材料力学重点公式(期末必备)
材料力学 -公式汇总-全要点

材料力学公式汇总一、应力与强度条件 1、拉压σmax N=A≤[σ]max4、平面弯曲①σmax=②σtmax=σcmaxMWz≤[σ]max2、剪切τmax=Q≤[τ] A挤压σ挤压=P挤压A≤σ挤压[]Mmaxytmax≤[σtmax] IzM=maxycmax≤[σcnax]IzIz⋅b*③τmax=QmaxSz max≤[τ]3、圆轴扭转τmax=5、斜弯曲σmax= T≤[τ] Wt≤[σ]maxMzMy+WzWy6、拉(压)弯组合σmax=σtmax=NM+AWz≤[σ]maxMzNMzN+ytmax≤[σt] σcmax=ycmax-≤[σc] AIzIzA注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论σr3=②第四强度理论σr4=二、变形及刚度条件 NL1、拉压∆L==EANiLi=EAN(x)dxEA2w2+4τn==22Mw+MnWzWz≤[σ]≤[σ]2w2+3τn22Mw+0.75Mn∑⎰LTiLiT(x)dxTLΦT1800=∑=⋅2、扭转Φ= φ== ( /m)GIpGIpGIpLGIpπ⎰3、弯曲(1)积分法:EIy''(x)=M(x) EIy'(x)=EIθ(x)=⎰M(x)dx+C EIy(x)=[M(x)dx]dx+Cx+D (2)叠加法:f(P1,P2)…=f(P1)+f(P2)+…,θ(P1,P2)=θ(P1)+θ(P2)+…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)MALq⎰⎰PALBBALBMLPL2qL3θB= θB= θB=EI2EI6EIqL4ML2PL3fB= fB= fB=8EI3EI2EIMLMLqL3PL2,θA= θB=θA= θB=θA= θB=6EI3EI24EI16EIqL4ML2PL3fc= fc= fc= 16EI48EI384EI(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)Mi2LiM2LM2(x)dx=∑= U=2EIi2EI2EI⎰(5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)∆i=M(x)∂M(x)∂U=∑dx EI∂Pi∂Pi⎰三、应力状态与强度理论1、二向应力状态斜截面应力σx+σyσx-σyσx-σyσα=+cos2α-τxysin2α τα=sin2α+τxyco2sα 2222、二向应力状态极值正应力及所在截面方位角σx-σy2-2τxyσmaxσx+σy2=±()+τxy tg2α0= σminσx-σy223、二向应力状态的极值剪应力τmax=(σx-σy22)2+τxy0注:极值正应力所在截面与极值剪应力所在截面夹角为454、三向应力状态的主应力:σ1≥σ2≥σ3σ-σ3最大剪应力:τmax=1 25、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变)τxy11μεx=(σx-μσy) εy=(σy-μσx) εz=-(σx+σy) γxy= EEEG(2)、表达形式之二(用应变表示应力)σx=E1-μ2(εx+μεy) σy=E1-μ2(εy+μεx) σz=0 τxy=Gγxy6、三向应力状态的广义胡克定律εx=τxy1σx-μσy+σz (x,y,z) γxy= (xy,yz,zx) EG[()]27、强度理论(1)σr1=σ1≤[σ1] σr2=σ1-μ(σ2+σ3)≤[σ] [σ]=(2)σr3=σ1-σ3≤[σ] σr4=σbnb1(σ1-σ2)2+(σ2-σ3)2+(σ3-σ1)2≤[σ] [σ]=σsns28、平面应力状态下的应变分析εx+εyεx-εy⎛γxy⎫⎪sin2α (1)εα=+cos2α- - ⎪22222⎛εx-εy⎫⎛γxy⎫εmaxεx+εy⎪+ ⎪ =±(2)⎪⎪εmin2⎝2⎭⎝2⎭⎛γxy⎛γα⎫εx-εysin2α+ -⎪= -22⎝2⎭⎝⎫⎪co2sα ⎪⎭γxytg2α0=εx-εy四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)π2EIminπ2E①细长受压杆λ≥λp Pcr= σcr=2 2λ(μL)②中长受压杆λp≥λ≥λs σcr=a-bλ ③短粗受压杆λ≤λs “σcr”=σs 或σba-σsπ2E2、关于柔度的几个公式λ= λp= λs=iσpbμL3、惯性半径公式i=Izd(圆截面 iz=,矩形截面iminA4=b(b为短边长度))五、动载荷(只给出冲击问题的有关公式)能量方程∆T+∆V=∆U 2h冲击系数 Kd=1++(自由落体冲击) Kd=∆st2v0(水平冲击)g∆st六、截面几何性质1、惯性矩(以下只给出公式,不注明截面的形状)dπd4πD42IP=ρdA= 1-α4 α=D3232⎰()bh3hb3Iz=ydA=1-α 64641212Izπd3πD3hb2bh24Wz== 1-αymax326326⎰2πd4πD4((4))2、惯性矩平移轴公式Iz=Izc+a2A。
材料力学公式完全版

