最新六年级下册圆柱的表面积和体积练习题
六年级数学下册一课一练 圆柱的表面积和体积练习测试卷含答案
圆柱的表面积和体积练习测试卷一.选择题(共5小题)1.用一张长6.28cm,宽1dm的长方形铁皮,围成一个圆柱体,这个圆柱的侧面积是()A.31.4cm2B.3.14 m2C.12.56cm2 D.62.8cm22.一个底面积是20cm2的圆柱,斜着截去了一段后,剩下的图形如图.截后剩下的图形的体积是()cm3.A.140B.180C.220D.3603.压路机的前轮转动一周所压过的路面面积是指()A.前轮的表面积B.前轮的侧面积C.前轮的底面积4.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4B.602.88C.628D.904.325.一个圆柱的底面直径扩大到原来的2倍,高缩小到原来的,圆柱的侧面积()A.扩大到原来的2倍B.缩小到原来的C.不变D.扩大到原来的3倍二.填空题(共10小题)6.一根长20分米的圆柱形圆木,锯成两段后表面积增加了4平方分米,它原来的体积是立方分米.7.一个长4cm,宽3cm的长方形,以一条边为轴旋转一周,得到一个,侧面积是cm2,体积最大是cm3.8.如图,把一个底面半径为4cm的圆柱,拼成一个近似的长方体,长方体的表面积比圆柱增加了40cm2,圆柱的高是cm,体积是cm3.9.李叔叔家新买了一台空调,外观为圆柱体,底面半径30厘米,高约2米,这台空调所占空间为立方米,若需要一个防尘罩,至少需要布平方米.10.一个圆柱体,底面积是3dm2,高是15cm,它的体积是dm3.11.一个正方体棱长之和是36厘米,把它挖去一个最大的圆柱体,圆柱体的体积是立方厘米.12.把一个圆柱的侧面展开是一个正方形,这个圆柱的底面直径是4厘米,圆柱的高是厘米.(ð取3.14)13.一根长1米的圆柱形木棒,锯成3段后,表面积增加了64平方分米,这根木棒的体积是.14.如图,一个内直径是6cm的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是12cm,把瓶盖拧紧后倒置放平,无水部分高8cm.小兰喝了ml水;这个瓶子的容积是ml.15.一个高20cm的圆柱,沿着底面直径切成两个半圆柱,表面积增加360cm2,这个圆柱的底面直径是cm.三.判断题(共5小题)16.两个圆柱的侧面积相等,它们的高一定相等.(判断对错)17.圆柱的表面积等于底面积乘高.(判断对错)18.圆柱的侧面展开是正方形时,这个圆柱的高和它的底面周长相等.(判断对错)19.压路机滚筒滚动一周能压多少路面是求滚筒的侧面积.(判断对错)20.做一个铁皮烟囱需要多少铁皮,就是求烟囱的表面积.(判断对错)四.计算题(共2小题)21.计算下面圆柱的表面积和体积.22.如图,阴影部分的材料正好可以做成一个圆柱,求这个圆柱的体积.五.应用题(共5小题)23.一种无盖的消防桶是圆柱形.底面半径是10cm,高40cm.现在要在桶的外侧面和外底面涂上油漆.(1)涂油漆的面积是多少平方厘米?(2)这个消防桶的容积是多少立方厘米?(桶的厚度忽略不计).24.一种圆柱形的铁皮通风管长4米,横截面的直径是3分米,要做20节这样的通风管,至少需要多少平方分米的铁皮?25.100个无盖油桶的外表面要刷油添,每平方米需油漆0.5kg.每个油桶的底面直径是40cm,高是60cm.刷这100个无盖油桶需多少千克油漆?26.一个圆柱形水桶,从里面量底面直径是2.6米,深2米,这个水桶能装多少吨花水?(每立方米水重1吨)(最后结果保留一位小数)27.一个盛有水的圆柱形容器的底面直径是10厘米,水深12厘米,放入一块石头,从容器中溢出50毫升水,这个容器的高是22厘米,石头的体积是多少?圆柱的表面积和体积练习测试卷参考答案与试题解析一.选择题(共5小题)1.用一张长6.28cm,宽1dm的长方形铁皮,围成一个圆柱体,这个圆柱的侧面积是()A.31.4cm2B.3.14 m2C.12.56cm2 D.62.8cm2【解答】解:1dm=10cm6.28×10=62.8(平方厘米)答:这个圆柱的侧面积是62.8平方厘米.故选:D.【点评】此类题解答的关键是理解圆柱侧面积的计算方法,然后根据计算公式代入数据解答即可.2.一个底面积是20cm2的圆柱,斜着截去了一段后,剩下的图形如图.截后剩下的图形的体积是()cm3.A.140B.180C.220D.360【解答】解:20×(7+11)÷2=20×18÷2=180(立方厘米)答:节后剩下的图形的体积是180立方厘米.故选:B.【点评】此题主要考查圆柱体积公式的灵活运用,关键是熟记公式.3.压路机的前轮转动一周所压过的路面面积是指()A.前轮的表面积B.前轮的侧面积C.前轮的底面积【解答】解:压路机的前轮转动一周所压过的路面面积是指前轮的侧面积.故选:B.【点评】压路机的前轮的形状是圆柱,这个圆柱是侧躺在地面,转动一周,所压过的面正好是圆柱的侧面.4.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4B.602.88C.628D.904.32【解答】解:以10厘米为底面直径,高是8厘米;3.14×(10÷2)2×8=3.14×25×8=78.5×8=628(立方厘米答:这个圆柱体的体积是628立方厘米.故选:C.【点评】解答此题的关键是,如何将一个长方体削成一个最大的圆柱,并找出它们之间的联系,再根据相应的公式解决问题.5.一个圆柱的底面直径扩大到原来的2倍,高缩小到原来的,圆柱的侧面积()A.扩大到原来的2倍B.缩小到原来的C.不变D.扩大到原来的3倍【解答】解:根据圆的周长公式:C=ðd,因为圆周率一定,所以圆的周长和直径成正比例,因此,一个圆柱的底面直径扩大到原来的2倍,也就是圆柱的底面周长扩大2倍,高缩小到原来的,所以圆柱的侧面积不变.故选:C.【点评】此题考查的目的是理解掌握圆柱的侧面积公式及应用,以及因数与积的变化规律及应用.二.填空题(共10小题)6.一根长20分米的圆柱形圆木,锯成两段后表面积增加了4平方分米,它原来的体积是40立方分米.【解答】解:4÷2×20=2×20=40(立方分米)答:它用来的体积是40立方分米.故答案为:40.【点评】此题考查的目的是理解掌握圆柱表面积的意义,以及圆柱体积公式的灵活运用,关键是熟记公式.7.一个长4cm,宽3cm的长方形,以一条边为轴旋转一周,得到一个圆柱,侧面积是75.36cm2,体积最大是150.72cm3.【解答】解:(1)以4厘米的边为轴旋转一周得到的圆柱的底面半径是3厘米,高是4厘米;2×3.14×3×4=18.84×4=75.36(平方厘米);3.14×32×4=3.14×9×4=28.26×4=113.04(立方厘米);(2)以3厘米的边为轴旋转一周得到的圆柱的底面半径是4厘米,高是3厘米;2×3.14×4×3=25.12×3=75.36(平方厘米);3.14×42×3=3.14×16×3=50.24×3=150.72(立方厘米);150.72>113.04;答:得到一个圆柱,侧面积是75.36平方厘米,体积最大是150.72立方厘米.故答案为:圆柱、75.36、150.72.【点评】此题考查的目的是理解掌握圆柱的特征,以及圆柱的侧面积公式、体积公式的灵活运用,关键是熟记公式.8.如图,把一个底面半径为4cm的圆柱,拼成一个近似的长方体,长方体的表面积比圆柱增加了40cm2,圆柱的高是5cm,体积是251.2cm3.【解答】解:40÷2÷4=5(厘米)3.14×42×5=3.14×16×5=50.24×5=251.2(立方厘米)答:圆柱的高是5厘米,体积是251.2立方厘米.故答案为:5、251.2.【点评】此题考查的目的是理解掌握圆柱体积公式的推导过程及应用,以及圆柱体积公式的灵活运用,关键是熟记公式.9.