1.1.1框架梁正截面延性设计框架梁正截面破坏形式有三种:少筋破坏、适筋破坏和超筋破坏。

少筋破坏即梁受拉区配置纵向钢筋数量较少,因此在弯矩作用下,受拉区混凝土一开裂,受拉钢筋即屈服,甚至进入强化阶段,构件破坏。

为此,《规范》9.5.1条表9.5.1对最小配筋进行控制,防止出现少筋梁脆性破坏,即ρmin≥max0.2%,45ftfy% (1)式中ft——混凝土抗拉强度设计值;fy——纵筋抗拉强度设计值。

超筋破坏即纵向受拉钢筋配置量较多,在弯矩作用下钢筋未屈服而受压区混凝土破碎,属破坏较突然的脆性破坏。

为此,《规范》第7.2.1条在计算构件受压区高度时规定了式(2)的限制条件,同时《抗规》6.3.3条第1款对不同抗震等级的框架梁的最大配筋率进行了限制,以防止出现超筋梁破坏。

x≤ξbh0 (2)式中x——截面受压区高度;ξb——界限受压区高度;h0——截面有效高度。

为保证梁处于适筋状态,设计结果除满足式(1)、(2)外还需满足:ρmax≤ξbα1fcfy (3)x≥2a' (4)式中α1——受压区混凝土矩形应力图的应力值与混凝土轴心抗压强度设计值的比值,取值参见《规范》第7.1.3条;fc——混凝土抗压强度设计值;a'——受压区全部纵向钢筋合力点至截面受压边缘的距离。