材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。
在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。
下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。
2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。
3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。
4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。
5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。
6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。
7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。
8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。
9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。
10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。
11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。
材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的变形、破坏和稳定性等力学性能的学科。
在工程实践中,材料力学公式是工程师们进行材料设计、分析和计算的重要工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家有所帮助。
1. 应力和应变。
在材料力学中,应力和应变是最基本的概念。
应力是单位面积上的内力,通常用σ表示,其公式为:σ = F/A。
其中,F为受力,A为受力面积。
应变是材料单位长度的变形量,通常用ε表示,其公式为:ε = ΔL/L。
其中,ΔL为长度变化量,L为原始长度。
2. 弹性模量。
弹性模量是材料在弹性阶段的应力和应变关系的比例系数,通常用E表示,其公式为:E = σ/ε。
3. 餐极限。
屈服极限是材料在受力作用下开始发生塑性变形的应力值,通常用σy表示。
4. 断裂韧性。
断裂韧性是材料在破坏前所能吸收的能量,通常用K表示,其公式为:K = σ√πc。
其中,σ为应力,c为裂纹长度。
5. 疲劳强度。
疲劳强度是材料在交变应力作用下能够承受的最大应力值,通常用σf表示。
6. 塑性体积变形。
塑性体积变形是材料在塑性变形过程中体积的变化,通常用ΔV表示,其公式为:ΔV = V(ε1-ε2+ε3)。
其中,V为原始体积,ε1、ε2、ε3分别为三个主应变。
7. 岛壳理论。
岛壳理论是用于计算薄壁结构的强度和稳定性的理论,通常用T表示,其公式为:T = P/A。
其中,P为受力,A为受力面积。
8. 塑性流动理论。
塑性流动理论是用于描述金属材料在塑性变形过程中的流动规律的理论,通常用ε表示,其公式为:ε = ln(ε0/εf)。
其中,ε0为初始应变,εf为终止应变。
以上就是一些常用的材料力学公式,希望对大家有所帮助。
在工程实践中,我们可以根据具体情况选择合适的公式进行分析和计算,以保证工程设计的安全可靠性。
材料力学是一个复杂而又有趣的领域,希望大家能够在学习和工作中不断深入研究,提升自己的专业能力。
《材料力学》公式

《材料力学》公式材料力学是研究材料在外力作用下的力学性能和行为的一门学科。
它是工程力学的一个重要分支,广泛应用于工程结构、材料开发和制造等领域。
以下是《材料力学》中常用的一些公式,供参考。
1.应力(σ)和应变(ε)的关系:材料的应力与应变之间存在一定的线性关系,可表示为σ=Eε,其中E为弹性模量。
2.应力的计算:材料在外力作用下受到的内力为应力,可计算为σ=F/A,其中F为作用力,A为受力面积。
3.应变的计算:材料受到外力作用后的形变称为应变,可计算为ε=(ΔL/L),其中ΔL为变形长度,L为初始长度。
4.弹性模量(E):材料在弹性阶段的应力和应变之间的比值称为弹性模量,可表示为E=σ/ε。
5.屈服强度(σy):材料在受到一定应力作用后开始发生塑性变形的最大应力值,常用于评估材料的强度。
6.抗拉强度(σu):材料在拉伸过程中的最大抗拉应力值。
7.韧性(τ):材料在破坏前能吸收的能量,可表示为τ=∫σdε,即韧性为应力-应变曲线下的面积。
8.断后伸长率(Ag):材料在断裂后的伸长量与原始长度的比值,常用于评估材料的延展性。
9.拉伸应力(σ):材料在拉伸过程中受到的应力。
10.断裂韧性(Kc):材料对裂纹扩展的抵抗能力,用来评估材料的断裂性能。
11.断裂韧性(Gc):材料对裂纹扩展的抵抗能力,通常作为评估材料断裂韧性的指标。
12.蠕变:材料在长期受持续应力作用下发生的形变,其速率与应力、温度等因素有关。
13.疲劳:材料在循环应力作用下产生的破坏,通常以疲劳寿命来评估材料的耐久性。
14.断裂力学:研究材料在受到外力作用下产生裂纹并扩展的过程,分析裂纹的尖端应力场、断裂断面等。
15.刚度(k):材料在受到外力作用下的抵抗形变的能力,可表示为k=F/δ,其中F为作用力,δ为形变量。
以上是《材料力学》中的一些常用公式,通过对材料的力学性能和行为的研究,可以更好地理解和应用材料,为工程结构的设计和材料的选择提供科学的依据。
材料力学重点公式(期末必备)PPT课件

① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。 ② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得 。
—该点到圆心的距离。
2020/3/2I8p—极惯性矩,纯几何量,无物理意义。
15
材料力学 第三章 扭 转
例3-5 一内径d=100mm的空心圆轴如图示,已知圆轴受扭矩 T=5kN·m,许用切应力[τ]=80MPa,试确定空心圆轴的壁厚。
材的G值约为80GPa。
弹性模量、泊松比、切变模量之间的关系
G E
2(1 )
注意:剪切胡克定律式只有在切应力不超过材料的某一极限值
时才式适用的。该极限值称为材料的剪切比例极限 p。
2020/3/28
14
材料力学 第三章 扭 转
T
Ip
—横截面上距圆心为处任一点剪应力计算公式
。
3.4.4 公式讨论:
2020/3/28
9
材料力学 第二章 拉伸、压缩与剪切
解:
FN
FR 2
FR
π
( pb
d
d )s in
pbd
0
2
1 ( pbd ) pd b 2 2
2 200 40 MPa 25
2020/3/28
10
材料力学 第二章 拉伸、压缩与剪切
F
p
FF
FN
p
①全应力:p
F cos
A
0
cos
2、变形几何关系
l1 l2 l3 cos
3、物理关系
4、补充方程
FN1l FN3l cos
l1
FN1l
EAcos
EAcos EA
5、求解方程组得
l3
材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
在工程实践中,材料力学公式是工程师们设计和分析结构、零部件等工程问题时必不可少的工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家的工程实践有所帮助。
1. 应力公式。
在材料力学中,应力是指单位面积上的力的大小,通常用σ表示,其公式为:\[ \sigma = \frac{F}{A} \]其中,F为受力,A为受力面积。
2. 应变公式。
应变是指材料在受力作用下产生的变形程度,通常用ε表示,其公式为:\[ \varepsilon = \frac{\Delta L}{L} \]其中,ΔL为长度变化量,L为原始长度。
3. 弹性模量公式。
弹性模量是材料抵抗形变的能力,通常用E表示,其公式为:\[ E = \frac{\sigma}{\varepsilon} \]4. 剪切应力公式。
在材料力学中,剪切应力是指垂直于受力方向的力,通常用τ表示,其公式为:\[ \tau = \frac{F}{A} \]其中,F为受力,A为受力面积。
5. 剪切应变公式。
剪切应变是指材料在受剪切力作用下产生的变形程度,通常用γ表示,其公式为:\[ \gamma = \frac{\Delta x}{h} \]其中,Δx为位移,h为原始长度。
6. 泊松比公式。
泊松比是材料在拉伸或压缩时,在垂直方向上的收缩或膨胀程度的比值,通常用ν表示,其公式为:\[ \nu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,εy为垂直方向的应变,εx为拉伸或压缩方向的应变。
7. 弯曲应力公式。
在材料力学中,弯曲应力是指材料在受弯曲力作用下的应力,其公式为:\[ \sigma = \frac{M \cdot c}{I} \]其中,M为弯矩,c为截面到中性轴的距离,I为惯性矩。
8. 弯曲应变公式。
弯曲应变是指材料在受弯曲力作用下产生的变形程度,其公式为:\[ \varepsilon = \frac{M \cdot c}{E \cdot I} \]其中,M为弯矩,c为截面到中性轴的距离,E为弹性模量,I为惯性矩。
材料力学常用公式

材料力学常用公式材料力学是研究材料在受力下的力学性质和变形行为的学科,它在工程领域中有着广泛的应用。
常用的材料力学公式包括应力、应变、热应变、应力-应变关系等。
下面是一些常用的材料力学公式的介绍:1. 应力(Stress)公式:应力定义为单位面积上的力,常用公式为:σ=F/A其中,σ为应力,F为受力,A为受力面积。
2. 应变(Strain)公式:应变定义为材料单位长度的变化,常用公式为:ε=ΔL/L其中,ε为应变,ΔL为长度变化,L为原始长度。
3. 霍克定律(Hooke's Law):霍克定律描述了弹性固体在小应变下应力和应变的线性关系,常用公式为:σ=Eε其中,σ为应力,ε为应变,E为材料的弹性模量。
4. 应力-应变关系(Stress-Strain Relationship):应力-应变关系用来描述材料在受力下的变形行为,通常用应力与应变的曲线来表示。
其中弹性阶段遵循霍克定律,塑性阶段存在应力和应变不再线性相关的情况。
5.等效应力(von Mises Stress):等效应力是衡量材料在多轴载荷作用下发生破坏的临界值,常用公式为:σ_eq = √(σ_x^2 + σ_y^2 + σ_z^2 - σ_xσ_y - σ_yσ_z -σ_zσ_x + 3τ^2)其中,σ_eq为等效应力,σ_x、σ_y、σ_z为主应力,τ为主应力间的剪应力。
6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸状态下破坏前的最大抗拉应力,常用公式为:σ_u = P_max / A_0其中,σ_u为拉伸强度,P_max为最大拉伸力,A_0为原始横截面积。
7. 弯曲应力(Bending Stress):当材料受弯曲作用时,所产生的应力称为弯曲应力,常用公式为:σ_b=(M*y)/I其中,σ_b为弯曲应力,M为弯矩,y为材料中点位置,I为截面惯性矩。
8. 剪切应力(Shear Stress):剪切应力是材料在剪切载荷作用下的应力,常用公式为:τ=F/A其中,τ为剪切应力,F为剪切力,A为剪切面积。
材料力学公式大全