李叔叔家新买了一台空调,外观为圆柱体,底面半径30厘米,高约2米,这台空调所占空间为0.5652立方米,若需要一个防尘罩,至少需要布 4.0506平方米.【解答】解:30厘米=0.3米3.14×0.32×2=3.14×0.09×2=0.5652(立方米)3.14×0.3×2×2+3.14×0.32=3.14×1.2+3.14×0.09=3.14×1.29=4.0506(平方米)答:这台空调所占空间为0.5652立方米,至少需要布4.0506平方米.故答案为:0.5652;4.0506.【点评】解答此题主要分清所求物体的形状,转化为求有关圆柱体表面积的问题,把实际问题转化为数学问题,再运用圆柱的表面积公式和体积公式解决问题.10.一个圆柱体,底面积是3dm2,高是15cm,它的体积是 4.5dm3.【解答】解:15厘米=1.5分米答:它的体积是4.5立方分米.故答案为:4.5.【点评】此题主要考查圆柱体积公式的灵活运用,关键是熟记公式,注意:底面积与高单位的对应.11.一个正方体棱长之和是36厘米,把它挖去一个最大的圆柱体,圆柱体的体积是21.195立方厘米.【解答】解:36÷12=3(厘米)3.14×(3÷2)2×3=3.14×2.25×3=7.065×3=21.195(立方厘米)答:圆柱的体积是21.195立方厘米.故答案为:21.195.【点评】此题主要考查正方体的棱长总和公式、圆柱的体积搜狗的灵活运用,关键是熟记公式.12.把一个圆柱的侧面展开是一个正方形,这个圆柱的底面直径是4厘米,圆柱的高是12.56厘米.(ð取3.14)【解答】解:3.14×4=12.56(厘米)答:圆柱的高是12.56厘米.故答案为:12.56.【点评】解答此题的关键是根据侧面展开图是一个正方形,明确圆柱的高与底面周长相等.13.一根长1米的圆柱形木棒,锯成3段后,表面积增加了64平方分米,这根木棒的体积是160立方分米.【解答】解:1米=10分米64÷4×10=16×10=160(立方分米)答:这根木棒的体积是160立方分米.【点评】抓住圆柱的切割特点和增加的表面积,先求出圆柱的底面积是解决此类问题的关键.14.如图,一个内直径是6cm的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是12cm,把瓶盖拧紧后倒置放平,无水部分高8cm.小兰喝了226.08ml水;这个瓶子的容积是565.2ml.【解答】解:3.14×(6÷2)2×8=3.14×9×8=28.26×8=226.08(立方厘米)3.14×(6÷2)2×(12+8)=3.14×9×20=28.26×20=565.2(立方厘米)226.08立方厘米=226.08毫升565.2立方厘米=565.2毫升答:小红喝了226.08毫升,这个瓶子的容积是565.2毫升.故答案为:226.08、565.2.【点评】此题主要考查圆柱的容积(体积)公式在实际生活中的应用,关键是熟记公式,注意:体积单位与容积单位之间的换算.15.一个高20cm的圆柱,沿着底面直径切成两个半圆柱,表面积增加360cm2,这个圆柱的底面直径是9cm.【解答】解:360÷2÷20=180÷20=9(厘米)答:这这个圆柱的底面直径是9厘米.故答案为:9.【点评】此题主要考查圆柱的表面积公式、体积公式的灵活运用,关键是熟记公式,重点是明确:表面积增加的360平方厘米是两个截面的面积,每个截面的长等于圆柱的高,宽等于圆柱的直径.三.判断题(共5小题)16.两个圆柱的侧面积相等,它们的高一定相等.×(判断对错)【解答】解:侧面积相等的两个圆柱,它们的底面周长和高不一定相等.如侧面积是6.28,即底面周长×高=6.28,因为3.14×2=6.28,6.28×1=6.28,所以它们的底面周长和高不一定相等.原题说法错误.故答案为:×.【点评】本题考查了圆柱的侧面积公式的应用和积一定,一个数越大另一个数就越小的规律.17.圆柱的表面积等于底面积乘高.×(判断对错)【解答】解:圆柱的表面积=侧面积+底面积×2,因此,圆柱的表面积等于底面积乘高.这种说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握圆柱表面积的意义,以及圆柱的表面积公式.18.圆柱的侧面展开是正方形时,这个圆柱的高和它的底面周长相等.√(判断对错)【解答】解:如果圆柱的侧面展开是一个正方形,那么这个圆柱的底面周长和高相等.所以题干说法正确.故答案为:√.【点评】此题考查的目的是理解掌握圆柱侧面展开图的特征.19.压路机滚筒滚动一周能压多少路面是求滚筒的侧面积.√(判断对错)【解答】解:因为压路机的滚筒是一个圆柱,所以压路机滚筒滚动一周能压多少路面是求滚筒的侧面积.因此,压路机滚筒滚动一周能压多少路面是求滚筒的侧面积.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握圆柱的特征,以及圆柱侧面积的意义.20.做一个铁皮烟囱需要多少铁皮,就是求烟囱的表面积.×(判断对错)【解答】解:因为,烟囱是通风的,是没有上下两个底的所以,做一个铁皮烟囱需要多少铁皮,就是求烟囱的侧面积,题干的说法是错误的.故答案为:×.【点评】此题主要考查了圆柱体的侧面积的意义,及在生活中的实际应用.四.计算题(共2小题)21.计算下面圆柱的表面积和体积.【解答】解:侧面积:3.14×8×10=251.2(平方厘米)表面积:251.2+3.14×(8÷2)2×2=251.2+3.14×16×2=251.2+100.48=351.68(平方厘米)体积:3.14×(8÷2)2×10=3.14×16×10=502.4(立方厘米);答:表面积是351.68平方厘米,体积是502.4立方厘米.【点评】此题主要考查圆柱的侧面积、表面积、体积的计算,直接根据它们的计算公式,把数据代入公式解答即可.22.如图,阴影部分的材料正好可以做成一个圆柱,求这个圆柱的体积.【解答】解:设圆柱的底面直径为x分米,3.14x+x=16.564.14x=16.56x=4.3.14×(4÷2)2×(4×2)=3.14×4×8=12.56×8=100.48(立方分米),答:这个圆柱的体积是100.48立方分米.【点评】此题主要考查圆的周长公式、圆柱的体积公式的灵活运用,关键是熟记公式.五.应用题(共5小题)23.一种无盖的消防桶是圆柱形.底面半径是10cm,高40cm.现在要在桶的外侧面和外底面涂上油漆.(1)涂油漆的面积是多少平方厘米?(2)这个消防桶的容积是多少立方厘米?(桶的厚度忽略不计).【解答】解:(1)3.14×102+3.14×10×2×40=3.14×100+3.14×800=3.14×900=2826(平方厘米)答:涂油漆的面积是2826平方厘米;(2)3.14×102×40=3.14×100×40=12560(立方厘米)答:这个消防桶的容积是12560立方厘米.【点评】解答此题主要分清所求物体的形状,转化为求有关圆柱体表面积的问题,把实际问题转化为数学问题,再运用圆柱的表面积公式和体积公式解决问题.24.一种圆柱形的铁皮通风管长4米,横截面的直径是3分米,要做20节这样的通风管,至少需要多少平方分米的铁皮?【解答】解:4米=40分米3.14×3×40×20=3.14×2400=7536(平方分米)答:至少需要7536平方分米的铁皮.【点评】此题考查了圆柱的侧面积公式的计算应用,此类问题要结合生活实际进行解答.25.100个无盖油桶的外表面要刷油添,每平方米需油漆0.5kg.每个油桶的底面直径是40cm,高是60cm.刷这100个无盖油桶需多少千克油漆?