钢筋混凝土框架结构的延性设计分析

钢筋混凝土框架结构的延性设计分析

钢筋混凝土框架结构的延性设计分析引言钢筋混凝土框架结构广泛应用于建筑工程中,具有较强的抗震性能。

而延性作为结构的一个重要指标之一,对于保证结构在地震荷载下具有较好的性能至关重要。

本文将对钢筋混凝土框架结构的延性设计进行分析,包括延性的概念和重要性、延性设计的方法与原则等内容。

一、延性的概念和重要性延性是指结构在超过弹性阶段后,仍能继续变形并能对震动能量进行吸收和耗散的能力。

具有较好延性的结构可以在地震发生时发生弹塑性变形,将地震能量分散到整个结构中,降低震害程度,保护人员的生命安全。

延性的设计目标是确保结构在剧烈振动中不发生破坏,并能恢复到震前状态。

因此,延性设计在抗震设计中的重要性不言而喻。

二、延性设计的方法与原则1.选用合理的构件形式:合理的构件形式可以提高结构的延性。

例如,在地震力作用下,剪力墙、框架柱等构件具有较好的延性,可以通过适当增加构件尺寸或设置加劲梁、剪力墙等来提高结构的延性。

2.合理选择材料:材料的性能直接影响结构的延性。

需要合理选择混凝土和钢筋的等级和数量,以确保在弯剪承载力下,结构能够实现一定的延性要求。

3.设计适当的屈服形态:结构的变形形态对其延性有重要影响。

通过合理设计构件的屈服形态,如屈服机构或软肢连接等,可以使结构在地震作用下产生一定的塑性变形。

4.合理设计剪力墙开孔或剪力墙梁空挑:通过剪力墙开孔或剪力墙梁空挑的设计,可以提高结构的延性。

剪力墙开孔或剪力墙梁空挑的设置应满足结构刚度和强度的要求,同时考虑到结构延性的需要。

5.增加结构的耗能能力:通过合理设置耗能装置,如阻尼器、剪力墙分段等,可以提高结构的延性。

耗能装置能有效吸收震动能量,减小结构应力和变形。

三、实例分析以一座居住建筑的钢筋混凝土框架结构为例进行延性设计分析。

通过对该建筑的结构形式、构件形态、材料等进行合理设计,提高结构的延性。

1.结构形式:选择合适的框架结构形式,确保结构整体稳定。

2.构件形态:增加主要构件的尺寸,如增加柱截面尺寸和加劲梁的设置,提高结构的抗震性能和延性。

【结构设计】框架结构的延性设计详解

【结构设计】框架结构的延性设计详解

框架结构的延性设计详解1.框架梁的延性影响框架梁延性(Ductility)的因素主要包括:纵筋配筋率(Reinforcement ratio)、剪压比(Shear-compression ratio)、跨高比(Span-depth ratio)、配箍率(Stirrup ratio).(1)纵筋配筋率(Reinforcement ratio).梁的延性(Ductility)指标可以用截面的弯矩--曲率曲线来衡量.因为截面曲率(Sectional curvature)和截面受压区高度成反比,因此构件截面的变形能力也可以用截面达到极限状态时的相对受压区高度(Relative height of compression zone)来表示.下图为单筋矩形截面梁的计算简图,由图及上式可知,纵筋配筋率越大,相对受压区高度越大,截面曲率越小,截面变形能力越小.下图为某双筋矩形截面梁受弯时弯矩与曲率的关系,由图可以看出,当纵筋配筋率(Reinforcement ratio)增加时,强度可以提高,但是延性会变差.当受压区高度为0.25至0.35范围时,梁的位移延性系数可达3~4.因此,抗震规范中对于梁的纵筋配置,有如此规定:“梁端计入受压钢筋的混凝土受压区高度和有效高度之比,一级不应大0.25,二、三级不应大于0.35”;“梁端纵向受拉钢筋的配筋率不宜大于2.5%”.(2)剪压比(Shear-compression ratio)剪压比(Shear-compression ratio)指的是梁载面“名义剪应力V/(bh0)”与混凝土轴心抗压强度(Axial compressive strength)设计值fc的比值.试验表明:梁塑性铰区的截面剪压比对梁的延性、强度、刚度有显著的影响.剪压比越大,梁的强度、刚度越差,当剪压比大于0.15时,增加箍筋(Stirrup)配置量已经不能产生良好的效果了.因此,在结构设计中应该注意梁的剪压比不能过大.如抗震设计规范规定,对于跨高比大于2.5的梁,组合的剪力设计值应该满足如下条件:由上述公式可以看出,对于剪压比的设计条件,其实质是控制梁的截面不能过小.如果剪压比不满足要求时,需要加大梁截面.(3)跨高比(Span-depth ratio)跨高比指的是梁净跨与梁高比.试验表明:梁的跨高比对梁的抗震性能(延性)有明显的影响.当梁的跨高比小于2时,剪切变形的比重加大,极易发生以斜裂缝为主要特征的破坏,梁的延性降低.以下图所示的梁,可以明显的看出,梁的变形主要是弯曲变形.但是,如果跨度不变,随着梁的高度增加,梁的变形特性将会发生改变.如下图所示,对于这样的梁,还能“弯”吗?它的变形主要是剪切变形.因此,抗震规范中规定“梁的跨高比不宜小于4”.这一点,给我们设计的提示是,当梁的设计内力较大时,若截面承载力不满足要求,需要加大截面面积时,宜首先考虑加大梁的宽度,而不是高度.(4)配箍率(Stirrup ratio)在塑性铰(Plastic Hinge)区配置足够的封闭箍筋,对提高塑性铰的转动能力是十分有效的(在满足剪压比的前提下).配置足够的箍筋(Stirrup),对防止梁受压纵筋过早压屈、提高塑性铰区内混凝土的极限压应变(ultimate compression strain)以及防止斜裂缝的开展都有很好的作用,因此保证一定的配箍率有利于充分发挥塑性铰的变形和耗能能力.在工程设计中,在框架梁的塑性铰区范围内,箍筋(Stirrup)必须加密.2.框架柱的延性影响框架柱延性的因素主要包括:剪跨比、轴压比、配箍率及纵筋配筋率.(1)剪跨比(Shear-span Ratio)剪跨比是反映柱截面弯矩和剪力比值的一个参数,表示为M/(V·h0)(h0为柱截面高度),它所表达的是截面上弯矩和剪力的比值.如果截面上弯矩越大,那么构件将会是以受弯为主,破坏形式将是延性,有利于抗震;反之,如是截面剪力过大,截面的破坏形式将是脆性剪切破坏.试验表明,剪跨比大于2的柱,为长柱,柱的破坏形式为压弯型,延性较好;当剪跨比在[1.5,2.0]之间时,为短柱,柱破坏形式以剪切变形为主,有一定的延性;当剪跨比小于1.5时,为极短柱,柱的破坏为剪切破坏,延性极差,一般设计中就避免.那么,这个参数为何叫做“剪跨比”呢?哪能体现出“跨”的概念呢?看下图就可以理解了.图中所示为一根简支梁,在两个集中荷载作用下的弯矩图和剪力图.以左边集中荷载作用处的位置为例,该截面的剪力V=P,弯矩M=P·a.那么,该截面处的剪跨比为M/(V·h0)=(P·a)/(P·h0)=(P·a)/(P·h0)=a/h0,可见,在这种受力情况下,剪跨比可以表达为荷载作用点和支座之间的距离(a)与梁的截面高度(h0),而荷载作用点和支座之间的距离(a)称之为“剪跨”,这就是剪跨比的来历.抗震设计规范中规定,剪跨比大于2的柱和抗震墙,需满足下式:剪跨比不大于2的柱和抗震墙、部分框支抗震墙结构的框支柱和框支梁、以及落地抗震墙的底部加强部位:(2)轴压比(Axial-compression Ratio)轴压比是结构设计中另一个非常关心的参数.这里的“轴”指的是柱子的轴力,“压”指的是柱子的混凝土的抗压强度,轴压比的计算公式为N/(fc·b·h0),这里N是柱子的轴力,fc·为混凝土的抗压强度,b和h0分别为截面的宽度和高度.下图为位移延性比与轴压比的曲线,可以看出,随着柱子的轴压比增加,柱子的延性变差.关于柱子箍筋的配置要求,请参考抗震设计规范6.3.9条文内容.(4)纵筋配筋率试验研究表明:柱截面在纵筋发生屈服后的转动能力,主要受纵向钢筋配筋率的影响,且大致随纵筋配筋率的增大而线性的提高.因此,为避免柱过早进入屈服阶段,保证柱的延性,柱的全部纵筋的配筋率也不能过小.关于柱子纵筋配筋率的要求,请参考抗震设计规范6.3.7和6.3.8条文内容.。

