电力系统的中性点运行方式及低压配电系统的接地型式资料

合集下载

低压配电网有三种中性点运行方式IT系统、TT系统和TN系统

低压配电网有三种中性点运行方式IT系统、TT系统和TN系统

低压配电网有三种中性点运行方式IT系统、TT系统和TN系统低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。

其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。

中性点接地系统有三种:IT系统,TT系统和TN系统。

这三种接地分别为:TT系统:电源中性点直接接地IT系统:电源中性点不直接接地TN系统:电源中性点直接接地(与TT系统的区别是该接地线与电气设备的金属外壳相连接)国际电工委员会(IEC)对系统接地的文字符号的意义规定如下:第一个字母表示电力系统的对地关系:T--一点直接接地;I--所有带电部分与地绝缘,或一点经阻抗接地。

第二个字母表示装置的外露可导电部分的对地关系:T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关;N--外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。

后面还有字母时,这些字母表示中性线与保护线的组合:S--中性线和保护线是分开的;O--中性线和保护线是合一的。

(1)IT系统:IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。

即:过去称三相三线制供电系统的保护接地。

其工作原理是:若设备外壳没有接地,在发生单相碰壳故障时,设备外壳带上了相电压,若此时人触摸外壳,就会有相当危险的电流流经人身与电网和大地之间的分布电容所构成的回路。

而设备的金属外壳有了保护接地后,由于人体电阻远比接地装置的接地电阻大,在发生单相碰壳时,大部分的接地电流被接地装置分流,流经人体的电流很小,从而对人身安全起了保护作用。

IT系统适用于环境条件不良,易发生单相接地故障的场所,以及易燃、易爆的场所。

(2)TT系统:TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。

接地系统培训课件

接地系统培训课件
即通过接地中性点形成单相短路 1 。单相短路电流 比线路的负荷电
流大得多,因此在系统发生单相短路时保护装置应动作与跳闸,切除短
路故障,使系统的其他部分恢复正常运行。
1.电力系统中性点运行方式
➢ 中性点直接接地系统单相短路后
中性点直接接地的系统发生单相接地时,其他两完好相的对地电压不会升
高,这与上述中性点非直接接地的系统不同。因此,凡中性点直接接地的系统
由于ሶ = 3.
= 30
(2)
即一相接地的电容电流为正常运行时每相对地电容电流的3
倍。
1.电力系统中性点运行方式
由于线路对地的电容C不好准确确定,因此0 和 也难以根据
C来精确计算。通常采用下列经验公式来确定中性点不接地系统
的单相接地电容电流,即


+35

= ℎ
危险程度 ,这就必须采取安全措施。
3.接地保护与接零保护的区别
➢ 保护接地原理
保护接地就是把电气设
备的金属外壳用足够粗的金
属导线与大地可靠地连接起
现谐振过电压了。
1.电力系统中性点运行方式
➢ 中性点经消弧线圈接地注意事项:
在中性点经消弧线圈接地的三相系统中,与中性点不接地
的系统一样,允许发生单相接地故障时短时(一般规定为2h)
继续运行,但保护装置要及时发出接地报警信号。运行值班人
员应抓紧时间茶查找和处理故障;在暂时无法消除故障时,应
设法将负荷特别是重要负荷转移到备用线路上去。如果发生单
大于10A时),则应采用中性点经消弧线圈接地的运行方式;
我国110kV及以上的系统,则都采用中性点直接接地的运行方
式。
1.电力系统中性点运行方式

电力系统的中性点运行方式有几种?各种接线方式是什么?

电力系统的中性点运行方式有几种?各种接线方式是什么?

电力系统的中性点运行方式在三相电力系统中,发电机和变压器的中性点有三种运行方式:即中性点不接地系统;中性点经阻抗接地系统;中性点直接接地系统。

前两种合称小接地电流系统,后一种称大接地电流系统。

1. 中性点不接地的三相系统中性点不接地的电力系统2. 中性点经消弧线圈接地系统中性点经消弧线圈接地的电力系统3. 中性点直接接地系统中性点直接接地的电力系统。

当发生单相接地时,故障相由接地点通过大地形成单相短路,单相短路电流很大,故又称其为大接地电流系统。

在低压配电系统中,我国广泛采用中性点直接接地的运行方式,从系统中引出中性线(N)、保护线(PE)或保护中性线(PEN)。

低压配电系统按保护接地形式分为TN系统、TT系统和IT系统。

其中TN系统又分为:TN—C系统、TN—S系统和TN—C—S系统。

《供配电系统设计规范》(GB 50052—2009)中规定:TN系统—在此系统内,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过PE线与该点连接。