【解答】解:侧面积=底面周长×高=3.14×40×60=7536(平方厘米)底面积S=ðr2=3.14×(40÷2)2=1256(平方厘米)表面积=侧面积+底面积=7536+1256=8792(平方厘米)=0.8792(平方米)0.8792×0.5×100=43.96(千克)答:需要43.96千克油漆.【点评】在物体表面刷漆的问题,都是求物体的表面积,搞清物体的形状和面数解答即可.26.一个圆柱形水桶,从里面量底面直径是2.6米,深2米,这个水桶能装多少吨花水?(每立方米水重1吨)(最后结果保留一位小数)【解答】解:2.6÷2=1.3(米)3.14×1.32×2=3.14×3.38=10.6032(立方米)10.6032×1≈10.6(吨)答:这个水桶大约能装10.6吨水.【点评】从里面量圆柱的底面直径和高,根据V=Sh算出来的是圆柱的容积.27.一个盛有水的圆柱形容器的底面直径是10厘米,水深12厘米,放入一块石头,从容器中溢出50毫升水,这个容器的高是22厘米,石头的体积是多少?【解答】解:50毫升=50立方厘米3.14×(10÷2)2×(22﹣12)+50=3.14×25×10+50=78.5×10+50=785+50=835(立方厘米)答:石头的体积是835立方厘米.【点评】此题主要考查圆柱的容积(体积)公式的灵活运用,关键是熟记公式,注意:容积单位与体积单位之间的换算.。
六年级下册试题一课一练2.1圆柱的表面积和体积(含答案)
六年级下册试题一课一练2.1圆柱的表面积和体积(含答案)4、求下列圆柱体的侧面积(1)底面半径是3厘米,高是4厘米。
(3)底面周长是12.56厘米,高是4厘米。
5、求下列圆柱体的表面积(1)底面半径是4厘米,高是6厘米。
(3)底面周长是25.12厘米,高是8厘米。
6、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
8、一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥20千克,一共要用多少千克水泥?一、圆柱体积1、求下面各圆柱的体积。
(3)底面直径是8米,高是10米。
(4)底面周长是25.12分米,高是2分米。
2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。
这支牙膏可用36次。
该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。
这样,这一支牙膏只能用多少次?5、一根圆柱形钢材,截下1.5米,量得它的横截面的直径是4厘米。
如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。
)6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?7、右图是一个圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米。
这个圆柱体积减少多少立方厘米?参考答案(四):上图上面从左到右依次是:底面、侧面积中间从左到右依次是:高、高下面从左到右依次是:底面、底面周长、底面周长下面( A )图形旋转会形成圆柱。
六年级数学下册圆柱的表面积和体积综合练习(完整版)
圆柱的表面积和体积的综合练习学生/课程年级学科授课教师日期时段核心内容掌握圆柱的表面积和体积的计算课型一对一/一对N教学目标1、理解圆柱表面积意义,掌握体积公式的推导方法。
2、能够灵活运用公式计算圆柱的表面积与体积。
3、掌握圆柱体的切割类型题目。
重、难点重点:教学目标1、2 难点:教学目标3知识导图导学一圆柱表面积和体积求解的特殊类型知识点讲解 1:求圆柱体表面积的特殊类型侧面积:圆柱的侧面展开是一个长方形或正方形,长方形的长等于圆柱的底面周长(C=2πr=(d),宽等于圆柱的高。
S侧=Ch =2πr h=πdh 侧面积公式的应用:①已知C和h,求S侧;②已知d和h,求S侧;③已知r和h,求S侧。
表面积:S表=S侧+2S底=Ch+2πr²表面积公式的应用:①求一个底面积和侧面积(无盖的桶、茶杯、水池等);②只求侧面积(压路机、排水管、烟囱、通风管等)。
例 1. 如下图,高都是10厘米,底面半径分别是3厘米、6厘米的两个圆柱组成了一个几何体。
求这个物体的表面积。
例 2. 在一个棱长4厘米的正方体的六个面各中心挖去一个底面半径为1厘米,深1厘米的圆柱,求它的表面积。
例 3. 有一张长方形铁皮如图所示,剪下阴影部分制成圆柱体(单位:厘米),求这个圆柱体的表面积。
(提示:圆桶盖的周长等于长方形铁皮的长)我爱展示1.圆柱的高都是1米,底面半径分别是1米、2米和3米。
求这个物体的表面积。
2.有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的直孔,如下图.圆孔的直径是4厘米,孔深5厘米.如果将这个零件接触空气部分涂上防锈漆,一共需涂多少平方厘米?3.把一张铁皮如图所示剪开,正好能制成一只铁皮汽油桶,求所制汽油桶的表面积。
知识点讲解 2:求圆柱体体积的特殊类型体积:V柱=S=πr²h圆柱体积公式的应用:①已知S底和h,求V;②已知r和h,求V;③已知d和h,求V;④已知C和h,求V。
人教版数学六年级下册:《圆柱体的体积和表面积》练习题
人教版数学六年级下册:《圆柱体的体积和表面积》练习题一、选择题1. 一个圆柱体的高是4cm,底面半径是2cm,则该圆柱体的体积是多少?A. 8cm³B. 16cm³C. 32cm³D. 64cm³2. 一个圆柱体的高是8cm,底面半径是3cm,则该圆柱体的表面积是多少?A. 24cm²B. 48cm²C. 72cm²D. 96cm²3. 一个圆柱体的体积是24cm³,底面半径是2cm,则该圆柱体的高是多少?A. 2cmB. 3cmC. 4cmD. 6cm4. 一个圆柱体的表面积是48cm²,底面半径是3cm,则该圆柱体的高是多少?A. 2cmB. 4cmC. 6cmD. 8cm二、计算题1. 一个圆柱体的高为6cm,底面直径为4cm,求该圆柱体的体积和表面积。
答案:- 体积:V = πr²h = π(2cm)²(6cm) = 24πcm³ (约75.4cm³)- 表面积:S = 2πr² + 2πrh = 2π(2cm)² + 2π(2cm)(6cm) = 8πcm² + 24πcm² = 32πcm² (约100.5cm²)2. 一个圆柱体的体积是50.24cm³,底面直径为8cm,求该圆柱体的高。
答案:已知体积V = πr²h,底面直径为8cm,则底面半径 r = 4cm。
代入已知值:50.24cm³ = π(4cm)²h解方程,求得h ≈ 2cm,所以该圆柱体的高约为2cm。
六年级下册数学圆柱圆锥练习题(含答案)
六年级下册数学圆柱圆锥练习题(含答案)一、1. 一个圆柱的底面直径为8厘米,高为10厘米,求其体积和表面积。
解:圆柱的体积公式为V = πr^2h,表面积公式为S = 2πr(r+h)。
其中r为底面半径,h为高度。
先求出底面半径r = 8/2 = 4厘米。
体积V = π(4^2)×10 = 160π≈ 502.65 cm^3表面积S = 2π×4(4+10) = 2π×4×14 ≈ 351.86 cm^22. 一个圆锥的底面半径为6厘米,高为8厘米,求其体积和表面积。
解:圆锥的体积公式为V = 1/3πr^2h,表面积公式为S = πr(r+√(r^2+h^2))。
先求出底面半径r = 6厘米。
体积V = 1/3π(6^2)×8 = 96π≈ 301.59 cm^3表面积S = π×6(6+√(6^2+8^2)) ≈ 150.80 cm^2二、3. 一个圆柱的底面直径是12.6厘米,高是16厘米,求其体积和表面积。
解:首先计算底面半径r = 12.6/2 = 6.3厘米。