浅析框架结构延性抗震设计

浅析框架结构延性抗震设计

发挥。该工程在柱子截面大小 和数 目上 均受 到 限 制 的条 件 下 ,通 过 式
到 的力 更小 。 2 控 制 剪跨 比
图1 对 称配 筋柱 子M— N关 系
( 1 ) 可知, 可以考虑选择适当的混凝土强度等级, 或者改变传力路径 , 使柱 子受
保证框架结构的延性 , 从而确保框架结构的抗震能力 。 粱是 框架 结构 中的 主要 受力构 件 之一 , 在抗 震 设计 中要 求塑 性 铰 出现 在 梁端且又不能发生剪切破坏。同时, 还要 防止由于梁筋屈服渗入节点而影响 节点核心区的性能。 试验和理论分析表明 , 影响梁截面延性的主要因素如下。
框架 结 构 是最 常 用 的结 构形 式 。 因 为钢 筋 混凝 土 框 架 结构 具 有 平 面 布置 灵 从 图1 中可 知 , 轴力越 大 , 柱 子 越容 易处 于 小 偏 压受 力 状 态 。而小
‘ 间 , 还具有足够的刚度 、 良好的延性 。然而设 偏心受 压破坏时 , 受拉钢筋没有 屈 计 不合 理 的框架 结 构在 地震 作 用下会 产 生 比较 严重 的震 害 。 服, 甚 至受压 钢筋也 没屈 服 , 这 种
3 . 粱纵 筋 配置
实验及前期工程表明,配置箍筋较少的柱子常发生大范围的整体压溃 , 呈现无延性破坏。 根据这类破坏形态, 只有沿柱高配置足够数量的箍筋后 , 才 能保证柱端塑性铰的形成。在外力作用下, 柱端截面可能承受两个主轴方 向 的外力, 从而使混凝土全截面受损。因此, 柱端就要有足够的箍筋约束 。全截
没有屈服 , 而受压 区的混凝土在较大的复合应力状态下压溃 , 从 而发生脆性 破坏。 剪跨比对构件的延性也有一定 的影响, 随着剪跨 比的增大 , 混凝土框架 梁 宽不 宜小 于柱 宽 的 1 / 2 , 且 不 三2 0 0 。梁 的高 宽 比不 宜> 4, 梁 的 跨高 比 柱 的破坏 形 态 由剪切 破坏 转 变为 弯 曲破坏 , 从 而使 构件 的延 性 也 有所增 加 。

浅述钢筋混凝土框架结构延性设计要点

浅述钢筋混凝土框架结构延性设计要点

浅述钢筋混凝土框架结构延性设计要点随着现代建筑科学的迅速发展,高层建筑已经逐渐占据城市建设的主体地位,因此,高层建筑中钢筋结构设计尤为关键。

但是目前尚没有对钢筋混凝土结构钢筋细部节点的设计形成一个统一的方法,从而造成在节点钢筋设计时往往会出现配筋率过大、钢筋锚固不够等现象。

设计钢筋混凝土剪力墙结构时对不同的剪力墙结构有不同的设计要求。

因此,在设计时如何把握好剪力墙的合理性、功能性至关重要。

希望本文可以在以后的钢筋混凝土剪力墙设计和建造中能发挥出应有的作用,并且通过人类的不断探索,不断改进剪力墙的结构和设计。

1 钢筋混凝土结构方案问题高层混凝土结构方案选型要根据能高效利用材料效率、清晰传力途径来进行,这对配筋指标等的控制具有重要作用。

在方案选型时要注意以下几点:第一,结构坚向与抗侧力传力途径要明确;第二,要形成空间的整体受力,增强结构与构件的材料使用效率;第三,要尽可能提高结构的均匀性与规则性;第四,形成良好的结构整体性与耗能机制。

在设计时,结构工程师尽量保证建筑的设计理念,结构部分要与建筑部分加强合作,减小没有必要的大空间,减少结构转换工作。

在结构的抗侧力体系选择时,首先要使得结构抗侧力体系和建筑的高度相适应;其次,结构垂直方向沿高度的变化要平缓、连续,强度等级的变化与混凝土墙的厚度变化要错开;最后尽可能使结构抗侧力构件连接成整体,要保证体系中所选材料与截面类型与施工期相符合。

另外,在在重力荷载传力方面,要尽量降低结构的自重,楼板设计时,要综合考虑设备、净高、建筑吊顶的做法等各方面因素,可以运用组合楼板和钢梁的形式来降低自重,以缩短施工工期。

如果结构很复杂要注意加强技术的分析工作,选择合理的楼面结构与转换结构,在结构抗侧力体系上要合理设定腰桁架,抗震等级的选择要适当。

2 基础的设计选型问题高层基础设计也是钢筋混凝土结构设计部分应该要特别主要的问题,这是由于基础设计的不恰当,会使建筑因承载力不足而造成不均匀沉降,使得建筑物出现开裂或倾斜,引起安全问题;另外,合理的基础设计是降低工程造价和缩短工期有重要作用。

框架结构延性设计理论

框架结构延性设计理论

框架结构延性设计理论
经济、合理的抗震结构应当是:在罕遇或极罕遇地震作用下,部分结构构件(主要是水平构件)屈服,通过延性耗散地震能量,避免结构倒塌。

抗震延性设计理论的主要思想是,保证结构在罕遇地震作用下发生可控制的塑性变形,通过变形耗散地震能量。

新的抗震设计方法提出了可恢复功能的设计理念,即结构在罕遇地震下特定节点或构件成为可动或可耗能的部件,当地面运动停止后,结构恢复到预定功能。

结构延性与耗能
结构或构件的延性包括材料、截面、构件和结构的延性。

延性是指:屈服后强度或承载力没有显著降低时的塑性变形能力。

换言之,延性是材料、截面、构件或结构保持一定的强度或承载力时的非弹性(塑性)变形能力。

常用延性系数μ按式(1)计算。

μ=∆∆(1)
u y
式中Δ——材料的应变、截面的曲率、构件的变形或结构的层间位移等荷载效应和地震作用效应组合的设计值;
Δy、Δu——上述应变、曲率、变形或位移的屈服值和极限值。

