第三章人体的基本生理功能兴奋性

合集下载

人体解剖生理学知识点总结——中国药科大学09级生命基地

人体解剖生理学知识点总结——中国药科大学09级生命基地

第一章绪论生理学研究内容大致可分整体水平、器官和系统水平、细胞和分子水平三个不同水平。

根据实验进程可将生理学实验分为慢性实验和急性实验,后者又分为在体实验和离体实验两种。

第二章细胞、基本组织及运动系统第一节细胞细胞膜主要由脂质、蛋白质和糖类等物质组成。

液态镶嵌模型:生物膜以液态的脂质双分子层为基架,其中镶嵌着具有不同分子结构,从而具有不同生理功能的蛋白质。

单纯扩散:某些脂溶性小分子物质由膜的高浓度一侧向低浓度一侧的扩散过程。

细胞的物质转运有几种方式,简述主动运转的特点:单纯扩散(自由扩散)、易化扩散(通道:化学电压机械门控;载体:结构特异性饱和现象竞争性抑制)、主动转运(原发性:利用代谢产生的能量将物质逆浓度梯度或电位梯度进行跨膜转运的过程;继发性:能量不直接来自ATP的分解,而是依靠Na+在膜两侧浓度差,即依靠存储在离子浓度梯度中的能量完成转运,间接利用ATP)【借助于载体、逆浓度差或电位差转运并需要能量】、入胞(吞噬、吞饮、受体介导入胞)和出胞等。

跨膜信号传导1由通道蛋白完成的,电压、化学、机械门控通道2由膜受体、G蛋白和G蛋白效应分子组成的3酶耦联受体信号传导。

细胞凋亡:由一系列细胞代谢变化而引起的细胞自我毁灭,又称程序性细胞死亡PCD,是在基因控制下,通过合成特殊蛋白而完成的细胞主动死亡过程。

细胞周期:细胞增殖必须经过生长到分裂的过程成为~,分为G1、S、G2、M四期。

细胞衰老:细胞在正常环境条件下发生的细胞生理功能和增殖能力减弱以及细胞形态发生改变,并趋向死亡的现象。

第二节基本组织人体四种基本组织:上皮组织、结缔组织、肌肉组织、神经组织。

神经组织由神经细胞和神经胶质细胞组成,后者其支持、联系、营养、保护和隔离等作用。

神经纤维分为有髓神经纤维和无髓神经纤维。

第三节运动系统骨骼肌纤维由肌原纤维和肌管系统组成,前者由上千条粗肌丝和细肌丝有规律的平行排列组合而成。

第三章人体的基本生理功能第一节生命活动的基本特征生命活动的基本特征包括新陈代谢、兴奋性、适应性和生殖等。

人体的基本生理功能

人体的基本生理功能

+20
mV
0
-20
-40
阈电位
-60
-80
去极-10化0 :在极化基础上,膜内外电位差
减小。去极化表示细胞处于兴奋过程。
+20
mV
0
-20
-40
阈电位
-60
-80
-100
超极化:膜内外电位差增大,即膜内负电位 大。超极化表示细胞处于抑制状态。
0mv -70mv
复极化:细胞膜去极化 后再向RP方向恢复
去极化达到阈电位,触发邻近静息部位膜爆发新的AP
(二)传导方式: •无髓鞘N纤维的兴奋传导为近距离局部电流; •有髓鞘N纤维的兴奋传导为远距离局部电流(跳跃式)。
(三)传导特点 •
1、生理完整性 • 2、双向性 • 3、相对不疲劳性 • 4、绝缘性 • 5、不衰减性或“全或无”现象
0
小结
1.静息电位
衡量组织兴奋性高低的指标是?
刺激的阈值(threshold)即阈强度threshold intensity :
刺激作用时间,强度-时间变化率固定不变, 刚能引起组织兴奋(AP)的最小刺激强度。
阈上刺激
阈下刺激
刺激引起兴奋的条件
条件
内因
组织细胞的功能条件
外因刺激
性质
适宜的刺激
刺激的强度(= 或>阈 强度)
对钾离子的通透性比对钠的达100倍。 静息时有少量钠离子进入膜内,所以实测
值比计算值要小。
RP产生机制的膜学说:
∵静息状态下①细胞膜内外离子分布不均;②细胞
膜对离子的通透具有选择性:K+>Cl->Na+>A-