体积V = π(6.3^2)×16 = 633.6π≈ 1991.05 cm^3表面积S = 2π×6.3(6.3+16) ≈ 570.97 cm^24. 一个圆锥的底面直径是9.8厘米,高是12厘米,求其体积和表面积。
解:先计算底面半径r = 9.8/2 = 4.9厘米。
体积V = 1/3π(4.9^2)×12 ≈ 237.67 cm^3表面积S = π×4.9(4.9+√(4.9^2+12^2)) ≈ 145.55 cm^2三、5. 一个圆柱的底面半径是5厘米,高是18厘米,求其体积和表面积。
解:底面半径r = 5厘米。
体积V = π(5^2)×18 = 450π≈ 1413.72 cm^3表面积S = 2π×5(5+18) ≈ 376.99 cm^26. 一个圆锥的底面半径是7厘米,高是10厘米,求其体积和表面积。
新人教版六年级数学下册第三单元圆柱与圆锥的体积表面积计算题
新人教版六年级数学下册第三单元圆柱与圆锥的体积表面积计算题一、圆柱的体积计算题1. 某个圆柱的底面半径是5厘米,高度是8厘米,求该圆柱的体积。
解答:圆柱的体积公式为V = πr^2h ,其中 r 为底面半径,h 为高度。
代入已知数据得V = π × 5^2 × 8 = 200π(cm^3)。
2. 一个圆柱的体积是1500π(cm^3),底面半径是10厘米,求该圆柱的高度。
解答:圆柱的体积公式为V = πr^2h ,其中 r 为底面半径,h 为高度。
代入已知数据得1500π = π × 10^2 × h ,解得 h = 15(cm)。
二、圆锥的体积计算题3. 某个圆锥的底面半径是6厘米,高度是10厘米,求该圆锥的体积。
解答:圆锥的体积公式为V = (1/3)πr^2h ,其中 r 为底面半径,h 为高度。
代入已知数据得V = (1/3)π × 6^2 × 10 = 120π(cm^3)。
4. 一个圆锥的体积是450π(cm^3),底面半径是9厘米,求该圆锥的高度。
解答:圆锥的体积公式为V = (1/3)πr^2h ,其中 r 为底面半径,h 为高度。
代入已知数据得450π = (1/3)π × 9^2 × h ,解得 h = 5(cm)。
三、圆柱和圆锥的表面积计算题5. 某个圆柱的底面半径是4厘米,高度是6厘米,求该圆柱的表面积。
解答:圆柱的表面积公式为S = 2πrh + 2πr^2 ,其中 r 为底面半径,h 为高度。
代入已知数据得S = 2π × 4 × 6 + 2π × 4^2 = 48π(cm^2)。
6. 一个圆锥的底面半径是8厘米,高度是12厘米,求该圆锥的表面积。
解答:圆锥的表面积公式为S = πrl + πr^2 ,其中 r 为底面半径,l 为斜高。
斜高 l 可由勾股定理计算,l = √(r^2 + h^2) ,其中 r 为底面半径,h 为高度。
六年级下学期数学 圆柱的表面积和体积 应用题训练30题。后面带答案
六年级下学期数学圆柱的表面积和体积应用题训练30题。
后面带答案1、一个边长为5分米的正方形纸片卷成圆柱筒,求该圆柱的侧面积。
2、压路机的前轮是圆柱形,底面直径1.2米,轮宽1.8米。
前轮滚动一周,压过的路面的面积是多少平方米?3、压路机的前轮是圆柱形,底面直径1米,轮宽1.5米。
前轮滚动一周,压过的路面的面积是多少平方米?4、一段圆钢长4米,底面半径是5厘米,将其平均分成3段后,表面积增加了多少平方厘米?5、一个圆柱粮囤,如果它的高增加2米,表面积就增加62.8平方米,该粮囤占地多少平方米?6、在一个高为6分米的圆柱形水桶里装了半桶水,把里面的水倒出12升后,剩下的水恰好占水桶容积的30%,该水桶的底面积是多少平方分米?7、将一个横截面积为正方形的长方体削成一个最大的圆锥,已知圆锥的底面周长是6.28厘米,高为5厘米,该长方体的体积是多少立方厘米?8、一个圆柱形水池的底面直径是8米,池深2米,如果要在水池的底面和四周池壁抹上水泥,抹上水泥的面积是多少平方米?9、XXX做了一个圆柱形的抱枕,长80厘米,底面直径是18厘米,如果侧面用花布,底面用黄色的布,两种布各需要多少?10、一个圆柱形铁皮水桶(无盖),高12分米,底面直径是高的2/3,做这个水桶大约需要用多少铁皮?(用进一法,得数保留一位小数)11、将一个圆柱的侧面沿着高展开,得到一个边长是31.4厘米的正方形,求该圆柱的表面积?12、一段长2米的圆柱形木料,从一段截去0.4米厚的一段后,原木料的表面积减少了1.256平方米,原来木料的表面积是多少平方米?13、将高都是1厘米,底面半径分别为3厘米、2厘米、1厘米的三个圆柱叠成一个立体图形,求该立体图形的表面积。
14、一根2米长的圆柱形木料,横截面的半径是10厘米,沿横截面的直径垂直锯开,分成相等的两块,每块的体积和表面积各是多少?15、XXX拿了一张长方形铁皮做油桶,做油桶的师傅根据铁皮的形状和大小量了量,标上了长度(如右图),你能算一算做成的这个油桶的表面积是多少吗?16、用铁皮做一个如图所示的工件(两端不封闭),需要铁皮多少平方厘米?17、挖一个圆柱形蓄水池,底面半径是5米,深是4米,该蓄水池可蓄水多少立方米?18、一个圆柱的底面半径为2厘米,侧面展开后正好是一个正方形,该圆柱的体积是多少立方分米?19、请计算下图所示的长方体的体积,单位为分米。
2020年___版六年级下圆柱的表面积体积练习题
2020年___版六年级下圆柱的表面积体积练习题2020年___版六年级下圆柱的表面积体积练题一、填空题。
1.圆柱的侧面积加上底面积,就是圆柱的表面积。
2.把圆柱体的侧面沿着它的高展开,得到一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高;也可以得到一个正方形,这时圆柱的底面半径和高相等。
3.计算做一个圆柱形的茶叶筒要用多少铁皮,要计算圆柱的表面积。
4.计算做一个圆柱形的烟囱要用多少铁皮,要计算圆柱的侧面积。
5.计算做一个没有盖的圆柱形水桶要用多少铁皮,要计算圆柱的侧面积。
6.一个圆柱,它的高是8厘米,侧面积是200.96平方厘米,它的底面积是25平方厘米。
7.2.6米=260厘米,48分米=0.48米,7.5平方分米=750平方厘米,9300平方厘米=9.3平方米。
8.把一个圆柱体的侧面展开后,正好得到一个边长为15.7厘米的正方形,圆柱体的高是15.7厘米。
9.将一根长5米的圆柱形木料锯成2段,表面积增加60平方分米。
这根木料的底面面积是10平方分米。
10.把一个底面积是15.7平方厘米的圆柱,切成两个同样大小的圆柱,表面积增加了31.4平方厘米。
11.一个圆柱的底面半径和高都是2米,它的侧面积是12.56平方米,表面积是25.12平方米。
12.一个圆柱体的底面半径是3厘米,将它锯成两个圆柱体后表面积增加18.84平方厘米。
13.一个圆柱体底面周长是12.56厘米,高是10厘米,它的侧面积是125.6平方厘米,表面积是314平方厘米。
14.把一个底面直径和高都是2分米的圆柱,切拼成一个近似的长方体,这个长方体底面的长约是6.28分米,宽约是4分米,底面积约是25.12平方分米,体积约是25.12立方分米。
15.一个圆柱体的侧面积是12.56平方厘米,底面半径是2分米,它的高是5厘米。
16.把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是40平方分米.二、判断题1 / 81.两个圆柱体的侧面积相等,它们的底面积一定也相等。
最新六年级圆柱表面积和体积练习题
六年级圆柱表面积和体积练习题
精品好资料-如有侵权请联系网站删除
六年级圆柱表面积和体积练习题
1、把一个高是6分米的圆柱,沿着底面直径竖直切开,平均分成两半,表面积增加48平方分米。
原来这个圆柱的体积是多少立方分米?