一般情况下,结构整体的延性常采用位移延性系数表示。

由静力弹塑性分析得到整体结构的基底剪力与结构顶点水平位移曲线,或层间剪力与层间位移角曲线,通过式(6-1)得到结构的位移延性系数。

延性系数大,说明塑性变形能力大,达到最大承载能力后强度或承载力降低缓慢,从而有足够大的能力吸收和耗散地震能量、避免结构倒塌;延性小,说明达到最大承载能力后承载能力迅速下降,塑性变形能力小。

一般来说,延性大、滞回曲线饱满,则结构耗能能力大。

耗能能力一般用往复荷载作用下结构或构件消耗的势能,即采用力-位移滞回曲线包含的面积来度量。

框架结构的延性抗震设计

框架结构的延性抗震设计

浅析框架结构的延性抗震设计摘要:随着国民经济的发展,高层建筑得到了大力发展,本文主要是对结合工程实际,对影响框架结构延性的主要因素,具体设计内容进行了分析,以供同仁参考!关键词:框架柱;抗震;延性;有限元1 工程简介河南郑州一高层建筑的主体结构为钢筋混凝土框架-剪力墙结构,地上25层,地下1层,结构总高度88.1m,设防列度8度,丙类建筑,地下室内部剪力墙很少(可忽略其作用),底层柱子计算长度4.60m,柱子净高3.50m,框架抗震等级为一级,剪力墙抗震等级为一级。

下面将对该工程底层框架柱延性抗震设计思路进行详细的分析。

2影响结构延性的主要因素框架结构是由梁、板、柱以及节点四个部分组成,其中梁、柱以及节点的延性决定了整个框架结构的延性。

因此,只要保证柱、梁和节点的延性就可以保证框架结构的延性,从而确保了框架结构的抗震能力[1]。

梁是框架结构中的主要受力构件之一,在抗震设计中要求塑性铰首出现在梁端且又不能发生剪切破坏,同时还要防止由于梁筋屈服渗入节点而影响节点核心区的性能。

试验和理论分析表明,影响梁截面延性的主要因素如下所示:(1)梁截面要求:梁宽不宜小于柱宽的1/2,且不≥200,梁的高宽比不宜>4,梁的跨高比不宜<4。

(2)梁纵筋配筋率:通过限制受拉配筋率可以避免剪跨比较大的梁在未达到延性要求之前梁端下部受压区混凝土过早达到极限压应变而破坏。

(3)梁纵筋配置:梁端截面上纵向受压钢筋与纵向受拉钢筋保持一定比例。

(4)梁端箍筋加密:抗震规范对此出了详细规定。

柱是框架结构中主要的受力构件,要想提高框架结构的抗震性能,就必须确保构件有足够的延性,构件延性好的框架结构能吸收较多的地震能量,抗震性能就好。

因此,在进行框架结构设计时,应遵循强柱弱梁的设计原则,使塑性铰出现在梁端,以增强构件的延性。

节点是框架梁柱构件的公共部分,节点的失效就意味着与之相连的梁与柱同时失效,所以对节点也应予以足够的重视[2]。

第五章4.1-框架结构设计

第五章4.1-框架结构设计

Vb
---梁的剪力增大系数,一级为1.3,二级为1.2,三级为1.1。
30
3.受剪承载力验算
无地震作用
Vb 0.7 ft bb hb 0 1.25 f yv
Asv hb 0 S
有地震作用 Vb
Asv 1 hb0 0.42 f t bb hb0 1.25f yv RE s f yv ——箍筋抗拉强度设计值;
---梁的净跨; ---梁在重力荷载代表值(9度时高层建筑还应包括竖向地震作用标 准值)作用下,按简支梁分析的梁端截面剪力设计值;
l r Mb 、M b --分别为梁左、右端逆时针或顺时针方向正截面组合的弯矩设计值; l r M bua 、M bua ---分别为梁左、右端逆时针或顺时针方向根据实配钢筋面积(考 虑受压筋)和材料强度标准值计算的抗弯承载力所对应的弯值;
由图可知:构件弯 曲破坏的耗能能力 大于剪切破坏的耗 能能力。
剪切破坏滞回曲线
20
5.4.1 框架延性设计的概念 三、延性框架设计的一般原则 3、强节点(核芯区)、强锚固 节点区域受力复杂,容易发生破坏。节 点的可靠与否是关系梁、柱能否可靠工作 的前提,必须做到强节点。钢筋锚固的好 坏是构件能否发挥承载力的关键。
24
5.4.2 框架梁设计
框架的延性主要取决于框架梁,因此, 在框架梁的设计中,应对梁的延性给予足够 的重视。 一、梁的破坏形态与延性 1、破坏形态 钢筋混凝土梁的破坏形态有两种形式: 弯曲破坏和剪切破坏。剪切破坏属于延性小、 耗能能力差的脆性破坏,应通过强剪弱弯设 计,避免剪切破坏。
25
5.4.2 框架梁设计
3、混凝土的保护层必须得到保证;
4、钢筋的绑扎务必按照规定办理; 5、混凝土的蜂窝现象不可草率处理。