TN—S系统—在TN系统中,整个系统的中性线与保护线是分开的。

TN—C—S系统—在TN 系统中,系统中有一部分中性线与保护线是合一的。

TN—C系统—在TN系统中,整个系统的中性线与保护线是合一的。

在TN—C、TN—S和TN—C—S系统中,为确保PE线或PEN线安全可靠,除电源中性点直接接地外,对PE线和PEN线还必须设置重复接地。

低压配电TN系统如图9-6所示。

三、电力系统的中性点运行方式1.中性点不接地的三相系统2.中性点经消弧线圈接地系统3.中性点直接接地系统4.低压配电系统的接地形式a.TN—C系统b.TN—S系统c. TN—C—S系统。

低压配电系统三种形式

低压配电系统三种形式

根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。

其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。

第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。

TN系统:电源变压器中性点接地,设备外露部分与中性线相连。

TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。

IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳采用保护接地。

1、TN系统电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S系统、TN—C—S系统。

下面分别进行介绍。

1.1、TN—C系统其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。

(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。

TN—C系统一般采用零序电流保护;(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;(3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。

由上可知,TN-C系统存在以下缺陷:(1)、当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。

当三相负载严重不平衡时,触及零线可能导致触电事故。

(2)、通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。

(3)、对接有二极漏电保护开关的单相用电设备,如用于TN-C系统中其金属外壳的保护零线,严禁与该电路的工作零线相连接,也不允许接在漏电保护开关前面的PEN线上,但在使用中极易发生误接。

低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注安工程师考点)

低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注安工程师考点)

低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注册安全工程师考点)根据现行的国家相关标准,低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。

(1)第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。

I-电源变压器中性点不接地,或通过高阻抗接地。

(2)第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。

N-电气装置的外露可导电部分与电源端接地点有直接电气连接。

分别对IT系统、TT系统、TN系统进行全面剖析。

一、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。

IT系统可以有中性线,但IEC强烈建议不设置中性线。

因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。

IT系统接线图如图1所示。

图1 IT系统接线图IT系统特点IT系统发生第一次接地故障时,接地故障电流仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V 负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。

使用场所:供电连续性要求较高,如应急电源、医院手术室等。

IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。

一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。

地下矿井内供电条件比较差,电缆易受潮。

运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。

但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。

在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。

只有在供电距离不太长时才比较安全。

供配电系统基本认识

供配电系统基本认识
供配电系统初步认识
[能力目标]
了解发电厂、电力系统基本知识; 熟悉电能的生产过程; 掌握电力系统中性点的运行方式; 掌握低压配电系统的接地形式。
供配电系统…
电网
电站 矿山
电站 水坝
电站 油井
一、发电厂、电力系统基本知识
该系统由5个环节组成:发电、输电、变电、配电、用电。
1、发电厂的类型及电能的生产
(2)配电所的任务 接受电能、分配电能。
(3)变电所的任务 接受电能、变换电压、
分配电能。
二、电力系统中性点运行方式
电力系统中性点:系统 中发电机或变压器的中 性点。
1、中性点不接地系统
特点: (1)发生单相接地时,其余两
相对地电压升高√3倍 (2)允许短时运行,但应装设
单相接地保护或绝缘监视装置。 当发生单相接地故障时发出报警 信号或指示,提醒值班人员采取 措施。
特点: (1)发生单相接地故障时,
其余两相电压不会升高。 对绝缘要求降低。
(2)单相短路故障时,短 路电流很大,可动作于跳 闸。 亦称大电流接地系统。
三、低压配电系统的接地形式及应用
1、N线、PE线、PEN线功能
(1)N线(中性线)
A、 用来接额定电压为相电压的单相设备 B、用来传导三相系统中不平衡电流的单相电流 C、减小负荷性电位偏移
缺点:开停机复杂、有放射性污 染。
如: 浙江秦山核电站 (2*60万kw) 广东大亚湾核电站(2*90万kw) 阳江核电站 (2*90万kw)
(4)其它类型电厂
风能、 太阳能、 潮汐能、 地热能
2、电力网
由各类升压变电所、输电线路、降压变电所组 成的电能传输和分配的网络。
电网电压等级:
(1)火力发电厂