[K+]i顺浓度差向膜外扩散

人体的基本生理功能

人体的基本生理功能

(二)跨膜信号转导的特征:
1.各类刺激信号只改变膜结构中一种或 数种蛋白质分子结构,从而将细胞外 的信息转变成细胞内的信息,这一信 息引发细胞功能变化。 2.体内需要转导的信号数,接受信号的 靶细胞种类以及引发的功能变化都是 多样的,但它们的转导过程仅限少数 途径。
二、几种主要的跨膜信号转导方式
去极化:细胞在安静情况下受到一 次短促的阈刺激或阈上刺激时, 膜内原有的负电位将迅速消失, 由原来静息时的内负外正转变为 内正外负状态,这一过程称为去 极化。 反极化或超射:膜内电位由零变为 正值的过程称为反极化或超射。 复极化:膜两侧的电位又恢复到静 息时的内负外正状态和水平,这 个过程称为复极化。 锋电位,包括快速的上升支(即去 极相)和快速的下降支(即复极 相) 后电位:在神经干上记录动作电位 时,在锋电位的后部还可观察到 一些缓慢的膜电位微小波动,称 为后电位。后电位包括负后电位 (去极化后电位)和正后电位 (超极化后电位)两部分,负后 电位在前,正后电位随后。它们 的幅度都很小。
动作电位的形成过程
• ≥阈刺激→细胞部分去极化→Na+少量内流→去 极化至阈电位水平(当负极下方去极化到某一临界值(此临界 值约比原有静息电位小10~20mV,称为阈电位) →Na+内流与 去极化形成正反馈(Na+爆发性内流)→达到 Na+平衡电位(膜内为正膜外为负)→形成动 作电位上升支。 • 膜去极化达一定电位水平→Na+内流停止、K+ 迅速外流→形成动作电位下降支。
骨骼肌的收缩机制
骨骼肌细胞的微细结构
骨骼肌细胞的微细结构
骨骼肌的兴奋-收缩耦联
主要步骤 肌膜电信号→三联管 触发 肌浆网释放Ca2+→引起 肌丝滑行→产生肌肉收 缩→当电信号消失→肌 浆中Ca2+在钙泵作用下 转运回肌浆网→肌浆内 Ca2+↓→肌钙蛋白结合的 Ca2+解除→肌肉舒张。

人体基本生理功能

人体基本生理功能
阈电位:细胞受刺激后,膜内去极化,达到某一临界 值后产生快速的膜内电位上升变化,此临界 值称为阈电位。 通常比原有静息电位小10~20 mV。
+35 0
mV
-55 -70
阈电位
刺激伪迹



锋电位



负后电位



后电位
正后电位 成
时间(ms)
2. 动作电位的产生机制
产生条件:阈刺激、阈上刺激、多次阈下刺激。
(1)去极化: Na+内流
+- +- +- +- +- +-
阈电位(高10~20 mV) Na+通道开放
正反馈或自生性增加
去极化电位 去极化
Na+的平衡电位=超射值
去极化
1NaCl
Na+ -

-+
胞 内
+ -++ -+
-+
-+
Na+ 浓度差
12 NaCl
-+ -+
Na+ 细

--+
-+ -+ -+
4. 兴奋性(excitability)
概念:可兴奋细胞或组织接受刺激后产生兴奋 的能力称兴奋性。 从生物电的角度看,可兴奋细胞受到刺激产生 动作电位的能力,称为兴奋性。
衡量指标:阈强度 二者关系: 阈强度低,兴奋性高。
阈强度高,兴奋性低。
适应性
适应
机体根据环境变化调整自身行为和生理功能的过程
意义:繁殖后代,延续种系
第二节 神经与骨骼肌细胞的一般生理特性

第三章细胞的基本功能-细胞的兴奋性和生物电(1)

第三章细胞的基本功能-细胞的兴奋性和生物电(1)
组成,一条粗肌丝有200-300各肌凝蛋白 组成。
肌凝蛋白 杆状部:均朝M线方向集合成束, 形成粗肌丝主干 。
球状膨大部:裸露在粗肌丝主干的
表面,成横桥,每一横
桥均有一细肌丝对应。
横桥cross bridge 2个主要特征: ❖ 可与细肌丝上肌纤蛋白action可逆性结合,同
时横桥向M线扭动,使细向粗方向滑动,肌小 节长度减小,肌肉收缩,反之横桥与肌纤蛋白 分离,肌小节恢复长度,肌肉舒张。
不能出膜,形成与K+隔膜相吸的极化状态。
静息电位产生机制:
• 膜内外K浓度比约 301 (动力)
• 安静时K通道开放 ( 通透性)
=
浓度差(动力)
K+ 外流 →
电位差(阻力)
• 膜内带负电的蛋白 质有随K+外流的倾向,但不 能出膜,形成与K+隔膜相吸 的极化状态。
K+ 平衡电位 静息电位
据 Nernst公式: Ek=RT/ZF×㏑[k+]o/[k+]i(mv) Ek=60 log [k+]o/[k+]i (mv) R:通用气体常数 T:绝对温度 Z:离子价 F:法拉第常数
肌肉松弛剂:与乙酰胆碱竞争终板膜上乙酰胆 碱受体,阻断传递,肌肉失去收缩能力,如美 洲箭毒。
有机磷,新斯的明:抑制胆碱酯酶导致乙酰胆 碱在接头处大量聚集。
神经肌肉接头兴奋传递的特征 ❖ 化学性兴奋传递 ❖ 单向传递 ❖ 时间延搁 ❖ 易受药物和其他环境因素影响
4 骨骼肌的微细结构和收缩原理 粗肌丝:主要由肌凝蛋白myosin(肌球蛋白)
3 神经-骨骼肌接头处的信息传递 神经-肌肉接头: 接头前膜:失去髓鞘的轴突末梢的膜。 接头后膜:(终板膜) 与接头前膜相对应的