钢筋混凝土框架结构的延性设计

钢筋混凝土框架结构的延性设计

钢筋混凝土框架结构的延性设计作者:廖辉来源:《现代企业文化·理论版》2011年第02期“强柱弱梁”、“强剪弱弯”等是建筑结构设计中非常重要的概念。

简单地说,虽然整个结构体系是由各种构件协调组成一体,但各个构件担任的角色不尽相同,按照其重要性也就有轻重之分。

一旦不可意料的破坏力量突然袭来,各个构件协作抵抗的目的,就是为了保住最重要的构件免遭摧毁或者至少是最后才遭摧毁,在建筑结构中,柱倒了,梁会跟着倒;而梁倒了,柱还可以不倒的。

可见柱承担的责任比梁大,柱不能先倒。

为了保证柱是在最后失效,我们故意把梁设计成相对薄弱的环节,使其破坏在先,以最大限度减少可能出现的损失。

以下就钢筋混凝土框架结构的主要构件来分别阐述延性设计的理念。

什么是混凝土框架强柱弱梁的概念设计?由于梁截面高度较高,且与现浇楼板组成T形截面构件共同工作,形成强梁弱柱,导致柱子破坏,房屋倒塌。

框架结构的弹塑性分析表明,强震作用下,梁端实际达到的弯矩与其正截面受弯承载力是相等的,柱端实际达到的弯矩也与其偏压下的受弯承载力相等。

这是地震作用效应的一个特点。

因此,所谓“强柱弱梁”指的是:节点处梁端实际受弯承载力和柱端实际受弯承载力之间满足下列不等式:这种概念设计,由于地震的复杂性、楼板的影响和钢筋屈服强度的超强,难以通过精确的计算真正实现。

国外的抗震规范多以设计承载力来衡量或将钢筋抗拉强度乘以超强系数来实现。

《建筑抗震设计规范》的规定,只在一定程度上减缓柱端的屈服。

一般采用适当增大柱端弯矩设计值的方法,其取值体现了抗震等级的差异。

具体的做法第一,柱剪跨比限制。

剪跨比反映了构件截面承受的弯矩与剪力的相对大小。

它是影响柱极限变形能力的主要因素之一,对构件的破坏形态有很重要的影响。

因此柱的剪跨比宜控制在2.0以上。

第二,梁、柱剪压比限制。

当构件的截面尺寸太小或混凝土强度太低时,按抗剪承载力公式计算的箍筋数量会很多,则箍筋在充分发挥作用之前,构件将过早呈现脆性斜压破坏,这时再增加箍筋用量已没有意义。

钢筋混凝土框架结构抗震延性设计要求

钢筋混凝土框架结构抗震延性设计要求

钢筋混凝土框架结构抗震延性设计要求导言框架结构在地震时进入屈服阶段来应对超过地震烈度的抗震设防烈度,当屈服还不能抵消时就会发生塑性变形来吸收和消耗地震能量。

钢筋混凝土框架结构延性的重要性混凝土框架结构抗震实质上就是结构的延性设计。

所谓延性,指的是指构件与结构屈服之后,在其承载能力不下降的前提下,所具备的塑性变形能力,这种能力被称为“延性比”。

提高结构的延性比有助于提升框架的抗震潜能,加强其抗倒塌能力。

设计在延性结构的混凝土框架通过其塑性铰区域发生变形,可以有效吸收和分散地震传对于框架作用力;该区域变形也可以使整体框架刚度得以降低,减弱地震对于结构的作用力。

具有延性结构能够使框架对于承载力要求降低,事实上延性结构对抗突发地震的武器就是它所具有的变形能力。

也就是说,如果钢筋混凝土框架的结构延性不够好,那么就要求框架对于地震具备足够大的承载力。

钢筋混凝土框架结构抗震延性设计延性设计是针对延性结构在钢筋混凝土建筑结构中所起到的与结构本身的承载能力一样不可忽视的作用,而进行的研究尤其对是震区的钢筋混凝土建筑显得更加重要。

倡导延性设计,以加强其抗震能力。

由于钢筋混凝土材料还具脆性,在突遇地震时会发生断裂对居住者的人身安全是一个极大隐患,所以为了最大限度减少这一特点的损害,在设计中更应当重视发挥钢筋的塑性特征,增强其吸收消耗能量的能力,实行延性设计。

根据我国目前对于钢筋混凝土结构设计的要求,在实施混凝土框架延性设计过程中需得遵循以下要求:1.控制塑性铰的位置,“强柱弱梁”框架结构若形成梁铰机构,则塑性铰分布比较均匀,而且梁铰机构的延性要求也比较容易实现。

若形成柱铰机构,则易使整个结构形成机动结构,从而导致整个结构的倒塌。

框架结构设计时应遵循的设计原则是“强柱弱梁”这是为了确保结构的延性,这样就可以确保设计荷载下同一节点上柱端截面抗弯承载力之和大于梁端截面抗弯承载力之和,而且可以使框架结构中柱的抗弯承载力储备足够。