低压配电系统接地

低压配电系统接地

十二 TN-S系统
L1 L2 L3 N
PE
角负荷及单相负荷
星负荷
单相负荷
插座
TN-S优点: 1.在整个TN-S系统内,PE线不带电位。它只在发生接地故障时通过故障电流。 2.正常时PE线不通过负荷电流,适用于数据处理和精密电子仪器设备,也可用于爆炸危险场合。 3.民用建筑中,家用电器大都有单独接地触点的插头,采用TN-S系统,既方便,又安全. 4.可采用剩余电流保护装置RCD对人身安全进行保护,防止火灾危险。
五.接地电阻值
我国电气规范规定的接地电阻值,在IEC标准很少有这样的规定。因接大地是以大地电位为参考电位,必须考虑接地 极上产生的电位差,50Hz工频的频率低,为简化就只对接地极的工频接地电阻而非接地阻抗提出了要求。由于用电技术的 发展,因接大地在高频时电抗过大常不能满足电气安全和功能上的要求。为此不得不采用以替代大地的导体相连接,以导 体电位为参考电位的另一种接地方式,这就是等电位联结系统。这一非接大地的接地,由于不存在接大地的高接地电阻和 高接地电抗产生的大幅值工频或高频的电位差,电气装置的安全性和功能性得以大大提高。IEC没必要规定这些与电气应用 无关的接地电阻值。
十三.TN-C-S
TN-C-S优点: 1.适用于工矿企业供电,前面TN-C系统可满足固定设备的需要,后端TN-S系统可满足对电位敏感的电子
设备的需要。 2.民用建筑中,电源线路采用TN-C,进入建筑物后,采用TN-S系统,可确保TN-S系统的优点。
重要:PEN线分开后,不能再合并 。
十四.TT
TT优点: 1.电气设备的外壳与电源的接地无电气联系,适用于对电位敏感的数据处理设备和精密电子设备。 2.故障时对地故障电压不会蔓延。 3.接地短路时,由于受电流接地电阻和电气设备接地电阻的限制,短路电流较小,可减小危险。

低压配电系统接地方式简介

低压配电系统接地方式简介

低压配电系统接地方式简介蒋先进我国220/380V低压配电系统,广泛采用中性点直接接地的运行方式,而且引出有中性线(N)、保护线(PE)或保护中性线(PEN)。

中性线(N)的功能:一是用来接用额定电压为系统相电压的单相用电设备;二是用来传导三相系统中的不平衡电流和单相电流;三是减小负荷中性点的电位偏移。

保护线(PE)的功能:它是用来保障人身安全、防止发生触电事故用的接地线。

系统中所有设备的外露可导电部分(指正常不带电压但故障情况下可能带电压的易被触及的导电部分,例如设备的金属外壳、金属构架等)通过保护线接地,可在设备发生接地故障时减少触电危险。

保护中性线(PEN)的功能:它兼有中性(N)和保护线(PE)的功能。

这种保护中性线在我国通称为“零线”,俗称“地线”。

低压配电系统按接地形式,分为TN系统、TT系统和IT系统。

一、TN系统系统中性点直接接地,所有设备的外露可导电部分均接公共的保护线(PE)或公共的保护中性线(PEN)。

这种接公共PE线或PEN线的方式,通称为“接零”。

TN系统又为TN-C系统、TN-S系统和TN-C-S系统。

1、TN-C系统(图1)其中的N线与PE线全部合为一根PEN线。

PEN线中可有电流通过,因此对某接PEN线的设备产生电磁干扰。

如果PEN线断线,可使接PEN线的外露可导电部分带电而造成人身触电危险。

该系统由于PE线与N线合为一根PEN线,因而节约了有色金属和投资,较为经济。

该系统在发生单相接地故障时,线路的保护装置动作,将切除故障线路。

TN-C系统在我国低压配电系统中应用最为普遍,但不适于对安全和抗电磁干扰要求高的场所。

图12、TN-S系统(图2)其中的N线与PE线全部分开,设备的外露可导电部分均接PE线。

由于PE线中无电流通过,因此设备之间不会产生电磁干扰。

PE线断线时,正常情况下不会使接PE线的设备外露可导电部分带电;但在有设备发生一相接壳故障时,将使其它所有接PE 线的设备外露可导电部分带电,而造成人生触电危险。

供配电复习资料

供配电复习资料

供配电复习资料1、电力系统中性点运行方式:电力系统中作供电电源的发电机和变压器的中性点接地方式。

(电源中性点不接地、中性点经阻抗(消弧线圈或电阻)接地、中性点直接接地)2、计算负荷:根据用电设备容量统计计算求出的,用来按发热条件选择供配电系统中各元件的负荷值。

3、尖峰电流:指持续时间1~2s的短时最大负荷电流,主要是用来选择熔断器和低压断路器、整定继电保护装置及检验电动机自起动条件等。

4、无限大容量电力系统:无限大容量电力系统,指其容量相对用户供配电系统大得多的电力系统,当用户供电系统的负荷变动甚至发生短路时,电力系统变电所馈电母线上的电压基本维持不变。