人体的基本生理功能

人体的基本生理功能
人体生理功能的基本单位是细胞,它是构成人体组织和器官的基础。细胞具有多种根本功能,包括新陈代谢、兴奋性、适应性等,这些功能共同维持着人体的生命活动。细胞通过不断的物质代谢和能量转换,为人体提供所需的营养物质和能量。同时,细胞还具有兴奋性,能够对各种刺激作出反应,并通过神经调节、体液调节等方式,使机体功能保持平衡。此外,细胞之间通过信号传递等方式相互协调,共同完成复杂的生理功能。细胞的跨膜物质转运功能保证了细胞内外的物质交换,维持了细胞内环境的稳定。细胞的生物电现象则是细胞兴奋性的基础,它使细胞能够产生和传导动作电位,从而实现信息的快速传递。总之,细胞是人体生理功能的基本单位,它的结和功能决定了人体的生理特性和生命活动。

应激性和兴奋性三

应激性和兴奋性三

第二节 人体机能活动的调节
一、内环境与稳态 1.内环境:细胞外液; 2.内环境稳态 :内环境的各理化因素保持相对稳定。 二、机能调节 1.神经调节(电信息) 调节方式——反射 结构基础——反射弧 类型——非条件反射和条件反射 2.体液调节(化学信息) 调节方式: 内分泌腺→激素→血液运输→靶 神经-体液调节 神经调节和体液调节的特点比较; 3.自身调节
第一节 生命的基本特征
一、新陈代谢 物质代谢
合成代谢(同化作用)— 需能 分解代谢 (异化作用) — 放能
能量代谢
二、应激性和兴奋性 1. 应激性:刺激→反应 2. 兴奋和兴奋性 兴奋:产生动作电位的过程。 兴奋性: 产生动作电位的能力或特性. 三大可兴奋组织:神经、肌肉、腺体 应激性,兴奋和兴奋性的不同点. 三.适应性
第三节 人体生理机能调节的反馈控制
一.反馈控制系统 特点: 双向联系, 闭环回路,有反馈信息可实现自动控制。 二.反馈的概念 (正反馈和负反馈) 反馈:受控部分回传给控制部分的信息,加强(正反馈)或 减弱(负反馈)控制部分的调节强度。 三.正反馈和负反馈的调节的生理意义。 正反馈:促使某一生理活动不断加强,达到某种生理状态。 负反馈:维持机体的稳态。
运动生理学
成都体育学院运动医学系生理生化教研室

什么是人体生理学 什么是运动生理学

运动生理学的研究对象——正常人体对运动的反应和适应.
任务——揭示体育运动对人体机能影响的规律及机理,阐 明 运动训练、体育教学和运动健身过程中生理学原理;指导不
同年龄、性别和训练程度的人群进行科学的运动锻练。 方法 实验 人体实验(功能及指标测试) 动物实验 急性实验 慢性实验 (在体实验,离体实 运动生理学 2.应激性 3.兴奋和兴奋性 4. 适应性 5.反馈(正、负) 6.内环境

基础医学概论——生理学

基础医学概论——生理学
第五页,共133页。
二、神经与骨骼肌细胞的一般生理特性
生物电现象
静息电位 动作电位 局部兴奋
兴奋在同一细胞上的传导
兴奋在不同细胞上的传导
第六页,共133页。
生物电现象
1. 静息电位
细胞安静时存在于细胞膜两侧的电位差,表现为膜外电 位较膜内电位高,即内负外正状态。
哺乳动物的神经细胞:-70mV;骨骼肌细胞: -70mV; 红细胞: -10mV
白细胞总数和分类计数对许多疾病的诊断具有一定的意 义。
白细胞总数超过10.0109/L时,称为白细胞增多,常 见于病原体感染性疾病。
在新药研发过程中,白细胞计数可作为评价药物毒性 的常用指标。
第二十四页,共133页。
白细胞的生理功能:防卫
趋化、吞噬、杀菌、免疫应答、抗肿瘤
第二十五页,共133页。
(三)血小板
非自律细胞:- 90mV
自律细胞:静息电位不稳定
形成机制:
① K+外流 → K+平衡电位 ② 少量Na+内流
第三十六页,共133页。
心肌细胞的动作电位及其产生机制
心肌细胞动作电位:
升支与降支不对称, 复极过程复杂, 持续时间长。
不同部分心肌细胞 动作电位形态波幅 都有所不同。
第三十七页,共133页。
结构并储存能量的过程。
分解代谢:机体分解自身物质,同时释放能量的过 程。
新陈代谢一旦停止,生命也就随之终结。
第三页,共133页。
(二)兴奋性
可兴奋组织或细胞接受刺激后产生兴奋的能力。 在刺激作用下,机体或组织细胞的反应如果由相 对静止变为活动状态,或功能活动由弱变强的,
称为兴奋;反之,称为抑制。
第四页,共133页。