框架结构的延性设计详解

框架结构的延性设计详解

框架结构的延性设计详解框架结构是一种常见的建筑结构形式,具有较好的抗震性能。

而延性设计是指结构在地震作用下能够延长发展破坏,从而提供更多的时间供人员疏散和结构维修。

本文将详细介绍框架结构的延性设计,包括其原理、设计方法和影响因素。

一、延性设计原理1.材料延性:选用延性材料,如钢材和高强度混凝土,以在地震作用下发生拉伸破坏前实现较大的变形。

2.结构布局:采用灵活的结构布局,如变截面和缩颈结构,以集中破坏在可控的位置从而延缓结构整体的破坏。

3.妥善设计连接:合理设计框架结构的连接,选择合适的连接件,如剪力墙、钢筋连接等,以保证结构在地震作用下能够产生延性变形。

二、延性设计方法延性设计方法主要涉及结构的弹塑性分析和设计。

以下是一些常见的延性设计方法:1.能量耗散设计:通过增加结构的耗能能力,将地震能量引导至损伤可控的区域,从而减轻结构的破坏。

常见的能量耗散器件包括剪切墙、摩擦阻尼器和拉索系统等。

2.塑性设计:通过设计结构的形状和材料的屈服点,使结构能够在超过弹性极限后仍保持良好的延性。

这需要仔细考虑结构的刚度和强度,以保证结构在地震作用下能够产生合理的延性变形。

3.控制位移法:通过控制结构的位移,从而控制结构的变形和破坏。

可以采用位移控制系统,如配筋、张拉杆和拉索,来限制结构的最大变形,以保证结构的延性。

三、影响延性设计的因素1.设计地震参数:结构的设计地震参数会直接影响结构的设计要求和延性能力。

通常,较高的地震参数要求会导致更大的延性设计要求。

2.材料性能:结构选择的材料的延性性能也是影响设计的重要因素。

通常,高展性的材料,如高强度钢材和高性能混凝土,可以提供更好的延性能力。

3.结构体系:不同的结构体系对延性设计有不同的要求。

例如,刚性框架结构需要增加耗能措施,而一些新兴的框架结构体系,如剪力墙和框剪结构可以提供较好的延性性能。

4.设计哲学:延性设计需要在设计过程中采用合适的设计哲学,包括性能设计和位移控制设计。

钢筋混凝土框架结构的延性设计分析

钢筋混凝土框架结构的延性设计分析

钢筋混凝土框架结构的延性设计分析导言随着房屋建筑层数的增高,在地震设防地区的结构延性设计至关重要。

本文分析了影响抗震结构延性设计的主要因素及其实现延性设计的机理与方法。

结构的延性在抗震设计中的重要性及概念在我国的高层建筑中,钢筋混凝土结构应用最为普遍,其中钢筋混凝土框架结构是最常用的结构形式。

因为其具有足够的强度、良好的延性和较强的整体性,目前广泛应用于地震设防地区。

钢筋混凝土框架结构具有良好的抗震性能,然而未经合理设计的框架结构会在地震作用下产生较严重的震害。

结构抗震的本质就是延性,延性是指结构或构件在承载能力没有显著下降的情况下承受变形的能力。

破坏前无明显预兆,力-变形曲线达到最大承载力后突然下跌形成明显尖峰的构件(结构)称为脆性构件(结构)。

破坏前有明显预兆,力-变形曲线在最大承载力附近存在明显的平台,能承受较大变形而承载力无显著降低的构件(结构)称为延性构件(结构)。

1.结构抗震的延性设计大量的实验研究和地震实例表明,在地震(尤其是罕遇地震)作用下,建筑结构大都会进入弹塑性状态,出现弹塑性变形。

延性设计,即使结构在构件屈服之后仍具有足够的变形能力,依靠结构的弹塑性变形来消耗地震能量,保证屈服部分发生延性破坏,避免结构发生脆性破坏和整个结构的倒塌。

这种设防思想在新的建筑抗震设计规范中具体化为“小震”(在房屋服役期内最可能遭遇的强烈地震或常遇地震)不坏,“中震”(基本烈度地震)可修和“大震”(罕遇地震)不倒。

世界上其他多地震国家的抗震设计规范,也都采用了类似的设计思想。

2.影响抗震结构延性设计的主要因素(1)钢筋的配筋率增加纵向钢筋配筋率,不仅可以提高结构构件的抵抗弯矩;同时也可以提高塑性铰的转动能力,进而增加结构的延性。

(2)箍筋配筋率由实验研究可知,位移延性随着配箍率的增加而提高。

箍筋间距越小,配箍率越大,延性的增长也越显著。

增加配箍率,就是增加对混凝土横向变形的约束,提高混凝土的抗压强度。

论延性钢筋混凝土框架结构的设计要点

论延性钢筋混凝土框架结构的设计要点

论延性钢筋混凝土框架结构的设计要点摘要:本文主要对钢筋混凝土结构和构件延性进行了分析,介绍了影响钢筋混凝土结构和构件延性的因素,但是在具体工程的设计中,因为地震的发生具有很大的不确性,所以对框架结构抗震来说不能仅靠计算解决,概念设计比计算设计还要重要。