如果电力系统的电源总阻抗不超过短路回路总阻抗的5%~10%,或电力系统容量超过用户供电系统容量50倍时,可将电力系统视为无限大系统。

5、最大、最小运行方式:使电力系统短路阻抗最小、短路电流最大的运行方式为最大运行方式,使电力系统短路阻抗最大,短路电流最小的运行方式为最小运行方式。

6、一次电路、一次设备:供配电系统中担负输送、变换和分配电能任务的电路称为主电路,也叫一次电路;一次电路中的所有电气设备称为一次设备。

7、二次电路、二次设备:用来控制、指示、监测和保护一次电路运行的电路,称为二次电路。

二次电路中的所有电气设备称为二次设备。

8、继电器:继电器是一种在其输入的物理量(电气量或非电气量)达到规定值时,其电气量输出电路被接通(导通)或分断(阻断、关断)的自动电器。

9、接触电压和跨步电压:接触电压是指设备的绝缘损坏时,在身体可同时触及的两部分之间出现的电位差。

跨步电压是指人在接地故障点附近或有电流流过的大地上行走时,加于两脚之间的电压。

1、什么是电力系统的中性点?它有哪几种运行方式?各有什么优缺点?说明各自适用范围。

答:电力系统的中性点是指作为供电电源的发电机和变压器的中性点。

电力系统的中性点有三种运行方式:①电源中性点不接地;②中性点经阻抗(消弧线圈或电阻)接地;③中性点直接接地。

低压系统接地运行方式PPT课件

低压系统接地运行方式PPT课件
1
低压配电系统接地形式
1、中性线(N线)功能:一、用来接额定电压为相电压的单相用电设备 二、用来传导三相系统中的不平衡电流和单相电流 三、减小负荷中性点的电位移
2、保护线(PE线)功能:用来保障人身安全、防止发生触电事故用的接地线。 系统中所有设备的外露可导电部分(指正常不带电压 但故障情况下可能带电的易被触及的导电部分)通过
7
低压配电系统接地形式
TN-S 方式供电系统 工作零线 N 和专用保护线 PE 严格分开的供电系统 1 )系统正常运行时,专用保护线上没有电流,只是工 作零线上有不平衡电流。 PE 线对地没有电压,所以电 气设备金属外壳接零保护是接在专用的保护线 PE 上, 安全可靠。 2 )工作零线只用作单相照明负载回路。 3 )专用保护线 PE 不许断线,也不许进入漏电开关作 工作零线。 4 )干线上使用漏电保护器,漏电保护器下不得有重复 接地,而 PE 线有重复接地,但是不经过漏电保护器, 所以 TN-S 系统供电干线上也可以安装漏电保护器。 5 ) TN-S 方式供电系统安全可靠,适用于工业与民用 建筑等低压供电系统。在工程施工前的“三通一平” (电通、水通、路通和地平——必须采用 TN-S 方式供 电系统。
8
低压配电系统接地形式
TN-C-S 方式供电系统 在施工临时用电中,如果前部分是(没有220V负载的) TN-C 方式供电, 而施工规范规定施工现场必须采用 TN-S 方式供电系统,则可以在系统后 部分现场总配电箱分出 PE 线 1 )工作零线 N 与专用保护线 PE 相联通,总开关箱后线路不平衡电流比 较大时,电气设备的接零保护受到零线电位的影响。总开关箱后面 PE 线 上没有电流,即该段导线上没有电压降,因此, TN-C-S 系统可以降低电 气设备外壳对地的电压,然而又不能完全消除这个电压,这个电压的大 小取决于 N 线的负载不平衡电流的大小及 N线在总开关箱前线路的长度。 负载不平衡电流越大, N线又很长时,设备外壳对地电压偏移就越大。 所以要求负载不平衡电流不能太大,而且在 PE 线上应作重复接地。 2 ) PE 线在任何情况下都不能进入漏电保护器,因为线路末端的漏电保 护器动作会使前级漏电保护器跳闸造成大范围停电,规范规定:有接零 保护的零线不得串接任何开关和熔断器。 3 )对 PE 线除了在总箱处必须和 N 线相接以外,其他各分箱处均不得把 N 线和 PE 线相联, PE 线上不许安装开关和熔断器,且联接必须牢靠。 通过上述分析, TN-C-S 供电系统是在 TN-C 系统上临时变通的作法。当三 相电力变压器工作接地情况良好、三相负载比较平衡时, TN-C-S 系统在 施工用电实践中效果还是可行的。但是,在三相负载不平衡、施工工地 有专用的电力变压器时,必须采用 TN-S 方式供电系统。

低压配电系统接地形式

低压配电系统接地形式

低压配电系统接地形式工作接地:在电力系统中,为保证电气设备运行的可靠性将电路中的某一点接地。

保护接地:在电源中性点不接地的系统中,为防止电气设备的金属外壳意外带电而造成触电事故,为防止因绝缘破坏而发生触电危险,将与电气设备带电部分相绝缘的金属外壳或架构与接地体之间做良好的连接。