人体的基本生理功能

人体的基本生理功能

2.RP产生机制的膜学说: ∵静息状态下①细胞膜内外离子分布不均;②细胞膜对离子 的通透具有选择性:K+>Cl->Na+>A∴ +
[K ]i顺浓度差向膜外扩散 [A-]i不能向膜外扩散
[K+]i↓、[A-]i↑→膜内电位↓(负电场) • [K+]o↑→膜内电位↑(正电场)
膜外为正、膜内为负的极化状态 当扩散动力与阻力达到动态平衡时=RP
五、兴奋在同一细胞上的传导
(一)传导机制:局部电流
局 部 电 流 :
静息部位膜内为负电位,膜外为正电位 兴奋部位膜内为正电位,膜外为负电位 在兴奋部位和静息部位之间存在着电位差 膜外的正电荷由静息部位向兴奋部位移动 膜内的负电荷由兴奋部位向静息部位移动 形成局部电流
膜内:兴奋部位相邻的静息部位的电位上升 膜外:兴奋部位相邻的静息部位的电位下降 去极化达到阈电位,触发邻近静息部位膜爆发新的 AP
外来化学物质(如激素,递质)与膜上的受体蛋白结合---作用于G蛋白 (鸟苷酸结合蛋白)— 直接作用于离子通道及影响细胞的代谢过程—完 成信号跨膜传导
第三部分 细胞的生物电现象及其产生机制
恩格斯在100•多年前就指出:“地球上几乎没有一种变
化发生而不同时显示出电的变化”。人体及生物体活细胞在
安静和活动时都存在电活动,这种电活动称为生物电现象 (bioelectricity)。细胞生物电现象是普遍存在的,临床 上广泛应用的心电图、脑电图、肌电图及视网膜电图等就是 这些不同器官和组织活动时生物电变化的表现。
生理学-人体的基本生理功能
第一部分 细胞的跨膜物质转运功能
第二部分 细胞的跨膜信号转导功能 第三部分 细胞的生物电现象及其产生机制
第四部分 神经肌肉接头处兴奋的传递 第五部分 骨骼肌的收缩

人体解剖生理学 第三章 神经系统的功能

人体解剖生理学   第三章 神经系统的功能
浅感觉传导路径 脊髓 大脑
深感觉传导路径
-人体解剖生理学-
三、丘脑的感觉机能
丘脑感觉机能——全身的感觉,除嗅觉外,其它的 感觉向上 传导中,都在丘脑更换神经元,再由丘脑 向大脑皮层投射
感觉接替核:接受感觉投射纤维,发出纤维 投 丘脑细胞群 大致分三类 射到大脑皮层的感觉代表区 联络核:不直接接受感觉投射纤维,发出纤 维
重力作用
3 γ环路及其活动
●γ
●γ
环?
环的意义:使 γ 肌肉维持于缩短状 态。 环 ● 脑干某些中枢 调节肌紧张是通过 兴奋γ 环实现的。
持续轻微 牵拉伸肌
骨骼肌处于持续地轻微的收缩状态
-人体解剖生理学-
-人体解剖生理学-
4 脊休克(spinal shock) 概念:指脊髓与高位中枢离断(脊动物)时,横断面以下 脊髓的反射功能暂时消失的现象。 主要表现:横断面以下脊髓所支配的骨骼肌紧张性减弱 甚至消失,外周血管扩张,血压降低,出汗被抑制,直肠 和膀胱中粪、尿贮留等。 特点:这些表现是暂时的,脊髓反射可逐渐恢复 ①恢复的快慢与种族进化程度有关: 低等动物恢复快, 高等动物恢复慢。 ②恢复的快慢与反射弧的复杂程度有关:简单的反射先 恢复(如屈反射、腱反射等);复杂的反射后恢复(如对侧伸 反射等)。 ③人类发生脊休克恢复后,排便排尿反射由原先的贮留 变为失禁。


-人体解剖生理学-
2.去大脑僵直(decerebrate
rigidity)
横断脑干切线
上述易化系统和抑制 系统对肌紧张的影响,可 用去大脑僵直实验加以说 明: 在动物中脑上下丘之 间切断脑干,动物出现伸 肌过度紧张现象,表现为 四肢伸直、头尾昂起、脊 柱挺硬,称为去大脑僵直。
-人体解剖生理学-

人体解剖生理学知识点总结(干货)

人体解剖生理学知识点总结(干货)

人体解剖生理学知识点总结第一章绪论生理学研究内容大致可分整体水平、器官和系统水平、细胞和分子水平三个不同水平。

根据实验进程可将生理学实验分为慢性实验和急性实验,后者又分为在体实验和离体实验两种.第二章细胞、基本组织及运动系统第一节细胞细胞膜主要由脂质、蛋白质和糖类等物质组成。