练习:把两个完全一样的半个圆柱合并成一个圆柱,底面半径是3厘米,表面积减少72平方厘米。
现在这个圆柱的侧面积是多少平方厘米?
2、把一个长3分米的圆柱,平均分成两段圆柱,表面积增加6.28平方分米。
原来这个圆柱体积是多少立方分米?
练习:把3完全一样的圆柱,连接成一个大圆柱,长9厘米,表面积减少12.56平方分米。
原来每个圆柱的体积是多少立方厘米?
精品好资料-如有侵权请联系网站删除。
扬州苏教版六年级数学下册《圆柱表面积和体积的综合练习》优质PPT课件
∏ ×8 ×3.5 =28∏(平方米)
28∏+16∏ = 44∏ (平方米)
答:抹水泥部分面积是44∏平方米。
(4)如果在水池1米处画一条水位线,水位线长多少米?
∏ ×8 =8∏(米)
∏ ×152 ×2=450∏(平方厘米) ∏ ×15×2×20=600∏(平方厘米) 450∏+600∏ = 1050∏ (平方厘米)
答:做这个蛋糕盒大约要硬纸板1050∏平方厘米。
∏ ×22 =4∏(平方米) ∏ ×2×2×15 ÷ 2=30∏(平方米) 4∏+30∏ = 34∏ (平方米)
答:搭建这个大棚大约要34∏平方米的塑料薄膜。
∏ ×2×2×15 ÷ 2=30∏(立方米) 答:大棚的空间大约有30∏立方米。
15.玲玲把一块长方体(如下图)橡皮泥捏成一个 高8厘米的圆柱。捏成的圆柱底面积是多少平方厘 米?
4
厘 米
6厘米
6 × 3 × 4=72(立方厘米) 72 ÷ 8=9(平方厘米)
答:捏成的圆柱的底面积是9平方厘米。
1.一根圆柱形木料,长2米.把它横截成4段,表面 积增加了1884平方厘米。这根木料的体积是多少 立方厘米?
2.一根圆柱形木料,底面直径是20厘米,沿底面 直径把它纵剖成2部分,表面积增加了6000平方 厘米。这根木料体积是多少立方厘米 ?
1m 2m
2 ∏m 5m 10 ∏ m2 12 ∏ m3
∏ ×(40÷2)2 ×50 = ∏ ×400×50 =20000 ∏(立方厘米) =20 ∏(升) 答:它的容积是20 ∏升。
0.85× 20 ∏ = 17 ∏(千克) 答:这个油桶可装柴油17 ∏千克。
∏ ×(40÷2)2 ×2= 800∏(平方厘米)
苏教版 小学数学 六年级 下册 圆柱的表面积和体积练习 PPT课件
一个底面积+侧面积
(2)底面积:π×(8÷2)²=16π(平方米) 侧面积:π×8×3.5=28π(平方米) 16π+ 28π=44π(平方米) 答:抹水泥部分的面积是 44 π平方米。
表面积=侧面积+2个底面积
高20厘米
(1)侧面积:2π×15×20=600π(平方厘米) 底面积:π×15²=225π(平方厘米) 表面积:侧面积+2×底面积 600π+ 2×225π=1050π(平方厘米)
答:做这个蛋糕盒大约要用硬纸板1050 π平方厘米。
半径15厘米
表面积=侧面积+2个底面积
彩带长=4条直径+4条高+打结处15厘米 (2)15×2×4 + 20×4 + 15
= 120 + 80 + 15 = 215(厘米) 答:至少需要彩带215厘米。
半径2米
15米
一个底面积+半个侧面积
(1)底面积:π×2²=4π(平方米) 半个侧面积:2π×2×15÷2=30π(平方米)
4π+30π=34π(平方米)
答:覆盖在这个大棚上的塑料薄膜约有34π平方米。
半径2米
15米
圆柱体积的一半
(2)π×2²×15÷2 =π×60÷2 =30π(立方米)
答:大棚内的空间大约有30 π立方米。
长方体的体积=圆柱的体积
8厘米
?平方厘米
解:设圆柱的底面积是x平方厘米 。
8x=6×3×4
8x=72
12 π m² 5π m³
6.28×5+π×1²×2 =10 π+2 π =12 π
(1) π×(40÷2)²×50 = π×400×50 = 20000π(立方厘米)
六年级数学下册一课一练 圆柱的表面积和体积练习测试卷含答案
圆柱的表面积和体积练习测试卷一.选择题(共5小题)1.用一张长6.28cm,宽1dm的长方形铁皮,围成一个圆柱体,这个圆柱的侧面积是()A.31.4cm2B.3.14 m2C.12.56cm2 D.62.8cm22.一个底面积是20cm2的圆柱,斜着截去了一段后,剩下的图形如图.截后剩下的图形的体积是()cm3.A.140B.180C.220D.3603.压路机的前轮转动一周所压过的路面面积是指()A.前轮的表面积B.前轮的侧面积C.前轮的底面积4.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4B.602.88C.628D.904.325.一个圆柱的底面直径扩大到原来的2倍,高缩小到原来的,圆柱的侧面积()A.扩大到原来的2倍B.缩小到原来的C.不变D.扩大到原来的3倍二.填空题(共10小题)6.一根长20分米的圆柱形圆木,锯成两段后表面积增加了4平方分米,它原来的体积是立方分米.7.一个长4cm,宽3cm的长方形,以一条边为轴旋转一周,得到一个,侧面积是cm2,体积最大是cm3.8.如图,把一个底面半径为4cm的圆柱,拼成一个近似的长方体,长方体的表面积比圆柱增加了40cm2,圆柱的高是cm,体积是cm3.9.李叔叔家新买了一台空调,外观为圆柱体,底面半径30厘米,高约2米,这台空调所占空间为立方米,若需要一个防尘罩,至少需要布平方米.10.一个圆柱体,底面积是3dm2,高是15cm,它的体积是dm3.11.一个正方体棱长之和是36厘米,把它挖去一个最大的圆柱体,圆柱体的体积是立方厘米.12.把一个圆柱的侧面展开是一个正方形,这个圆柱的底面直径是4厘米,圆柱的高是厘米.(ð取3.14)13.一根长1米的圆柱形木棒,锯成3段后,表面积增加了64平方分米,这根木棒的体积是.14.如图,一个内直径是6cm的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是12cm,把瓶盖拧紧后倒置放平,无水部分高8cm.小兰喝了ml水;这个瓶子的容积是ml.15.一个高20cm的圆柱,沿着底面直径切成两个半圆柱,表面积增加360cm2,这个圆柱的底面直径是cm.三.判断题(共5小题)16.两个圆柱的侧面积相等,它们的高一定相等.(判断对错)17.圆柱的表面积等于底面积乘高.(判断对错)18.圆柱的侧面展开是正方形时,这个圆柱的高和它的底面周长相等.(判断对错)19.压路机滚筒滚动一周能压多少路面是求滚筒的侧面积.(判断对错)20.做一个铁皮烟囱需要多少铁皮,就是求烟囱的表面积.(判断对错)四.计算题(共2小题)21.计算下面圆柱的表面积和体积.22.如图,阴影部分的材料正好可以做成一个圆柱,求这个圆柱的体积.五.应用题(共5小题)23.一种无盖的消防桶是圆柱形.底面半径是10cm,高40cm.现在要在桶的外侧面和外底面涂上油漆.(1)涂油漆的面积是多少平方厘米?(2)这个消防桶的容积是多少立方厘米?(桶的厚度忽略不计).24.一种圆柱形的铁皮通风管长4米,横截面的直径是3分米,要做20节这样的通风管,至少需要多少平方分米的铁皮?25.100个无盖油桶的外表面要刷油添,每平方米需油漆0.5kg.每个油桶的底面直径是40cm,高是60cm.刷这100个无盖油桶需多少千克油漆?26.一个圆柱形水桶,从里面量底面直径是2.6米,深2米,这个水桶能装多少吨花水?(每立方米水重1吨)(最后结果保留一位小数)27.一个盛有水的圆柱形容器的底面直径是10厘米,水深12厘米,放入一块石头,从容器中溢出50毫升水,这个容器的高是22厘米,石头的体积是多少?圆柱的表面积和体积练习测试卷参考答案与试题解析一.