材料力学公式大全一、轴向拉伸与压缩。
1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(外力沿杆件轴线方向的代数和)2. 应力 - 正应力(σ)- σ=(N)/(A),其中A为杆件的横截面面积。
3. 变形 - 轴向变形(Δ l)- 胡克定律:Δ l=(NL)/(EA),其中L为杆件的原长,E为材料的弹性模量。
4. 应变 - 线应变(varepsilon)- varepsilon=(Δ l)/(l)二、剪切。
1. 内力 - 剪力(V)- 截面法:V=∑ F_外(垂直于杆件轴线方向外力的代数和)2. 应力 - 切应力(τ)- τ=(V)/(A)(A为剪切面面积)3. 剪切胡克定律。
- τ = Gγ,其中G为材料的切变模量,γ为切应变。
三、扭转。
1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(外力偶矩的代数和)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p),在圆轴表面ρ = R时,τ_max=(TR)/(I_p),其中R为圆轴半径,I_p=(π D^4)/(32)(对于实心圆轴,D为直径),I_p=(π(D^4 - d^4))/(32)(对于空心圆轴,d为内径)。
3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(单位为弧度)四、弯曲内力。
1. 剪力(V)和弯矩(M)- 截面法:V=∑ F_外(垂直于梁轴线方向外力的代数和),M=∑ M_外(外力对所求截面形心的力矩代数和)- 剪力图和弯矩图的绘制规则:- 无荷载段:V为常数,M为一次函数(斜直线)。
- 均布荷载段:V为一次函数(斜直线),M为二次函数(抛物线)。
- 集中力作用处:V图有突变(突变值等于集中力大小),M图有折角。
- 集中力偶作用处:V图无变化,M图有突变(突变值等于集中力偶大小)。
五、弯曲应力。
1. 正应力(σ)- 对于梁的纯弯曲:σ=(My)/(I_z),其中y为所求点到中性轴的距离,I_z为截面对中性轴z的惯性矩。
材料力学公式汇总完全版

1截面几何参数【2】2应力与应变3应力状况剖析4内力和内力争5强度盘算序号公式b* = bT(5.11a)(5.11b)(5.11c)(5.11d)=T = ---- < [b ]max七'(实用于脆性材料)b* = b -V( b +b ) _-v (0-T )= (1 +V)T < [b ] T莅] max '< - 一(实用于脆性材料)-(-TmaxL2Tmax](5.11e)(5.12a)(5.12b)(5.13)(5.14a)(5.14b)(5.15a)(5.15a)由强度理论树立的扭转轴的强度前提由扭转实验树立的强度前提平面曲折梁的正应力强度前提平面曲折梁的剪应力强度前提平面曲折梁的主应力强度前提圆截面弯扭组合变形构件的相当弯矩max J WT1 +v=b -b=T1 3maxT/ [b ]T =——-< -_-max ]W2Tb *3max(实用于塑性材料)Y 2 〜-b l + (b -b l + (b -b=1=\: 2=t 3T<[b ]max-0、+ G +Tmax max+Q T -Tmax maxT = T < 风max W T "(实用于塑性材料)T r _ T = <[T ]max WTbt maxbcmaxM r [ 祈Vb tZ|M 用< [b c ]ZVS * r .T = -- Z max <[T ]Zfb * = v'b 2 + 4T 2 <[b ]3b* = ■,:b 2 + 3T 2 <[b ]■M 2 + M 2 + T 2 M=b -b =——Z W y------- = ~W-b》+ G -b》+ G -bJ M2 + M 2 + 0.75T 2 M *~W6刚度校核7压杆稳固性校核8动荷载9能量法和简略超静定问题。
材料力学公式总结完美版

材料力学公式总结完美版材料力学是研究物体变形和破坏行为的一门学科,它涉及材料的弹性、塑性、破坏等方面。
在材料力学中,有许多重要的公式用于描述物体的变形行为和力学特性。
以下是材料力学中一些重要的公式的总结。
1.应变-应力关系在弹性区域内,应变与应力之间存在线性关系,可以用胡克定律来描述:σ=Eε其中,σ是应力,E是弹性模量,ε是应变。
2.应力-应变能力关系材料的应力和应变能力之间存在线性关系,该关系可以用杨氏模量来描述:ε=σ/E其中,ε是应变能力,σ是应力,E是杨氏模量。
3.拉伸变形在拉伸变形中,变形后的长度L和原始长度L0之间存在线性关系,可以用拉伸应变来表示:ε=(L-L0)/L0其中,ε是拉伸应变,L是变形后的长度,L0是原始长度。
4.柯西应力张量柯西应力张量用于描述材料内部的应力状态,它可以用以下公式表示:σ = [σx σxy σxzσyx σy σyzσzx σzy σz]其中,σ是柯西应力张量,σx,σy,σz是应力分量,σxy,σxz,σyx,σyz,σzx,σzy是剪切应力分量。
5.简单剪切应力简单剪切应力是指与横截面积A垂直的平面上的剪切力F和横截面积A之间的比值,可以用以下公式表示:τ=F/A其中,τ是简单剪切应力,F是剪切力,A是横截面积。
6.剪切变形剪切变形是指物体内各处的剪切角度。
在小角度下,剪切变形可以用剪切应变来表示:γ=θL/h其中,γ是剪切应变,θ是变形前后的剪切角度,L是变形前后的长度,h是变形前后的厚度。
7.杨氏模量杨氏模量是描述材料刚度的一项重要指标,可以用以下公式表示:E=σ/ε其中,E是杨氏模量,σ是应力,ε是应变能力。
8.泊松比泊松比是描述材料纵向和横向变形关系的参数,可以用以下公式表示:ν=-εy/εx其中,ν是泊松比,εy是纵向应变,εx是横向应变。
9.体积模量体积模量是描述材料体积变化的一项重要指标,可以用以下公式表示:K=-P/ΔV/V其中,K是体积模量,P是外部施加的压力,ΔV是体积的变化量,V是初始体积。
材料力学公式总结