液态镶嵌模型:生物膜以液态的脂质双分子层为基架,其中镶嵌着具有不同分子结构,从而具有不同生理功能的蛋白质。

单纯扩散:某些脂溶性小分子物质由膜的高浓度一侧向低浓度一侧的扩散过程。

细胞的物质转运有几种方式,简述主动运转的特点:单纯扩散(自由扩散)、易化扩散(通道:化学电压机械门控;载体:结构特异性饱和现象竞争性抑制)、主动转运(原发性:利用代谢产生的能量将物质逆浓度梯度或电位梯度进行跨膜转运的过程;继发性:能量不直接来自ATP的分解,而是依靠Na+在膜两侧浓度差,即依靠存储在离子浓度梯度中的能量完成转运,间接利用ATP)【借助于载体、逆浓度差或电位差转运并需要能量】、入胞(吞噬、吞饮、受体介导入胞)和出胞等.......感谢聆听跨膜信号传导1由通道蛋白完成的,电压、化学、机械门控通道2由膜受体、G蛋白和G蛋白效应分子组成的3酶耦联受体信号传导。

细胞凋亡:由一系列细胞代谢变化而引起的细胞自我毁灭,又称程序性细胞死亡PCD,是在基因控制下,通过合成特殊蛋白而完成的细胞主动死亡过程.细胞周期:细胞增殖必须经过生长到分裂的过程成为~,分为G1、S、G2、M四期.细胞衰老:细胞在正常环境条件下发生的细胞生理功能和增殖能力减弱以及细胞形态发生改变,并趋向死亡的现象。

第二节基本组织人体四种基本组织:上皮组织、结缔组织、肌肉组织、神经组织。

神经组织由神经细胞和神经胶质细胞组成,后者其支持、联系、营养、保护和隔离等作用.神经纤维分为有髓神经纤维和无髓神经纤维。

第三节运动系统骨骼肌纤维由肌原纤维和肌管系统组成,前者由上千条粗肌丝和细肌丝有规律的平行排列组合而成。

《人体解剖生理学》第三章 人体的基本生理功能

《人体解剖生理学》第三章  人体的基本生理功能
达到阈值,爆发肌细胞膜动作电位
N-M接头处的兴奋传递过程
膜Ca2+通道开放,膜外Ca2+向膜内流动
接头前膜内囊泡移动、融合、破裂, 囊泡中的ACh释放(量子释放)
ACh与受终体板蛋膜白上分的子N构2受型体改结变合,
终板膜对Na+、K+ (尤其是Na+)通透性↑
3.N-M接头处的兴奋传递特征:
2.AP的产生机制:
当细胞受到刺激
细胞膜上少量Na+通道开放
Na+顺浓度差少量内流→膜内外电位差↓→局部电位
当膜内电位变化到阈电位时→Na+通道大量开放
Na+顺浓度差和膜内负电位的吸引→再生式内流
膜内负电位减小到零并变为正电位(AP上升支)
Na+通道关→Na+内流停,同时K+通道开放 K+顺浓度差和膜外负电位的吸引→K+迅速外流 膜内电位迅速下降,恢复到RP水平(AP下降支)
膜内的负电荷由兴奋部位向静息部位移动
形成局部电流
膜内:兴奋部位相邻的静息部位的电位上升 膜外:兴奋部位相邻的静息部位的电位下降
去极化达到阈电位,触发邻近静息部位膜爆发新的AP
(二)传导方式:
•无髓鞘N纤维的兴奋传导为近距离局部电流; •有髓鞘N纤维的兴奋传导为远距离局部电流(跳跃式)。
(三)传导特点
②电紧张方式扩 布。幅值随着传播 距离的增加而减小。
③具有总和效应: 时间性和空间性总 和。。
树突 树突
时间性总和 空间性总和
五、兴奋在同一细胞上的传导
(一)传导机制:局部电流