选择题(共5小题)1.用一张长6.28cm,宽1dm的长方形铁皮,围成一个圆柱体,这个圆柱的侧面积是()A.31.4cm2B.3.14 m2C.12.56cm2 D.62.8cm2【解答】解:1dm=10cm6.28×10=62.8(平方厘米)答:这个圆柱的侧面积是62.8平方厘米.故选:D.【点评】此类题解答的关键是理解圆柱侧面积的计算方法,然后根据计算公式代入数据解答即可.2.一个底面积是20cm2的圆柱,斜着截去了一段后,剩下的图形如图.截后剩下的图形的体积是()cm3.A.140B.180C.220D.360【解答】解:20×(7+11)÷2=20×18÷2=180(立方厘米)答:节后剩下的图形的体积是180立方厘米.故选:B.【点评】此题主要考查圆柱体积公式的灵活运用,关键是熟记公式.3.压路机的前轮转动一周所压过的路面面积是指()A.前轮的表面积B.前轮的侧面积C.前轮的底面积【解答】解:压路机的前轮转动一周所压过的路面面积是指前轮的侧面积.故选:B.【点评】压路机的前轮的形状是圆柱,这个圆柱是侧躺在地面,转动一周,所压过的面正好是圆柱的侧面.4.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4B.602.88C.628D.904.32【解答】解:以10厘米为底面直径,高是8厘米;3.14×(10÷2)2×8=3.14×25×8=78.5×8=628(立方厘米答:这个圆柱体的体积是628立方厘米.故选:C.【点评】解答此题的关键是,如何将一个长方体削成一个最大的圆柱,并找出它们之间的联系,再根据相应的公式解决问题.5.一个圆柱的底面直径扩大到原来的2倍,高缩小到原来的,圆柱的侧面积()A.扩大到原来的2倍B.缩小到原来的C.不变D.扩大到原来的3倍【解答】解:根据圆的周长公式:C=ðd,因为圆周率一定,所以圆的周长和直径成正比例,因此,一个圆柱的底面直径扩大到原来的2倍,也就是圆柱的底面周长扩大2倍,高缩小到原来的,所以圆柱的侧面积不变.故选:C.【点评】此题考查的目的是理解掌握圆柱的侧面积公式及应用,以及因数与积的变化规律及应用.二.填空题(共10小题)6.一根长20分米的圆柱形圆木,锯成两段后表面积增加了4平方分米,它原来的体积是40立方分米.【解答】解:4÷2×20=2×20=40(立方分米)答:它用来的体积是40立方分米.故答案为:40.【点评】此题考查的目的是理解掌握圆柱表面积的意义,以及圆柱体积公式的灵活运用,关键是熟记公式.7.一个长4cm,宽3cm的长方形,以一条边为轴旋转一周,得到一个圆柱,侧面积是75.36cm2,体积最大是150.72cm3.【解答】解:(1)以4厘米的边为轴旋转一周得到的圆柱的底面半径是3厘米,高是4厘米;2×3.14×3×4=18.84×4=75.36(平方厘米);3.14×32×4=3.14×9×4=28.26×4=113.04(立方厘米);(2)以3厘米的边为轴旋转一周得到的圆柱的底面半径是4厘米,高是3厘米;2×3.14×4×3=25.12×3=75.36(平方厘米);3.14×42×3=3.14×16×3=50.24×3=150.72(立方厘米);150.72>113.04;答:得到一个圆柱,侧面积是75.36平方厘米,体积最大是150.72立方厘米.故答案为:圆柱、75.36、150.72.【点评】此题考查的目的是理解掌握圆柱的特征,以及圆柱的侧面积公式、体积公式的灵活运用,关键是熟记公式.8.如图,把一个底面半径为4cm的圆柱,拼成一个近似的长方体,长方体的表面积比圆柱增加了40cm2,圆柱的高是5cm,体积是251.2cm3.【解答】解:40÷2÷4=5(厘米)3.14×42×5=3.14×16×5=50.24×5=251.2(立方厘米)答:圆柱的高是5厘米,体积是251.2立方厘米.故答案为:5、251.2.【点评】此题考查的目的是理解掌握圆柱体积公式的推导过程及应用,以及圆柱体积公式的灵活运用,关键是熟记公式.9.李叔叔家新买了一台空调,外观为圆柱体,底面半径30厘米,高约2米,这台空调所占空间为0.5652立方米,若需要一个防尘罩,至少需要布 4.0506平方米.【解答】解:30厘米=0.3米3.14×0.32×2=3.14×0.09×2=0.5652(立方米)3.14×0.3×2×2+3.14×0.32=3.14×1.2+3.14×0.09=3.14×1.29=4.0506(平方米)答:这台空调所占空间为0.5652立方米,至少需要布4.0506平方米.故答案为:0.5652;4.0506.【点评】解答此题主要分清所求物体的形状,转化为求有关圆柱体表面积的问题,把实际问题转化为数学问题,再运用圆柱的表面积公式和体积公式解决问题.10.一个圆柱体,底面积是3dm2,高是15cm,它的体积是 4.5dm3.【解答】解:15厘米=1.5分米答:它的体积是4.5立方分米.故答案为:4.5.【点评】此题主要考查圆柱体积公式的灵活运用,关键是熟记公式,注意:底面积与高单位的对应.11.一个正方体棱长之和是36厘米,把它挖去一个最大的圆柱体,圆柱体的体积是21.195立方厘米.【解答】解:36÷12=3(厘米)3.14×(3÷2)2×3=3.14×2.25×3=7.065×3=21.195(立方厘米)答:圆柱的体积是21.195立方厘米.故答案为:21.195.【点评】此题主要考查正方体的棱长总和公式、圆柱的体积搜狗的灵活运用,关键是熟记公式.12.把一个圆柱的侧面展开是一个正方形,这个圆柱的底面直径是4厘米,圆柱的高是12.56厘米.(ð取3.14)【解答】解:3.14×4=12.56(厘米)答:圆柱的高是12.56厘米.故答案为:12.56.【点评】解答此题的关键是根据侧面展开图是一个正方形,明确圆柱的高与底面周长相等.13.一根长1米的圆柱形木棒,锯成3段后,表面积增加了64平方分米,这根木棒的体积是160立方分米.【解答】解:1米=10分米64÷4×10=16×10=160(立方分米)答:这根木棒的体积是160立方分米.【点评】抓住圆柱的切割特点和增加的表面积,先求出圆柱的底面积是解决此类问题的关键.14.如图,一个内直径是6cm的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是12cm,把瓶盖拧紧后倒置放平,无水部分高8cm.小兰喝了226.08ml水;这个瓶子的容积是565.2ml.【解答】解:3.14×(6÷2)2×8=3.14×9×8=28.26×8=226.08(立方厘米)3.14×(6÷2)2×(12+8)=3.14×9×20=28.26×20=565.2(立方厘米)226.08立方厘米=226.08毫升565.2立方厘米=565.2毫升答:小红喝了226.08毫升,这个瓶子的容积是565.2毫升.故答案为:226.08、565.2.【点评】此题主要考查圆柱的容积(体积)公式在实际生活中的应用,关键是熟记公式,注意:体积单位与容积单位之间的换算.15.一个高20cm的圆柱,沿着底面直径切成两个半圆柱,表面积增加360cm2,这个圆柱的底面直径是9cm.【解答】解:360÷2÷20=180÷20=9(厘米)答:这这个圆柱的底面直径是9厘米.故答案为:9.【点评】此题主要考查圆柱的表面积公式、体积公式的灵活运用,关键是熟记公式,重点是明确:表面积增加的360平方厘米是两个截面的面积,每个截面的长等于圆柱的高,宽等于圆柱的直径.三.判断题(共5小题)16.两个圆柱的侧面积相等,它们的高一定相等.