材料力学公式总结材料力学是研究材料在外力作用下的力学性质和行为的学科。
它的研究对象包括材料的强度、刚度、塑性变形、断裂等方面的性质。
材料力学公式是用来描述和计算材料力学性质的数学表达式。
下面是材料力学公式的总结。
1. 杨氏模量(Young's modulus):杨氏模量是衡量材料刚度的指标,表示材料在拉伸或压缩过程中的应力和应变之比。
杨氏模量的计算公式为:E=σ/ε其中,E为杨氏模量,σ为应力,ε为应变。
2. 泊松比(Poisson's ratio):泊松比是描述材料压缩应变时的纵向收缩和横向膨胀之间的比例关系。
泊松比的计算公式为:ν=-ε横向/ε纵向其中,ν为泊松比,ε横向为横向应变,ε纵向为纵向应变。
3. 斯特劳斯公式(Stress-Strain Curve):斯特劳斯公式描述了材料的应力和应变之间的关系。
在弹性阶段,应力和应变线性相关,即:σ=E*ε其中,σ为应力,E为杨氏模量,ε为应变。
4. 屈服强度(Yield Strength):屈服强度是材料在超过弹性极限后开始发生塑性变形的应力。
屈服强度一般用屈服点上的应力值表示。
5. 弹性极限(Elastic Limit):弹性极限是指材料在不发生塑性变形的最大应力值。
超过弹性极限后,材料将开始发生塑性变形。
6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸过程中最大的抗拉应力,表示材料抵抗破坏的能力。
7. 断裂强度(Fracture Strength):断裂强度是材料发生破裂时所承受的应力。
它是材料在强度和脆性方面的一个重要指标。
8. 斯特劳斯硬化指数(Strain Hardening Exponent):斯特劳斯硬化指数描述了材料在塑性变形时硬度增加的速率。
该指数可以通过材料力学实验和测试获得。
9. 塑性应变(Plastic Strain):塑性应变是材料在超过弹性极限后发生塑性变形的应变量。
10. 线膨胀系数(Linear Expansion Coefficient):线膨胀系数描述了材料在温度变化下长度变化的比例关系。
材料力学常用基本公式

材料力学常用基本公式材料力学是研究材料在外力作用下的变形和破坏行为的学科。
在材料力学中,有一些常用的基本公式被广泛应用于力学分析和设计中。
以下是一些常用的基本公式:1. 应力(Stress)公式:应力是材料内部单位面积上的力。
常用的应力公式包括:- 正应力(Normal Stress)公式:σ = F/A,其中σ表示应力,F 表示作用力,A表示面积。
- 切应力(Shear Stress)公式:τ = F/A,其中τ表示切应力。
2. 应变(Strain)公式:应变是材料的形变量,用来描述材料的变形程度。
常用的应变公式包括:-线性应变公式:ε=(L-L0)/L0,其中ε表示应变,L表示受力前的长度,L0表示受力后的长度。
- 非线性应变公式:ε = ln(L/L0),其中ln表示自然对数。
3. 弹性模量(Young's Modulus)公式:弹性模量是描述材料在弹性变形范围内的刚性程度的量。
常用的弹性模量公式为:E=σ/ε,其中E表示弹性模量,σ表示应力,ε表示应变。
4. 剪切模量(Shear Modulus)公式:剪切模量是描述材料在剪切应力下的变形程度的量。
常用的剪切模量公式为:G=τ/ε,其中G表示剪切模量,τ表示切应力,ε表示剪切应变。
5. 泊松比(Poisson's Ratio)公式:泊松比是描述材料在拉伸或压缩过程中横向变形和纵向变形之间的比例关系的量。
常用的泊松比公式为:ν=-ε横向/ε纵向,其中ν表示泊松比,ε横向表示横向应变,ε纵向表示纵向应变。
6. 弹性能量(Elastic Energy)公式:弹性能量是材料在弹性变形过程中所具有的能量,可通过力和变形之间的关系求得。
常用的弹性能量公式为:U=(1/2)Fε,其中U表示弹性能量,F表示作用力,ε表示应变。
7. 延伸长度(Elongation)公式:延伸长度是材料拉伸变形后的长度增加量,可通过应变和长度之间的关系求得。
材料力学常用公式