静息部位膜内为负电位,膜外为正电位

兴奋部位膜内为正电位,膜外为负电位


在兴奋部位和静息部位之间存在着电位差

人体基本生理功能

人体基本生理功能
信号 胞膜上的通道蛋白 离子
通道打开或关闭
离子跨膜流动 细
膜电位变化(去极化、超极化)
胞功能改变
1. 化学信号—化学门控离子通道
化学物质控制: 递质、 激素等 主要分布:肌细胞的终板膜、神经细胞的突触 后膜及某些嗅、味感受细胞的膜中。 作用:产生局部电位 神经突触 谷氨酸,门冬氨酸,甘氨酸
例:终板膜化学门控通道
G蛋白的组成:1亚单位,1单位和1亚
单位。 紧密结合在一起。失活的G蛋白
以GDP-异三聚体形式存在。
G蛋白激活:激动剂与受体结合,使G蛋白的与分
离,GDP-变为GTP-+。
G蛋白失活:G蛋白有内在的GTP酶活性,水解GTP,
使GTP-变成GDP-。
G有4个家族:
二、内环境与稳态
(一)内环境
1.外环境 直接接触和生活的环境 (自然、社会环境) 2.内环境 (internal environment) 细胞直接接触和生活的环境 (细胞外液)
W. Cannon
(二)稳态(homeostasis) 1.概念
内环境的理、化因素 保持相对稳定的状态 (细胞外液中的PO2、 PCO2、pH、渗透压等保 持动态平衡)
Gi,Gs,Gq , G12/13。形
成Gi途径,Gs途径,Gq途径,
12/13途径。分别调节代谢酶,离子通 道,转录机制,运动、收缩机制,分泌 机制和学习记忆胚胎发育。
(B)G蛋白介导的信号途径
(a)c-AMP-蛋白激酶A途径
(b)c-GMP-蛋白激酶G途径
(c)磷酸肌醇途径 (d)细胞内钙信号途径
⑤. 环腺苷酸磷酸二酯酶(cAMP phosphodiesterase):可降解cAMP生成5’-AMP,起终 止信号的作用

解剖生理学基础-第三章-神经和肌肉生理OK

解剖生理学基础-第三章-神经和肌肉生理OK

证明RP的实验:
(甲)当A、B电极都位于 细胞膜外,无电位改变, 证明膜外无电位差。 (乙)当 A 电极位于细胞 膜外, B电极插入膜内时, 有电位改变,证明膜内、 外间有电位差。 (丙)当A、B电极都位于 细胞膜内,无电位改变, 证明膜内无电位差。
(二)静息电位的产生机制
两个前提条件:
1、细胞内外各种离子的分布不均匀。
每次神经冲动引起的ACh释放量足以使产生的终板电位总和
达到邻近肌膜电压门控钠通道的阈电位水平使肌细胞产生
一次可沿整个肌细胞膜传导的动作电位。
(3) 神经-肌肉接头处的兴奋传递受环境因素的影响
影响神经-肌肉接头信息传递的因素
药物:

特异性阻断受体通道:
筒箭毒、α -银环蛇毒
非去极化肌松剂:卡肌宁(阿曲库铵) 胆碱酯酶抑制剂: 新斯的明
一、刺激
(一)、刺激的种类 物理刺激---声、光、电、机械等 化学刺激---酸、碱等
生物刺激---细菌、病毒等
社会、心理因素刺激
---语言、文字、思维
• (二)、刺激的三要素: 任何刺激要使机体或组织细胞发生反应必
须具备三个条件:
刺激强度
刺激持续时间
刺激强度时间变率
(三)、阈强度 阈强度:能引起组织兴奋所需的最小 刺激强度,也称阈值。(与兴奋性成反比) 阈刺激:强度等于阈值的刺激
(二)、局部兴奋
• 1.局部兴奋:由阈下刺激引起的膜的局部去极化
• 2.局部兴奋特点:
• (1).仅限于受刺激局部。不能向远处传播,只能以电紧张的方式, 使邻近的膜也产生类似的去极化。去极化随传播距离增加而衰减 至消失; • (2).不表现为“全或无” 。去极化幅度随刺激强度增大而增大:

14休闲-处方(第三章运动过程中人体机能变化的规律)

14休闲-处方(第三章运动过程中人体机能变化的规律)

• (二)影响进入工作状态的因素
• 进入工作状态所需时间长短取决于工作性质、个人特点、 训练水平、工作强度及当时机体的机能状态。一般来说, 肌肉活动越复杂,进入工作状态需要的时间也就越长;训 练程度低的运动员比训练水平高的运动员进入工作状态的 时间要长,随着训练水平的提高,进入工作状态的时间也 会缩短;在适宜运动负荷下工作强度越高,进入工作状态 的时间就越短。此外,年龄和外界因素也能影响进入工作 状态的时间。儿童少年进入工作状态的时间比成人短。场 地条件好、气候温暖适宜以及良好的赛前状态和充分的准 备活动均能缩短进入工作状态的时间。
• (一)真稳定工作状态
• 在进行强度较小、运动时间较长的运动时,进入 工作状态结束后,机体所需要的氧可以得到满足, 即吸氧量和需氧量保持动态平衡,这种状态称为 真稳定工作状态。在真稳定工作状态下,肺通气 量、心率、心输出量、血压及其他生理指标保持 相对稳定,运动中的能量供应以有氧供能为主, 乳酸堆积较少,血液中酸碱平衡不致受到扰乱, 运动的持续时间较长,可达几十分钟或几小时。
动员兴奋性过低,可做些强度大的练习,如果运 动员兴奋性过高,准备活动的强度可小些,安排 一些轻松的和转移注意力的练习和活动。
• 二、准备活动
• 准备活动是指在比赛、训练和体育课的 基本部分之前,为克服内脏器官生理惰性, 缩短进入工作状态时程和预防运动创伤而 有目的进行的身体练习,为即将来临的剧 烈运动或比赛做好准备。
• “极点”来得迟早、反应强弱及“第二次呼吸” 出现的快慢等,不仅与运动项目、运动强度和训 练水平有关,还与准备活动、赛前状态及呼吸方 式等因素有关。一般来说,中长跑项目“极点” 反应较明显;运动强度越大,训练水平越低, “极点”出现得越早,反应也越强烈,“第一次 呼吸”出现得也愈迟。良好的赛前状态和充分的 准备活动可推迟“极点”的出现和减弱“极点” 的反应程度。