×(判断对错)【解答】解:侧面积相等的两个圆柱,它们的底面周长和高不一定相等.如侧面积是6.28,即底面周长×高=6.28,因为3.14×2=6.28,6.28×1=6.28,所以它们的底面周长和高不一定相等.原题说法错误.故答案为:×.【点评】本题考查了圆柱的侧面积公式的应用和积一定,一个数越大另一个数就越小的规律.17.圆柱的表面积等于底面积乘高.×(判断对错)【解答】解:圆柱的表面积=侧面积+底面积×2,因此,圆柱的表面积等于底面积乘高.这种说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握圆柱表面积的意义,以及圆柱的表面积公式.18.圆柱的侧面展开是正方形时,这个圆柱的高和它的底面周长相等.√(判断对错)【解答】解:如果圆柱的侧面展开是一个正方形,那么这个圆柱的底面周长和高相等.所以题干说法正确.故答案为:√.【点评】此题考查的目的是理解掌握圆柱侧面展开图的特征.19.压路机滚筒滚动一周能压多少路面是求滚筒的侧面积.√(判断对错)【解答】解:因为压路机的滚筒是一个圆柱,所以压路机滚筒滚动一周能压多少路面是求滚筒的侧面积.因此,压路机滚筒滚动一周能压多少路面是求滚筒的侧面积.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握圆柱的特征,以及圆柱侧面积的意义.20.做一个铁皮烟囱需要多少铁皮,就是求烟囱的表面积.×(判断对错)【解答】解:因为,烟囱是通风的,是没有上下两个底的所以,做一个铁皮烟囱需要多少铁皮,就是求烟囱的侧面积,题干的说法是错误的.故答案为:×.【点评】此题主要考查了圆柱体的侧面积的意义,及在生活中的实际应用.四.计算题(共2小题)21.计算下面圆柱的表面积和体积.【解答】解:侧面积:3.14×8×10=251.2(平方厘米)表面积:251.2+3.14×(8÷2)2×2=251.2+3.14×16×2=251.2+100.48=351.68(平方厘米)体积:3.14×(8÷2)2×10=3.14×16×10=502.4(立方厘米);答:表面积是351.68平方厘米,体积是502.4立方厘米.【点评】此题主要考查圆柱的侧面积、表面积、体积的计算,直接根据它们的计算公式,把数据代入公式解答即可.22.如图,阴影部分的材料正好可以做成一个圆柱,求这个圆柱的体积.【解答】解:设圆柱的底面直径为x分米,3.14x+x=16.564.14x=16.56x=4.3.14×(4÷2)2×(4×2)=3.14×4×8=12.56×8=100.48(立方分米),答:这个圆柱的体积是100.48立方分米.【点评】此题主要考查圆的周长公式、圆柱的体积公式的灵活运用,关键是熟记公式.五.应用题(共5小题)23.一种无盖的消防桶是圆柱形.底面半径是10cm,高40cm.现在要在桶的外侧面和外底面涂上油漆.(1)涂油漆的面积是多少平方厘米?(2)这个消防桶的容积是多少立方厘米?(桶的厚度忽略不计).【解答】解:(1)3.14×102+3.14×10×2×40=3.14×100+3.14×800=3.14×900=2826(平方厘米)答:涂油漆的面积是2826平方厘米;(2)3.14×102×40=3.14×100×40=12560(立方厘米)答:这个消防桶的容积是12560立方厘米.【点评】解答此题主要分清所求物体的形状,转化为求有关圆柱体表面积的问题,把实际问题转化为数学问题,再运用圆柱的表面积公式和体积公式解决问题.24.一种圆柱形的铁皮通风管长4米,横截面的直径是3分米,要做20节这样的通风管,至少需要多少平方分米的铁皮?【解答】解:4米=40分米3.14×3×40×20=3.14×2400=7536(平方分米)答:至少需要7536平方分米的铁皮.【点评】此题考查了圆柱的侧面积公式的计算应用,此类问题要结合生活实际进行解答.25.100个无盖油桶的外表面要刷油添,每平方米需油漆0.5kg.每个油桶的底面直径是40cm,高是60cm.刷这100个无盖油桶需多少千克油漆?【解答】解:侧面积=底面周长×高=3.14×40×60=7536(平方厘米)底面积S=ðr2=3.14×(40÷2)2=1256(平方厘米)表面积=侧面积+底面积=7536+1256=8792(平方厘米)=0.8792(平方米)0.8792×0.5×100=43.96(千克)答:需要43.96千克油漆.【点评】在物体表面刷漆的问题,都是求物体的表面积,搞清物体的形状和面数解答即可.26.一个圆柱形水桶,从里面量底面直径是2.6米,深2米,这个水桶能装多少吨花水?(每立方米水重1吨)(最后结果保留一位小数)【解答】解:2.6÷2=1.3(米)3.14×1.32×2=3.14×3.38=10.6032(立方米)10.6032×1≈10.6(吨)答:这个水桶大约能装10.6吨水.【点评】从里面量圆柱的底面直径和高,根据V=Sh算出来的是圆柱的容积.27.一个盛有水的圆柱形容器的底面直径是10厘米,水深12厘米,放入一块石头,从容器中溢出50毫升水,这个容器的高是22厘米,石头的体积是多少?【解答】解:50毫升=50立方厘米3.14×(10÷2)2×(22﹣12)+50=3.14×25×10+50=78.5×10+50=785+50=835(立方厘米)答:石头的体积是835立方厘米.【点评】此题主要考查圆柱的容积(体积)公式的灵活运用,关键是熟记公式,注意:容积单位与体积单位之间的换算.。
完整版六年级下册圆柱的表面积和体积练习题
典型例题讲解【例1】冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么粉刷树干的面积是指()A.底面积B.侧面积C.表面积D.体积【例2】一个圆锥的体积是d立方米,和它等底等高的圆柱体的体积是(立方米。
A・a4-3 B・2a 1 C・3& D・a的立方【例3]甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱()A.高一定相等B.侧面积一定相等C•侧面积和高都相等D•侧面积和高都不相等【例4】一个圆柱的侧面积是12.56平方厘米,底面半径是2厘米,那么这个圆柱的体积是()【分析】圆柱体的体积也可以这样算:侧面积x半径宁2【例5】把一个棱长是2分米的正方体削成一个最大的圆柱体,它的侧面积是()平方厘米。
A. 6. 28B. 12. 56C. 18. 84D. 25. 12与圆的知识联系:一个正方形画一个最大的圆【例6】一根圆柱形木材长20分米,把截成4个相等的圆柱体。
表面积增加T 8. 84JF方分米。
截后每段圆柱体积是()。
画图表示:【例7】一个近似圆锥形的沙堆,底面直径和高相等,已知底面周长是15.7 米,每立方米沙重2吨。
这堆沙重多少吨?403、一个圆柱形奶粉盒的底面半径是5厘米,高是20厘米,它的容积是多少立方厘米?4、把一块棱长12分米的正方体木料加工成一个体积最大的圆柱体,这个圆柱体的体积是多少?三选择:(1)一只铁皮水桶能装水多少升是求水桶的()A侧面积B表面积、C容积、D体积(2)做一只圆柱体的油桶,至少要用多少铁皮是求油桶的()A侧面积B、表面积C、容积D、体积(3)做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的()A侧面积B、表面积C、容积D、体积(4)求一段圆柱形钢条有多少立方米,是求它的()A侧面积B、表面积C、容积D、体积二、深化练习1、一个圆柱的体积是94. 2平方厘米,底面直径是4厘米,它的高是多少?2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?3、用铁皮制10节同样大小的通风管,每节长5分米,底面直径1. 2分米,至少需要多少平方分米铁皮?4、一种圧路机的滚筒是圆柱形的筒宽1. 5米,直径是0. 8米。