- 1 - 材料力学常用公式1、胡克定律:EA l F l N ⋅=∆或εσ⋅=E 2、杆件轴向拉、压强度条件:[]σσ≤=⋅AFN nax max 3、剪切强度条件:[]ττ≤=AF S;挤压强度条件:[]bc bc bc bc F A σσ=≤4、外力偶矩计算公式:min/||||9550||r kWm N n P M =⋅5、圆轴扭转切应力:pI T ρτρ⋅=;扭转强度条件:[]max max t T W ττ=≤6、圆轴扭转变形:p I G lT ⋅⋅=ϕ;扭转刚度条件:[]θπθ≤⋅=0max max 180p GI T7、极惯性矩:Dd,)1(32;32444=-==ααππD I D I p p 空心实心; 扭转截面系数:)1(16;16433αππ-==D W D W p p 空心实心8、梁弯曲正应力:z I yM ⋅=σ;弯曲正应力强度条件:[]σσ≤=zW M max max 9、惯性矩:1212;)1(64;6433444hb I bh I D I D I y z z z ==-==或矩形空心圆实心圆αππ 10、弯曲截面系数:66)1(32;3222433hb W bh W ;D W D W y z z z ==-==或矩形空心圆实心圆αππ11、拉压-弯曲组合变形强度条件:[]][,max max ,max max ,c zN c t z N t W M A F W M A F σσσσ≤-=≤+=12、圆轴弯扭组合变形强度条件:[][]σσσσ≤+=≤+=zr z r W T M W T M 22422375.0或13、压杆临界应力公式:欧拉公式()2222;cr cr EI EF L ππσλμ==;直线公式λσb a cr -= 14、柔度i l μλ=;惯性半径:AI i = 15、压杆的稳定条件:[]cr cr st st A Fn n F F σ==≥ 16、平面应力状态下斜截面应力的一般公式 cos 2sin 222sin 2cos 22x y x yαxy x y xy σσσσσσσαατατατα+-⎧=+-⎪⎪⎨-⎪=+⎪⎩- 2 -17、最大最小正应力:18、主平面方位计算公式:19、面内最大切应力: 20、20、三向应力状态最大切应力:21、胡克定律:21四大强度理论:max 13()2τσσ=-max min 2x y σσσσ+⎫=±⎬⎭132σσσ⎫=±⎬⎭()11231E εσμσσ=-+⎡⎤⎣⎦()22311E εσμσσ=-+⎡⎤⎣⎦()33121Eεσμσσ=-+⎡⎤⎣⎦,11[]r σσσ=≤,313[]r σσσσ=-≤,2123()[]r σσμσσσ=-+≤,4[]r σσ=≤。
材料力学公式完全版

材料力学公式完全版材料力学是研究材料内部力学性能的一门学科。
它是工程学中的一个重要分支,广泛应用于机械、土木、航空航天等领域。
在材料力学中,有一些重要的公式和方程式,下面是材料力学公式的完全版,共包含了应力、应变、变形、强度和刚度等方面的内容。
1.应力方面应力(σ):表示单位面积上的内力。
常用的单位是Pa(帕斯卡)。
σ=F/A其中,F为受力,A为受力面积。
2.应变方面线性弹性应变(ε):表示材料由于受力而发生的形变。
ε=ΔL/L其中,ΔL为长度变化,L为初始长度。
3.变形方面胀缩变形(ΔL):表示材料由于受热导致的体积变化。
ΔL=α×L×ΔT其中,α为热膨胀系数,ΔT为温度变化。
4.应力-应变关系钢材的Hooke定律:描述材料的线性弹性行为。
σ=E×ε其中,E为弹性模量。
5.弯曲方面梁的弯曲应变(ε):表示材料在弯曲时发生的形变。
ε=M/(E×I)其中,M为弯矩,E为弹性模量,I为截面转动惯量。
6.胀缩方面热膨胀(ΔL):表示材料在受热时的线膨胀。
ΔL=α×L×ΔT其中,α为热膨胀系数,L为初始长度,ΔT为温度变化。
7.强度方面拉伸强度(σt):表示材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
8.刚度方面弹性模量(E):表示材料在受力后发生弹性变形的能力。
E=σ/ε其中,σ为应力,ε为应变。
9.复合材料方面拉伸强度(σt):表示复合材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
10.断裂方面断裂强度(σf):表示材料在断裂前能承受的最大应力。
σf=F/A其中,F为断裂力,A为受力面积。
11.龙骨方面龙骨截面面积(A):表示材料的截面面积。
A=b×h其中,b为龙骨宽度,h为龙骨高度。
12.塑性方面屈服强度(σy):表示材料开始产生塑性变形的最大应力。
σy=F/A其中,F为受力,A为受力面积。
材料力学公式大全

材料力学公式大全1. 应力(stress)公式:应力是单位面积上的力,常用符号表示为σ。
在一维情况下,应力公式可以表示为:σ=F/A其中,σ是应力,F是作用力,A是力作用的面积。
2. 应变(strain)公式:应变是用于描述物体形变的量,常用符号表示为ε。
在一维情况下,应变公式可以表示为:ε=ΔL/L0其中,ε是应变,ΔL是变形长度,L0是原始长度。
3. 弹性模量(elastic modulus)公式:弹性模量是衡量材料对外力作用下变形能力的指标,常用符号表示为E。
在一维情况下,弹性模量公式可以表示为:E=σ/ε其中,E是弹性模量,σ是应力,ε是应变。
4. 屈服强度(yield strength)公式:屈服强度是材料在变形过程中开始发生塑性变形的临界应力,常用符号表示为σy。
屈服强度公式可以表示为:σy=Fy/A其中,σy是屈服强度,Fy是屈服点的作用力,A是力作用的面积。
5. 拉伸强度(tensile strength)公式:拉伸强度是材料在拉伸过程中最大的抗拉应力,常用符号表示为σts。
拉伸强度公式可以表示为:σts = Fmax / A其中,σts是拉伸强度,Fmax是最大作用力,A是力作用的面积。
6. 断裂强度(fracture strength)公式:断裂强度是材料在破坏前的最大抗拉应力,常用符号表示为σf。
断裂强度公式可以表示为:σf=Ff/A其中,σf是断裂强度,Ff是破坏点的作用力,A是力作用的面积。
以上是一些常用的材料力学公式,这些公式在材料力学的研究和实际应用中有着重要的作用。
通过对这些公式的使用和理解,我们可以更好地了解材料在受力下的性能和行为,对于材料的设计和实际应用有着重要的指导意义。
材料力学公式大全