保护接零:在中性点直接接地的低压电网中,通过保护零线将电力设备的金属外壳与电源端的接地中性点连接。

重复接地:在变压器低压侧中性点接地的配电系统中,将零线上一处或多处通过接地装置与大地再次连接。

在低压配电系统中,为了避免人的触电危险和限制事故范围,除了系统侧工作接地外,还要考虑负荷侧的保护接地。

按照国际电工委员会IEC和国家标准的规定,低压配电系统常见的接地形式有: 一、TT 系统TT系统的电源中性点直接接地,用电设备的金属外壳直接接地,且与电源中性点的接地无关。

第一个“T”表示配电电网接地,第二个大写英文字母“T”表示电气设备金属外壳接地。

TT系统是供电部门规定城市公用低压电网向用户供电的接地系统,广泛应用于城镇、农村居民区、工业企业和由公用变压器供电的民用建筑中。

二、IT系统IT系统是中性点不接地,系统中所有设备的外露可导电部分经各自的PE线分别接地。

“I”表示配电网不接地或经高阻抗接地,“T”表示电气设备金属外壳接地。

IT 系统适用于环境条件不良,易发生单项接地故障的场所,以及易燃、易爆的场所,如医院、煤矿、化工、纺织等。

IT系统必须装设绝缘监视及接地故障报警或显示装置。

三、TN系统TN系统是三相四线制配电网低压中性点直接接地,电气设备金属外壳采取接零措施的系统。

“T”表示配电网中性点直接接地,“N”表示电气设备在正常情况下不带电的金属部分与配电网中性点之间有金属性的连接,即与配电网保护零线(保护导体)紧密连接。

TN系统按照中性点(N)与保护线(PE)组合的情况,又分为3中形式:TN-C系统是三相四线制,四根导线颜色分为黄L1、绿L2、红L3、黄绿线PEN。

低压配电系统的接地方式TTTNIT系统

低压配电系统的接地方式TTTNIT系统

(2)TN-S系统
TN-S系统中性线N与TT系统相同。与 TT系统不同的是,用电设备外露可 导电部分通过PE线连接到电源中性 点,与系统中性点共用接地体,而 不是连接到自己专用的接地体,中 N 性线(N线)和保护线(PE线)是分开的 。TN-S系统的最大特征是N线与PE 线在系统中性点分开后,不能再有 任何电气连接,这一条件一旦破坏 ,TN-S系统便不再成立。
(3)TN-C-S系统
TN-C-S系统是,TN-C系统和TN-S系统的结合形式,在TN-C-S系统中,从电源出来的 那一段采用TN-C系统,因为在这一段中无用电设备,只起电能的传输作用,到用电 负荷附近某一点处,将EN线分开形成单独的N线和PE线。从这一点开始,系统相当 于TN-S系统。
配电箱

接地,但是不经过漏电保护器,所以 TN-S 系统供电干线上也可以安装漏电 保护器。 (5)TN-S 方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统 。 由于传统习惯的影响,现在还经常将TN-S系统称为三相五线制系统,严格地 讲这一称呼是不正确的。按IEC标准,所谓“×相×线”系统的提法,是另外 一种含义,它是指低压配电系统按导体分类的形式。所谓的“×相”是指电 源的相数,而“×线”是指正常工作时通过电流的导体根数,包括相线和中 性线,但不包括PE线。按照这一定义,TN-S系统实际上是“三相四线制”系 统或“单相二线制”系统。
(2)PE 线在任何情况下都不能进入漏电保护器,因为线路末端的漏电 保护器动作会使前级漏电保护器跳闸造成大范围停电。
(3)对 PE 线除了在总箱处必须和 N 线相接以外,其他各分箱处均不得 把 N 线和 PE 线相联, PE 线上不许安装开关和熔断器。 实际上,TN-C-S 供电系统是在 TN-C 系统上临时变通的作法。当三相 电力变压器工作接地情况良好、三相负载比较平衡时, TN-C-S 系统 在施工用电实践中效果还是可行的。但是,在三相负载不平衡、建筑 施工工地有专用的电力变压器时,必须采用 TN-S 方式供电系统。

第四讲电力系统中性点

第四讲电力系统中性点
1/2)。

供电所人员接到调度员通知后,要将高压缺相与非金
属性接地区分开来,通过查询末端用户上的电压是否平衡
来判断是高压缺相还是非金属性接地。断线用户只有两相 电,接地用户负荷电压变化不明显。
配电设备运行维护交流资料
3、 中性点经消弧线圈接地方式
利用消弧线圈的电感电流对接地电容 电流进行补偿,使通过故障点的电流 减小到能自行熄弧范围。利用对消弧 线圈无载分接开关的操作,使其在一 定范围内达到过补偿运行,从而实现 减小接地电流的目的。使电网持续运 行时间延长,相对提高了供电可靠性。 此方式也是小接地电流系统。 在各级电压网络中,当单相接地故障时,通过故障点总的电容电 流超过下列数值时,必须尽快安装消弧线圈: ①对3kV~6kV电网,故障点总电容电流超过30A; ②对10kV电网,故障点总电容电流超过20A; ③对22kV~66kV电网,故障点总电容电流超过10A。
配电设备运行维护交流资料
【案例一】