钢筋混凝土框架结构的各类构件应具有必要的强度和刚度,并具有良好的延性性能,避免构件的脆性破坏。

关键词:钢筋混凝土、延性、影响因素。

延性作用概述。

混凝土结构或构件的破坏可分为脆性破坏和延性破坏两种,脆性破坏是指结构或构件达到最大承载力后突然丧失承载能力,在没有预兆的情况下发生的破坏,延性破坏是指结构或构件承载力没有显著降低的情况下,经历很大的非线性变形后所发生的破坏,在破坏前给人以警示。

延性好的结构抗震性能也好,在大震下即使结构构件达到屈服,仍然可以通过屈服截面的塑性变形来消耗地震能,避免发生脆性破坏。

在大震后的余震发生时,因为塑性铰的出现,结构的刚度明显变小,周期变长,所受地震力会明显减小,震害减轻。

地震过后结构的修复也较容易。

因此在地震区结构必须具备一定的延性,并且设防烈度越高、结构高度越大,对延性的要求也越高。

影响结构延性的主要因素框架结构是由梁、板、柱以及节点这四部分组成的,其中梁、柱以及节点的延性决定了整个框架结构的延性,因此只要保证梁、柱和节点的延性也就保证了框架结构的延性,从而也就保证了框架结构的抗震能力。

影响梁延性的主要因素:梁是框架结构中的主要受力构件之一,在抗震设计中要求塑性铰首先出现在梁端且又不能发生剪切破坏,同时还要防止由于梁筋屈服渗入节点而影响节点核芯区的性能。

因此要注重强柱弱梁的设计原则,强柱弱梁设计原则实质是控制塑性铰在框架中出现的位置,塑性铰出现在梁端可以使结构在破坏前有较大的变形,吸收和耗散较多的地震能量,因而具有较好的抗震性能。

同样还要注重强剪弱弯的设计原则,强剪弱弯设计原则实质是控制梁的破坏形态,使其发生延性较好的弯曲破坏,避免脆性的剪切破坏。

延性框架及框架构件设计

延性框架及框架构件设计

课程学习 >> 第二十四章 >>框架梁的截面高度可按()确定,为梁计算跨度,梁净跨与截面高度之比一般不小——内力组合得到的梁截面弯矩设计值;——根据材料强度、钢筋面积等计算的正截面抗弯承载力;——平衡配筋时受压区相对高度,当混凝土强度等级不超过式中为抗弯梁承载力抗震调整系数,见表示:愈大的梁,在破坏前的塑性变形区段愈短。

定义为曲率延性比,图试验得到的关系。

(a)关系;(b) 关系压钢筋,形成双筋配筋截面。

各种抗震等级下的跨中截面都只要求不出现超筋,即。

梁纵向钢筋最小配筋百分率(——剪力设计值;、——分别为梁截面宽度与有效高度;、——混凝土轴心抗拉强度设计值与钢箍抗拉强度设计值;——钢箍间距;——在同一截面中箍筋的截面面积;——抗剪时的承载力抗震调整系数,见表、——内力组合得到的框架梁左、右端的弯矩设计值。

——竖向荷载作用下按简支梁计算得到的剪力。

验可知,箍筋加密区长度不得小于(一级抗震)或(式中,为剪力设计值,为混凝土强度影响系数,当混凝土强度等级不大于强度设计值的比值,即。

试验表明,柱轴力——矩形应力图形系数,按混凝土结构设计规范取值;——偏压构件考虑挠曲影响的轴向力偏心距增大系数,按混凝土结构设计规范规定计算。

——同一节点上、下柱截面弯矩设计值之和;——同一节点左、右梁端截面弯矩设计值之和,在图——柱剪力设计值;、——分别为柱面宽度和有效高度;——柱的剪跨比,,当时取,当时取;——与剪力设计值相应的柱轴向压力。

当时,取。

、——分别为由内力组合得到的最不利柱上、下端弯矩设计值;——柱净高。

()()时为长柱,按强剪弱弯要求计算的箍筋只需配在柱端塑性铰区,称为箍筋加密区。

非加密区的钢箍按内力组合得到的最大剪力计算。

当时为短柱。

按强剪弱弯要求计算的箍筋应在全高中配置.即柱全高都是箍筋加密区。

由于剪跨比很小的柱,如时,多数会出现脆性的剪切斜拉破坏,抗震性能不好。

设计框有地震作用组合时式中,和分别是混凝土轴心抗压强度设计值和箍筋抗拉强度设计值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