材料力学公式大全材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
在工程设计和分析中,材料力学公式起着至关重要的作用。
下面为大家详细介绍一些常见的材料力学公式。
一、应力与应变1、正应力公式:轴向拉伸与压缩时,正应力$\sigma =\frac{F}{A}$,其中$F$ 是轴力,$A$ 是横截面面积。
圆轴扭转时,横截面上的切应力$\tau =\frac{T}{Ip}$,$T$ 是扭矩,$Ip$ 是极惯性矩。
2、线应变公式:轴向拉伸与压缩时,线应变$\epsilon =\frac{\Delta L}{L}$,$\Delta L$ 是长度的改变量,$L$ 是原长。
3、切应变公式:圆轴扭转时,切应变$\gamma =\frac{r\theta}{L}$,$r$ 是半径,$\theta$ 是扭转角,$L$ 是轴的长度。
二、胡克定律1、轴向拉伸与压缩时:$\sigma = E\epsilon$ ,其中$E$ 是弹性模量。
2、剪切胡克定律:$\tau = G\gamma$ ,$G$ 是剪切模量。
三、杆件的内力1、轴力$F_N$ :通过截面法求解,沿杆件轴线方向的内力。
2、扭矩$T$ :外力偶矩对杆件产生的内力。
3、剪力$F_Q$ 和弯矩$M$ :在梁的弯曲分析中,通过截面法求解。
四、梁的弯曲应力1、纯弯曲时的正应力:$\sigma =\frac{M y}{I_z}$,$y$ 是所求应力点到中性轴的距离,$I_z$ 是横截面对于中性轴的惯性矩。
2、横力弯曲时的正应力:需要考虑切应力的影响,进行修正。
五、梁的弯曲变形1、挠度$y$ 和转角$\theta$ 的计算公式:通过积分法或叠加法求解。
2、挠曲线近似微分方程:$EIz''= M(x)$。
六、组合变形1、拉(压)弯组合:分别计算拉伸(压缩)应力和弯曲应力,然后叠加。
2、弯扭组合:先计算弯曲应力和扭转切应力,然后根据强度理论进行强度校核。
材料力学公式超级大汇总