2009年6月17日晚上,富阳新登镇城河西路一村民家发 生了悲惨一幕:53岁的村民江银凤在洗澡时,不慎触电倒
地,丈夫汪永康发现后赶紧伸手去扶,结果也被电无情地
夺走了生命。 鉴定结论:触电事故原因发生在一个临时 插座上。江银凤把电源插头插在浴室窗外一只临时活动的 电源插座上,插座既没有接地线,也没有漏电保护装置, 存在很大安全隐患。要命的是电源插座内有一段20毫米长 的外来铜导线!使电源的火线误搭到热水器插头的接地端 上导致漏电,成了事故发生的直接原因。
配电设备运行维护交流资料
4、低ቤተ መጻሕፍቲ ባይዱ三相负荷不平衡的危害及对策





三相负荷不平衡,六个方面危害生。 配变损耗显著增,出力减小容下行。 各相电压不对称,零序增大温度升。 电机效率下降多,线路损耗猛的增。 为保负荷三相平,四个方面细调整。 三组单相三相引,三相单相尽量平。 定期测量流平衡,五分之一得调整。 单相接户限长度,一百米内限五户。 单相用电电焊机,错开相别和台数。

电力系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地大全!

电力系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地大全!

电⼒系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地⼤全!电⼒系统中性点运⾏⽅式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。

我国电⼒系统⽬前所采⽤的中性点接地⽅式主要有三种:即不接地、经消弧线圈接地和直接接地。

⼩电阻接地系统在国外应⽤较为⼴泛,我国开始部分应⽤。

1、中性点不接地(绝缘)的三相系统各相对地电容电流的数值相等⽽相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位⼀致。

这时中性点接地与否对各相对地电压没有任何影响。

可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运⾏状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。

这种现象的产⽣,多是由于架空线路排列不对称⽽⼜换位不完全的缘故造成的。

在中性点不接地的三相系统中,当⼀相发⽣接地时:⼀是未接地两相的对地电压升⾼到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘⽔平应根据线电压来设计。

⼆是各相间的电压⼤⼩和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运⾏⼀段时间,这是这种系统的最⼤优点。

但不许长期接地运⾏,尤其是发电机直接供电的电⼒系统,因为未接地相对地电压升⾼到线电压,⼀相接地运⾏时间过长可能会造成两相短路。

所以在这种系统中,⼀般应装设绝缘监视或接地保护装置。

当发⽣单相接地时能发出信号,使值班⼈员迅速采取措施,尽快消除故障。

⼀相接地系统允许继续运⾏的时间,最长不得超过2h。

三是接地点通过的电流为电容性的,其⼤⼩为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发⽣电弧。

弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场⽽产⽣过电压,损坏电⽓设备或发展成相间短路。

故在这种系统中,若接地电流⼤于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。

2、中性点经消弧线圈接地的三相系统中性点不接地三相系统,在发⽣单相接地故障时虽还可以继续供电,但在单相接地故障电流较⼤,如35kV系统⼤于10A,10kV系统⼤于30A时,就⽆法继续供电。

[全]低压配电系统常见三种接地形式--IT系统、TT系统、TN系统

[全]低压配电系统常见三种接地形式--IT系统、TT系统、TN系统

低压配电系统常见三种接地形式--IT 系统、TT系统、TN系统一)用电安全技术简介低压配电系统是电力系统的末端,分布广泛,几乎遍及建筑的每一角落,平常使用最多的是380/220V的低压配电系统。