生理学知识总结

生理学知识总结

第一章绪论一、什么是生理学?生理学是生物科学中的一个分支,是一门实验性科学,它以生物机体的功能为研究对象。

生理学的任务就是研究这些生理功能的发生机制、条件、机体的内外环境中各种变化对这些功能的影响以及生理功能变化的规律。

二、内环境与稳态的概念(1)内环境的概念:内环境指细胞直接生存并与之进行物质交换的环境,主要由组织液和血浆组成。

(2)稳态:内环境理化性质维持相对恒定的状态,称为稳态,它是一种动态平衡。

细胞的正常代谢活动需要稳态,而代谢活动本身又经常破坏稳态,生命活动正是在稳态不断破坏和不断恢复的过程中维持和进行的。

三、人体生理功能三大调节方式?各有何特点?1.神经调节指通过神经系统的活动,对生物体各组织、器官、系统所进行的调节。

特点是准确、迅速、持续时间短暂。

2、体液调节体内产生的一些化学物质(激素、代谢产物)通过体液途径(血液、组织液、淋巴液)对机体某些系统、器官、组织或细胞的功能起到调节作用。

特点是作用缓慢、持久而弥散。

3.自身调节组织和细胞在不依赖于神经和体液调节的情况下,自身对刺激发生的适应性反应过程。

特点是调节幅度小。

四、什么是反射?反射指生物体在中枢神经系统参与下对刺激产生的规律性反应。

五、正、负反馈的概念.负反馈凡是反馈信息与控制信息的作用性质相反的反馈,称为负反馈,起纠正、减弱控制信息的作用。

正反馈凡是反馈信息与控制信息的作用性质相同的反馈,称为正反馈,起加强控制信息的作用。

第二章细胞的基本功能一、细胞膜的跨膜物质转运形式有哪些?各有何特点?细胞膜对物质转运形式有单纯扩散、易化扩散、主动转运和人胞、出胞。

从能量的角度来看,单纯扩散与易化扩散时,物质是顺电—化学梯度通过细胞膜的,不耗能,属于被动转运。

主动转运是指物质逆电化学梯度通过细胞膜的耗能的转运过程。

这里,电—化学梯度包括电学梯度(电位差)和化学梯度(浓度差)两层含义。

二、细胞的生物电现象1.兴奋性的概念1) 兴奋性:活细胞或组织对外界刺激具有发生反应的能力或特性称为兴奋性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兴奋性(Excitability)— 可兴奋细胞受刺激后产生AP的
能力。
➢ 刺激及刺激三要素:
✓刺激强度 ✓持续时间 ✓强度对时间的变化率
衡量组织兴奋性的指标:
阈强度(阈值、阈刺激) 阈强度(threshold intensity)— 在刺激的持续时间和强度恒定和足够时, 即对时间变化率固定时,能引起组织发 生兴奋的最小刺激强度。
ENa
EK
河豚毒素 四乙胺 四乙胺
去极化(含 复极化 未恢复到 轻度超极
反极化)
RP