六年级下册圆柱表面积和体积练习
六年级下册圆柱表面积和体积练习应用题1.一圆柱的底面周长为314M,高2M,求这个圆柱的表面积和体积2.一圆柱截去2M后,表面积减少62.8平方米,求截去部分的体积3.一圆柱的侧面展开后是一个边长为2M的正方形,求这个圆柱的表面积和体积4.一圆柱的增高1M后,体积增加了12.56立方米,原来圆柱高2M,求原来圆柱的表面积和体积5、一个圆柱,表面积是345.4平方厘米,底半径是5厘米,求它的高。
6、把一个高为5厘米的圆柱从直径处沿高剖成两上半圆柱,这两个半圆柱的表面积比原来增加80平方厘米,求原来圆柱的表面积。
7、一个长方体木块,长10厘米,宽8厘米,高4厘米,把它削成一个圆柱,求削成圆柱体积最大是多少?8、把一个长2米的圆柱木料戴成4段,表面积增加了56.52平方厘米,求原来木料的体积9、一个圆柱高为15厘米,把它的高增加2厘米后表面积增加25.12平方厘米,求原来圆柱的体积。
10.一个圆柱高为20厘米,如果把高减少3厘米,它的表面积就减少31.68平方厘米,求原来圆柱的体积。
11.把一个底半径为5厘米的圆柱铁块放入一个底半径10厘米,高14厘米的容器里,水面上升了3厘米,求这个圆柱铁块的体积。
12、把一个底半径为5厘米的圆柱铁块放入一个底半径10厘米,高14厘米的容器里,水面上升了3厘米,求这个圆柱铁块的高。
13、一个圆柱体的无盖铁皮水桶,底面直径3分米,高是4.5分米,做这个水桶至少需要铁皮多少平方分米?(得数保留整十平方分米)14、一台压路机的前轮是圆柱体,轮宽2 m,直径1.2 m.如果它转动5圈,一共压路多少平方米?15、一个圆柱形的粮仓, 从里面量得底面直径是3米,装有2.5米高的小麦. 如果每立方米小麦重0.7吨, 这个粮仓装有多少吨的小麦?16、在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高1.5米。
每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)。
人教版六年级下册数学圆柱表面积和体积练习题
人教版六年级下册数学圆柱表面积和体积练习题圆柱表面积和体积练题一、选择题1.圆柱体的底面半径和高都扩大2倍,它的体积扩大()倍.答案:④82.体积单位和面积单位相比较,().答案:①体积单位大3.等底等高的圆柱体、正方体、长方体的体积相比较,().答案:④一样大二、填空题1.0.9平方米=()平方分米答案:9002.3立方米5立方分米=()立方米答案:3.053.4.5立方分米=()立方分米()立方厘米答案:4500,4.一个棱长为4厘米的正方体,它的表面积是().答案:965.一个圆柱体的底面半径是4厘米,高6厘米,它的侧面积是(),表面积是(),体积是().答案:75.36,113.04.301.446.一个圆柱体的底面直径是4厘米,高8厘米,它的侧面积是(),表面积是(),体积是().答案:100.48,150.72.402.127.一个圆柱体的底面周长是6.28分米,高2分米,它的侧面积是(),表面积是(),体积是().答案:12.56,22.12.12.568.一个圆柱体的侧面展开图是边长为31.4厘米的正方形,这个圆柱体的底面积(1个)是()平方厘米,这个圆柱体的体积是()立方厘米.答案:100,3149.圆柱体的底面周长是62.8厘米,高是20厘米,这圆柱体的表面积是(),体积是().答案:1884.8..410.一个圆柱体,它的高增加3厘米,侧面积就增加18.84平方厘米,这个圆柱体的底面积是().答案:1211.一个高5厘米的圆柱体,沿底面直径将圆柱体锯成两块,其表面积增加40平方厘米,原来这个圆柱体的体积是().答案:157.0812.一个圆柱体的体积是125.6立方厘米.底面直径是4厘米,它的侧面积是()平方厘米.答案:125.6三、判断题1.一个正方体切成两个体积相等的长方体后,每个长方体的表面积是原正方体的1/2.(错误)2.正方体的表面积是6平方厘米,它的体积一定是6立方厘米.(错误)3.所有圆的直径都相等.(正确)4.一张长40厘米,宽15厘米的长方形卡纸,围成一个圆柱纸筒,它的侧面积是600平方厘米.(错误)5.一个圆柱的高缩小2倍,底面半径扩大2倍,体积不变.(正确)四、应用题1.把一个棱长是6分米的正方体木块,削成一个最大的圆柱体,这个圆柱体的体积是多少立方分米?答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、一个圆柱形奶粉盒的底面半径是5厘米,高是20厘米,它的容积是多少立方厘米?
4、把一块棱长12分米的正方体木料加工成一个体积最大的圆柱体,这个圆柱体的体积是多少?
三选择:(1)一只铁皮水桶能装水多少升是求水桶的()
A侧面积 B表面积、 C容积、 D体积
(2)做一只圆柱体的油桶,至少要用多少铁皮是求油桶的()
A侧面积 B、表面积 C、容积 D、体积
(3)做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的()
A 侧面积 B、表面积 C、容积 D、体积
(4)求一段圆柱形钢条有多少立方米,是求它的()
A 侧面积 B、表面积 C、容积 D、体积
二、深化练习
1、一个圆柱的体积是94.2平方厘米,底面直径是4厘米,它的高是多少?
2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?
3、用铁皮制10节同样大小的通风管,每节长5分米,底面直径1.2分米,至少需要多少平方分米铁皮?
4、一种压路机的滚筒是圆柱形的筒宽1.5米,直径是0.8米。
这种压路机每分钟向前滚动5周。
这种压路机1分钟压路多少平方米?
5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,
(1) 要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?
(2) 这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)
6、做一个底面直径是4分米,高是5分米的圆柱形铁皮油桶,
(1) 做这个铁皮油桶,至少要用铁皮多少平方分米?( 得数用进一法保留整平方分米)
(2) 这个油桶里装了4/5的油,这些油重多少千克?(每升油重0.85千克,得数保留整千克数)
7、一根长4米,底面直径4厘米的圆柱形钢材,把它锯成同样长的3段,表面积比原来增加了多少平方厘米?
8、只列式不计算:用一块边长是9.42分米的正方形铁皮配上一个地面,做成一个圆柱形铁皮水桶。
(1)这个水桶的底面半径是多少?
(2)这个水桶的侧面积是多少?
1、一个圆柱的高是5厘米,侧面展开是一个长为31.4厘米的长方形.这个圆
柱体积是多少立方厘米?
3、一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱体积最大是多少立方厘米?
4、一根圆柱形木材长2米,把它截成相等的4段后,表面积增加了18.84平方厘米。
截成后每段圆木的体积是多少立方厘米?
7、下图是一个长15厘米,宽6厘米、高15厘米的长方体钢制机器零件,中间有一个底面半径为5厘米的圆柱形空洞,求这个零件的体积。