从安全用电等方面考虑,低压配电系统有三种接地形式,IT系统、TT系统、TN系统。

TN系统又分为TN—S系统、TN—C系统、TN—C—S系统三种形式。

1)IT系统IT系统就是电源中性点不接地、用电设备外壳直接接地的系统,如图1-8-1所示。

IT系统中,连接设备外壳可导电部分和接地体的导线,就是PE线。

图12)TT系统TT系统就是电源中性点直接接地、用电设备外壳也直接接地的系统,如图1-8-2所示。

通常将电源中性点的接地叫做工作接地,而设备外壳接地叫做保护接地。

TT系统中,这两个接地必须是相互独立的。

设备接地可以是每一设备都有各自独立的接地装置,也可以若干设备共用一个接地装置,图1-8-2中单相设备和单相插座就是共用接地装置的。

图23)TN 系统TN系统即电源中性点直接接地、设备外壳等可导电部分与电源中性点有直接电气连接的系统,它有三种形式,分述如下。

(1)TN—S系统TN—S系统如图1-8-3所示。

图中中性线N与TT系统相同,在电源中性点工作接地,而用电设备外壳等可导电部分通过专门设置的保护线PE连接到电源中性点上。

在这种系统中,中性线N和保护线PE是分开的。

TN—S系统的最大特征是N线与PE线在系统中性点分开后,不能再有任何电气连接。

TN—S系统是我国现在应用最为广泛的一种系统(又称三相五线制)。

新楼宇大多采用此系统。

图3(2)TN-C系统TN-C系统如图1-8-4所示,它将PE线和N线的功能综合起来,由一根称为保护中性线PEN,同时承担保护和中性线两者的功能。

在用电设备处,PEN线既连接到负荷中性点上,又连接到设备外壳等可导电部分。

此时注意火线(L)与零线(N)要接对,否则外壳要带电。

TN-C现在已很少采用,尤其是在民用配电中已基本上不允许采用TN—C系统。

低压配电系统的几种接地形式TT、TN、IT

低压配电系统的几种接地形式TT、TN、IT

低压配电系统的几种接地形式TT、TN、IT在低压配电系统中,正确的接地形式是非常重要的,不同的接地形式适用于不同的场景和需要。

在本文中,我们将介绍低压配电系统中常见的三种接地形式:TT,TN,和IT。

TT形式TT形式接地也被称为非自关式中性点接地,它指的是电源系统中的中性点被接地,但是接地点和设备之间有一定的电阻。

在TT形式接地中,用于接地的导线通常是连通于附加的电阻的,并且机房内的所有电气设备都需要接地。

TT形式接地适用于以下场景:•当设备故障时,不会引起过大的漏电电流;•适用于需要保证人身安全的场所,如医院、实验室等;•电力系统中接地电阻有一定的限制要求。

然而,TT形式接地的缺点在于,因为接地电阻的存在,会造成设备与地之间的干扰电压,对系统的稳定性造成影响。

TN形式TN形式接地指的是电源系统中的中性点和设备外壳都被接地。

TN形式接地又分为以下三种形式:TN-S形式TN-S形式接地是指中性点和设备外壳都接到同一地方,只有一条连接地电缆。

TN-S形式接地适用于以下场景:•如果具备正常的设备,使用TN-S形式接地是安全的;•电阻值可以非常小。

TN-C形式TN-C形式接地指的是电源系统中的中性点被接地,但各个设备外壳是联接在一起的,只有一条连接地电缆。

TN-C形式接地适用于以下场景:•轻型设备、灯具、弱电设备等;•对安全和电磁兼容性的考虑比较重要。

TN-C-S形式TN-C-S形式接地是指在一些较大的设备上使用TN-S,其余设备使用TN-C。

TN-C-S形式接地适用于以下场景:•符合电力公司规定的规范;•对设备的安全特别要求高。

TN形式接地的优点是在制造成本、可靠性和安装成本方面的具体控制。

然而,TN形式的缺点在于,当非中性点短路到地面时,将会引起短路电流打穿地面,导致一些安全隐患。

IT形式IT形式接地是指电源系统中的中性点没有被直接接地,而是被通过一个电阻器地接到地面上。

IT形式接地适用于以下场景:•连续供电和要求稳定性的设备;•对用电负载互相影响的问题有更高要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统的中性点运行方式及低压配电系统的接地型式
一、电力系统的中性点运行方式
电力系统中的电源(含发电机和电力变压器)中性点有下三种运行方式:一种是中性点不接地;一种是中性点经阻抗接地;再一种是中性点直接接地。

前两种一般合称为小电流接地;后一种称为电流接地。

(一)、中性点不接地的电力系统
分布电容及相间电容
发生单相接地故障时的中性点不接地系统
分析见教材原件
(二)、中性点经消弧线圈接地的电力系统
对消弧线圈“消除弧光接地过电压”的异议
(三)、中性点直接接地或经低阻接地的电力系统
二、低压配电系统接地型式
按保护接地的型式,分为
(一)TN系统、中性点直接接地系统,且都引出有中性线(N 线),因此都称为三相四线制系统。

1、TN-C
2、TN-S
3、TN-C-S
(二) TT系统
(三) IT系统中性点不接地或经阻抗(约1000欧)接地,且
通常不引出中性线,因此它一般为三相三线制系统。

第四节供电质量要求及用电企业供配电电压的选择
一、供电质量
电压对电器设备运行的影响:
电压和频率被认为是衡量电力系统电能质量的两个基本参
数。

二、供电频率、频率偏差及其改善措施
三、供电电压、电压偏差及其调整措施电力系统的电

1.三相交流电网和电力设备的额定电压
我国标准规定的三相交流电网和电力设备的额定电压
1.电网(电力线路)的额定电压
我国根据国民经济发展的需要及电力工业的水平,经全面的技术经济分析后确定
的。