快速、可扩布的电位变化
相关的概念:
膜的极化(polarization) ——细胞这种内负 外正的状态。
去极化(depolarization)——又称除极化, 是指膜内电位向负值减小的方向变化 。
复极化(repolarization)——细胞先发生去 极化,然后再向正常安静时膜所处的负值恢复, 称为复极化。
1. 阈电位
阈电位(threshold membrane potential) 膜去极化到达爆发动作电位的临
界膜电位。 阈电位的特性:
引起膜上Na+通道的激活对膜去 极化的正反馈。 引起锋电位的条件:
膜去极化达到阈电位。
2. 局部兴奋(local excitation)
➢ 局部兴奋(局反应): 阈下刺激引起膜上Na+通
本章要点
掌握: 5个概念(兴奋性、阈值、静息电位、动作
电位) 4个机制(静息电位、动作电位、神经肌接
头兴奋传导、骨骼肌兴奋-收缩耦联) 3个特征(动作电位、兴奋传导、神经肌接
头处兴奋传递) 1个外在表现(肌肉收缩的外在表现)
一 、生命活动的基本特征
三个基本生理特征 新陈代谢 生命的最基本特征 兴奋性 生殖
其大小能反应组织的兴奋性高低
阈强度与兴奋性成反比关系
细胞兴奋后兴奋性变化
绝对不应期
相对不应期 超常期 低常期
为何具有这种周期性?
二、 细胞的跨膜信号传导功能
化学门控通道 通道蛋白 电压门控通道
机械门控通道
受体蛋白、G蛋白和膜的效应器酶组成
三、 神经与肌肉的一般生理
(一)细胞的生物电现象及其产生机制 1、定义
相对不应期 低于 对阈上刺激起反应 钠通道部分恢复 超 常 期 稍高 对阈下刺激可起反应 钠通道大部恢复 低 常 期 稍低 对阈上刺激起反应 膜内电位呈超极化
组织兴奋后兴奋性的变化
锋电位
负后电位
100%
兴 奋 性
绝相超 对对常 不不期 应应 期期
正后电位
低 常 期
(三)细胞的局部兴奋 (local excitation)
➢ 骨骼肌细胞 ➢ 神经纤维 ➢ 红细胞
-90 mV -70mV~-90mV
-10mV
(二)细胞的动作电位
动作电位(action potential AP) 可兴奋的细胞在接受刺激产生兴奋时,受刺 激处的细胞膜两侧出现一次快速而可逆的 电变化。是细胞兴奋的标志。
动作电位的图形
阈刺激
膜去极化达阈电位水平 膜对Na+通透性增加 Na+内流、膜去极化 钠迅速内流,超射达Na+平衡电位 快Na+通道失活、 K+通透性增加 K+外流、复极化至静息电位水平 Na+ - K+泵活动、恢复离子分布
上升支
下降 支 正后电位
动作电位产生的机制
(小结)动作电位产生的机制
去极相:膜外Na+浓度高于膜内,安静时膜内 电位低于膜外。刺激→Na+ 通道少量开放,少 量Na+内流→阈电位→ Na+通道大量开放, Na+迅速内流,→膜内电位升高,达Na+的平 衡电位。
复极相: Na+通道关闭,k+通道开放, k+外 流,膜内电位下降,恢复至静息电位。
静息电位(resting potential RP ) 细胞安 静时即未受刺激时,存在于细胞膜内外两 侧的电位差。为内负外正。
生物电产生机制
两个条件:1.细胞内外离子浓度差 2.细胞膜对离子的选择性通透
两个力量:动力——浓度差、电位差 阻力——电位差
一个平衡:离子的平衡电位
生物电产生机制
两个条件:1.细胞内外离子浓度差 2.细胞膜对离子的选择性通透
超极化(hyperpolarization)——膜内外电 位差向负值增大的方向变化。
动作电位的特征
具有“全或无”的现象 “全”:同一细胞上的AP幅度相同
传导过程中各处AP幅度相同 “无”:达不到阈值不产生动作电位。
组织兴奋及其恢复过程中 兴奋性的变化
分 期 兴奋性 反

机制
绝对不应期 零 对任何刺激不起反应 钠通道失活
两个力量:动力——浓度差、电位差 阻力——电位差
一个平衡:离子的平衡电位
⒉ 机制 静息膜电位值接近K+的平衡电位。
K+的浓度差 K+有通透性
负离子不通透
K+ 外流
膜外高电位 阻止K+ 的进一步移动
浓度差的扩散力与膜外正电场的排斥力相等 时, K+的净移动为零
K+达平衡弥散,此时的跨膜电位即静息电位
组织的兴奋和兴奋性
兴奋性:当周围环境发生改变时,机体具 有对这种改变发生反应的能力。(广义) 刺激能否引起反应的三要素:
1、刺激强度 2、作用时间 3、时间—强度变化率
❖兴奋 (Excitation)— 组织或细胞受刺激后,产生AP。
❖可兴奋细胞— 凡受刺激后能产生AP的细胞,
神经细胞、肌细胞、腺细胞。
(小结)静息电位产生的机制
膜内K+浓度高于膜外,安静时膜对K+ 通透性大, K+顺浓度差外流,而细胞内 的有机负离子不能透出细胞,便产生了内 负外正的电位差。当促进K+向外移动的化 学力与阻止K+向外移动的电场力达到平衡 时,则K+的净通透量等于零,此时的电位 差称为K+的平衡电位,等于静息电位。
道少量开放,在受刺激膜的局部 出现较小的去极化。
➢局部兴奋的特征:
1、电紧张性扩布 2 、无 “全或无”现象 3 、可以叠加或总和
电紧张电位──由于外加电流的作用, 引起细胞膜电位发 生的变化(超极化或去极化). 特点:被动反应,局限,分级性电紧张性扩布:随扩布 距离的增加而减小. Electrotonic Propagation
后电位: Na+ - k+泵将Na+ 、 k+分布复原, 保持细胞的兴奋性。
静息电位与动作电位的比较
膜电位 静息
项目
电位
产生机制 K+外流
动作电位
峰电位
后电位
上升支 下降支 负后电位 正后电位
Na+内流 K+外流 K+外流↓ 钠泵活动
平衡电位
通道 阻断剂 电荷分布
状态 特点
EK
四乙胺
极化
稳定直 流电位
相关文档
最新文档