框架结构的延性设计详解
1.框架梁的延性
影响框架梁延性(Ductility)的因素主要包括:纵筋配筋率(Reinforcement ratio)、剪压比(Shear-compression ratio)、跨高比(Span-depth ratio)、配箍率(Stirrup ratio).
(1)纵筋配筋率(Reinforcement ratio).
梁的延性(Ductility)指标可以用截面的弯矩--曲率曲线来衡量.因为截面曲率(Sectional curvature)和截面受压区高度成反比,因此构件截面的变形能力也可以用截面达到极限状态时的相对受压区高度(Relative height of compression zone)来表示.
下图为单筋矩形截面梁的计算简图,由图及上式可知,纵筋配筋率越大,相对受压区高度越大,截面曲率越小,截面变形能力越小.
下图为某双筋矩形截面梁受弯时弯矩与曲率的关系,由图可以看出,当纵筋配筋率(Reinforcement ratio)增加时,强度可以提高,但是延性会变差.当受压区高度为0.25至0.35范围时,梁的位移延性系数可达3~4.因此,抗震规范中对于梁的纵筋配置,有如此规定:“梁端计入受压钢筋的混凝土受压区高度和有效高度之比,一级不应大0.25,二、三级不应大于0.35”;“梁端纵向受拉钢筋的配筋率不宜大于2.5%”.
(2)剪压比(Shear-compression ratio)
剪压比(Shear-compression ratio)指的是梁载面“名义剪应力V/(bh0)”与混凝土轴心抗压强度(Axial compressive strength)设计值fc的比值.试验表明:梁塑性铰区的截面剪压比对梁的延性、强度、刚度有显著的影响.剪压比越大,梁的强度、刚度越差,当剪压比大于0.15时,增加箍筋(Stirrup)配置量已经不能产生良好的效果了.因此,在结构设计中应该注意梁的剪压比不能过大.如抗震设计规范规定,对于跨高比大于2.5的梁,组合的剪力设计值应该满足如下条件:
由上述公式可以看出,对于剪压比的设计条件,其实质是控制梁的截面不能过小.如果剪压比不满足要求时,需要加大梁截面.
(3)跨高比(Span-depth ratio)
跨高比指的是梁净跨与梁高比.试验表明:梁的跨高比对梁的抗震性能(延性)有明显的影响.当梁的跨高比小于2时,剪切变形的比重加大,极易发生以斜裂缝为主要特征的破坏,梁的延性降低.
以下图所示的梁,可以明显的看出,梁的变形主要是弯曲变形.
但是,如果跨度不变,随着梁的高度增加,梁的变形特性将会发生改变.如下图所示,对于这样的梁,还能“弯”吗?它的变形主要是剪切变形.
因此,抗震规范中规定“梁的跨高比不宜小于4”.这一点,给我们设计的提示是,当梁的设计内力较大时,若截面承载力不满足要求,需要加大截面面积时,宜首先考虑加大梁的宽度,而不是高度.
(4)配箍率(Stirrup ratio)
在塑性铰(Plastic Hinge)区配置足够的封闭箍筋,对提高塑性铰的转动能力是十分有效的(在满足剪压比的前提下).配置足够的箍筋(Stirrup),对防止梁受压纵筋过早压屈、提高塑性铰区内混凝土的极限压应变(ultimate compression strain)以及防止斜裂缝的开展都有很好的作用,因此保证一定的配箍率有利于充分发挥塑性铰的变形和耗能能力.在工程设计中,在框架梁的塑性铰区范围内,箍筋(Stirrup)必须加密.
2.框架柱的延性
影响框架柱延性的因素主要包括:剪跨比、轴压比、配箍率及纵筋配筋率.
(1)剪跨比(Shear-span Ratio)
剪跨比是反映柱截面弯矩和剪力比值的一个参数,表示为M/(V·h0)(h0为柱截面高度),它所表达的是截面上弯矩和剪力的比值.如果截面上弯矩越大,那么构件将会是以受弯为主,破坏形式将是延性,有利于抗震;反之,如是截面剪力过大,截面的破坏形式将是脆性剪切破坏.
试验表明,剪跨比大于2的柱,为长柱,柱的破坏形式为压弯型,延性较好;当剪跨比在[1.5,2.0]之间时,为短柱,柱破坏形式以剪切变形为主,有一定的延性;当剪跨比小于1.5时,为极短柱,柱的破坏为剪切破坏,延性极差,一般设计中就避免.
那么,这个参数为何叫做“剪跨比”呢?哪能体现出“跨”的概念呢?看下图就可以理解了.图中所示为一根简支梁,在两个集中荷载作用下的弯矩图和剪力图.以左边集中荷载作用处的位置为例,该截面的剪力V=P,弯矩M=P·a.那么,该截面处的剪跨比为M/(V·h0)=(P·a)/(P·h0)=(P·a)/(P·h0)=a/h0,可见,在这种受力情况下,剪跨比可以表达为荷载作用点和支座之间的距离(a)与梁的截面高度(h0),而荷载作用点和支座之间的距离(a)称之为“剪跨”,这就是剪跨比的来历.
抗震设计规范中规定,剪跨比大于2的柱和抗震墙,需满足下
式:
剪跨比不大于2的柱和抗震墙、部分框支抗震墙结构的框支柱和框支梁、以及落地抗震墙的底部加强部位:
(2)轴压比(Axial-compression Ratio)
轴压比是结构设计中另一个非常关心的参数.这里的“轴”指的是柱子的轴力,“压”指的是柱子的混凝土的抗压强度,轴压比的计算公式为N/(fc·b·h0),这里N是柱子的轴力,fc·为混凝土的抗压强度,b和h0分别为截面的宽度和高度.下图为位移延性比与轴压比的曲线,可以看出,随着柱子的轴压比增加,柱子的延性变差.
关于柱子箍筋的配置要求,请参考抗震设计规范6.3.9条文内容.
(4)纵筋配筋率
试验研究表明:柱截面在纵筋发生屈服后的转动能力,主要受纵向钢筋配筋率的影响,且大致随纵筋配筋率的增大而线性的提高.因此,为避免柱过早进入屈服阶段,保证柱的延性,柱的全部纵筋的配筋率也不能过小.
关于柱子纵筋配筋率的要求,请参考抗震设计规范6.3.7和
6.3.8条文内容.。

相关文档
最新文档