它是确定各类电力设备额定电压的其本依据。

2.用电设备的额定电压
由于电压损耗,线路上各点电压略有不同,用电设备,其额定电压只能按线路首
端与末端的平均电压即电网的额定电压Un来制造。

所以,用电设备的额定电
压规定与供电电网的额定电压相同。

3.发电机的额定电压
发电机是接在线路首端的,所以,规定发电机额定电压
高于所供电网额定电压的5%。

三个电压的关系
4. 电力变压器一次绕组额定电压
如变压器直接与发电机相连,则其一次绕组额定电压应与电机额定电压相同,即高于供电电网额定电压的5%。

如变压器不与发电机相连,而是连接在线路上,其
一次绕组额定电压应与供电电网额定电压
相同。

5. 电力变压器二次绕组额定电压
电力变压器的二次绕组额定电压:变压器一次绕组加
上额定电压而二次绕组开路时的电压,即为空载电压。

如果变压器二次侧供电线路较长则变压器二次绕组额定电压要考虑补偿变压器
二次绕组本身5%的电压降和变压器满载时输出的二次电压仍高于电网额定电
压5%,所以这种情况的变压器二次绕组额定电压要高于二次侧电网额定电压
10%,
如果变压器二次侧供电线路不长则变压器二次绕组额定电压,只需高于二次侧电网额定电压5 %,仅考虑补偿变压器内部的5%。

(二)电压偏差及其允许值
1.电压偏差
电压偏差:(U-Un)/Un %=ΔU
电压偏差是由于供配电系统运行方式改变以及负荷缓慢变化而引起的,它的变动
是相当缓慢的。

2.电压偏差允许值
用电设备端子处电压偏差允许值为
电动机+5%、-5%;
照明灯一般为+5%、-5%,对于远离变电所的工作场所,难以满足上述要求
时,可为+5%、-10%。

应急照明、道路照明的警卫照明+5%、-10%。

其他用电设备当无特殊规定时为+5%、-5%。

(三)电压偏差的影响及其调整措施
为了减小电压偏差,供电系统采取相应的电压调整措施:
(1) 合理选择变压器的电压分接头或采用有载调压型变压器
无载调压型变压器,换接电压分接头,必须停电进行,
因此是不能频繁操作的。

有载调压型变压器,在正常运行过程中自动地调整电压,保证设备端电压
的稳定。

(2)降低供配电系统的阻抗
(3)尽量使系统的三相负荷均衡
(4)合理地改变系统的运行方式
(5)采用无功功率的补偿装置
四、电压波动、闪变及其抑制措施
(一)电压波动和闪变的有关概念
1、电压波动的含义及其危害
电压波动:是电网电压的短时快速变动或电压包络线的周期性快速变动。

电压波动是由于负荷急剧变动引起的。

电压波动会影响电动机的正常起动,可使某些电子设备特别是电子计算机无法正常工作;可使照明灯发生明显的闪烁现象,等等。

2、闪变的含义及其危害
(二)电压变动和闪变的允许值
(三)电压波动和闪变的抑制措施
(1) 采用专用线或专用变压器单独供电
(2)减小系统阻抗。

(3)选用短路容量较大或电压等级较高的电网供电
减小或切除引起电压波动的负荷。

(4)装设静止型无功补偿装置(SVC)
五、电网谐波及其抑制措施
(一)、电网谐波的有关概念
1、谐波的含义
谐波:按傅里叶级数分解的一系列频率为基波频率整数倍的高次谐正弦电流
高次谐波的干扰成了当前系统中影响电能质量的一大“公害”,亟待采取对策。

高次谐波的产生
由于系统中有非线性元件存在,有高次谐波电流或电压产生。

2、谐波的的危害
(二)谐波电压限值和谐波电流允许值
(三)谐波的抑制措施
(1) 大容量的非线性负荷由短路容量较大的电网供电
(2)三相整流变压器采用Y、d或D、y联结
(3)增加整流变压器二次侧的相数
(4)装设分流滤波器
(5)装设静止无功补偿装置(SVC)
六、三相电压不平衡及其补偿
七、电力用户供配电电压的选择
(一)电力用户供电电压的选择
(二)电力用户高压配电电压的选择
工厂供电系统的高压配电压,主要取决于当地供电电源电压及工厂高压设备的电压和容量、数量等因素。

通常有10KV ;6KV;35KV等。

(三) 电力用户低压配电电压的选择
工厂供电系统的低压配电电压,主要取决于低压用电设备的电压,一般采用220/380V,或380/660V。

相关文档
最新文档