材料力学公式超级大汇总材料力学是研究物体在外力作用下的变形和破坏行为的学科,是工程学基础学科之一、在学习和应用材料力学时,需要掌握各种公式和理论,以便解决实际工程问题。
下面是材料力学中一些常用的公式的超级大汇总。
一、受力分析1.受力平衡条件:对于一个处于静止或运动的物体,受力平衡要求合力和合力矩均为零。
2.力的单位转换:1 N = 1 kg·m/s^23.平行四边形法则:如果两个力的大小、方向和作用线夹角相等,且方向相反,则合力为零。
二、受力元的应力、应变及应变能1.黏性流动模型:取任意的流动规律,流体微团的应变率与应力呈线性关系。
2.应力应变关系:材料的应力与应变之间的关系可以通过材料的应力应变曲线得到。
3.应变能:在外力作用下,物体发生形变时,外力所做的功可储存为应变能。
三、梁的受弯1.简支梁受弯弯矩:梁在距离中点等分的两个端点处受到的弯矩大小相等,方向相反。
2.弯曲应力:横截面上的剪应力分布不均匀,最大剪应力出现在离中轴线最远的位置上。
3.弯曲应变:弯曲应变与剪应力成正比,与距离中轴线的距离成线性关系。
4.一般性弯曲方程:在一般情况下,梁的弯曲方程由横向方程和竖向方程组成。
四、柱的受压1.等径柱受压的轴向力:柱受压时,柱材上任意一截面的轴向力大小相等。
2.压缩应变:柱体受压后,柱体上每个截面上任一点距离该端面的力产生的长度缩短与原长度的比值。
3.应力-应变关系:材料的应力与应变之间的关系可以通过材料的应力应变曲线得到。
五、材料的拉伸和挤压1.应力-应变关系:材料的应力与应变之间的关系可以通过材料的应力应变曲线得到。
2.屈服强度:拉伸试样在加载过程中出现塑性变形的应力大小。
3.断裂强度:拉伸试样失效前材料承受的最大应力。
六、材料的剪切1.剪应力:剪应力是以一个平面上单位面积上的内力(反平行力对)除以单位面积得到的。
2.剪应变:在材料发生剪切形变时,材料上不同层之间的相对位移与剪切面上的偏移量之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学 第二章 拉伸、压缩与剪切
塑性材料制成的杆件受静荷载时,通常可不考虑应力 集中的影响。
均匀的脆性材料或塑性差的材料(如高强度钢)制成的 杆件即使受静荷载时也要考虑应力集中的影响。
非均匀的脆性材料,如铸铁,其本身就因存在气孔等 引起应力集中的内部因素,故可不考虑外部因素引起的应 力集中。
材料力学 第二章 拉伸、压缩与剪切
FN图
kN
60 50
+ 20
1
FN1 A1
0
2
FN 2 A2
60103 4
202
191MPa
3
FN3 A3
50103 4
352
52MPa
材料力学 第二章 拉伸、压缩与剪切
例2-7:试求薄壁圆环在内压力作用下径向截面上 的拉应力。已知:d = 200 mm,δ= 5 mm,p = 2 MPa。
d
dx
—— 扭转角沿长度方向变化率。
材料力学 第三章 扭 转
G
式中:G是材料的一个弹性常数,称为剪切弹性模量,因 无 量纲,故G的量纲与 相同,不同材料的G值可通过实验确定,钢
材的G值约为80GPa。
弹性模量、泊松比、切变模量之间的关系
G E
2(1 )
注意:剪切胡克定律式只有在切应力不超过材料的某一极限值
2、变形几何关系
l1 l2 l3 cos
3、物理关系
4、补充方程
FN1l FN3l cos
l1
FN1l
EAcos
EAcos EA
5、求解方程组得
l3
FN 3l EA
FN1
FN 2
F cos2 1 2 cos3
FN 3
1
2
F cos3
FN1 FN 3 cos2
os60)95.5MPa
0
2
sin2
127.4sin6055.2MPa 2
材料力学 第三章 扭 转
3.4.1. 变形几何关系
tg
G1G dx
d
dx
d
dx
研究横截面上任一点处切应 变随点的位置变化的规律
距圆心为 任一点处的与到圆心的距离成正比。
例2-8 直径为d =1 cm 杆受拉力P =10 kN的作用,试求 最大剪应力,并求与横截面夹角30°的斜截面上的正 应力和剪应力。
0
P A
410000 3.14102
127.4MPa
max 0/2127 .4/263.7MPa
0
2
(1c
os2
)127.4(1c 2
A
0
cos
②正应力:
正应力和切应力的正 负规定:
()
p cos cos2
③切应力:
p
s in
0
2
sin
2
()
()
1) α=00时, σmax=σ 2)α=450时, τmax=σ/2
()
材料力学 第二章 拉伸、压缩与剪切
计算挤压面
②挤压面为弧面,取受力面对半径的投 影面
挤压强度条件: ( bs )max bs
挤压许用应力:由模拟实验测定
材料力学 第二章 拉伸、压缩与剪切
例2-26 图示轴与齿轮的平键联接。已知轴直径d=70mm,键
的尺寸为b×h×l=20×12×100mm,传递的力偶矩
Me=2kN·m,键的许用应力[]=60MPa,[]bs=100MPa。试校
时才式适用的。该极限值称为材料的剪切比例极限 p。
材料力学 第三章 扭 转
T
Ip
—横截面上距圆心为处任一点剪应力计算公式
。
3.4.4 公式讨论:
① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。 ② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得 。
—该点到圆心的距离。
Fbs Abs
Fbs (hl) / 2
95.2MPa
bs
强度满足要求
材料力学 第二章 拉伸、压缩与剪切
例2-4:作图示杆件的轴力图,并求1-1、2-2、3-3截 面的应力。
1 f 30
2 f 20
60kN
40kN
3 f 35
30kN
50kN
FN1 0 FN2 60kN
1
2
3
FN3 50kN
材料力学 第二章 拉伸、压缩与剪切
解:
FN
FR 2
FR
π
( pb
d
d )s in
pbd
0
2
1 ( pbd ) pd b 2 2
2 200 40 MPa 25
材料力学 第二章 拉伸、压缩与剪切
F
p
FF
FN
p
①全应力:p
F cos
材料力学 第二章 拉伸、压缩与剪切
二、拉压杆的胡克定律
F
F
E
l FN l Fl EA EA
※“EA”称为杆的抗拉压刚度。
材料力学 第二章 拉伸、压缩与剪切
超静定结构的求解方法:
1、列出独立的平衡方程:
Fx 0 FN1 FN2
Fy 0 2FN1 cos FN3 F
A
d 2
4
FN
F
d 4PBiblioteka 3.4cm
(2)按钢板剪切强度计算 t
Fs A
u
A dt F u
t F 1.04cm
d u
材料力学 第二章 拉伸、压缩与剪切
挤压应力
d
挤压力
t Fbs
Abs=td
bs
Fbs Abs
①挤压面为平面,计算挤压面就是该面
①按照破坏可能性
1、假设
② 反映受力基本特征 ③ 简化计算
2、计算名义应力
3、确定许用应力
F
F
直接试验结果
材料力学 第二章 拉伸、压缩与剪切
例2-23 如图所示冲床,Fmax=400kN,冲头[σ]=400MPa,冲剪钢 板τu=360 MPa,设计冲头的最小直径值及钢板厚度最大值。 解(1)按冲头的压缩强度计算d
Ip—极惯性矩,纯几何量,无物理意义。
材料力学 第三章 扭 转
例3-5 一内径d=100mm的空心圆轴如图示,已知圆轴受扭矩 T=5kN·m,许用切应力[τ]=80MPa,试确定空心圆轴的壁厚。
核键的强度。
F
n FSn
b
l d
O Me
O
Me
h/2
Fbs
校核键的剪切强度:
FS 2Me / d 57.1kN
AS
bl
校核键的挤压强度:
n Fs n
FS FS 28.6MPa
AS bl
Fbs FS 57.1kN Abs hl/2
bs