函数与不等式问题的解题技巧

合集下载

数学解题技巧:函数不等式问题

数学解题技巧:函数不等式问题

第三讲 函数与不等式问题【考点透视】1.了解映射的概念,理解函数的概念.2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程.3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 7.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力.8.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式.9.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题.10.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力. 11.能较灵活的使用不等式的基本知识、基本方法,解决有关不等式的问题.12.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、分析几何等各部分知识中的使用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在使用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.【例题分析】 1.函数的定义域及其求法函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会使用用函数的定义域解决有关问题. 例1.已知函数()f x 的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M ∩N=(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅ 命题意图: 本题主要考查含有分式、无理式和对数的函数的定义域的求法.解:函数()f x =的定义域M={}1,x x < g(x)=ln(1)x +的定义域N={}1,x x >-∴M ∩N={|11}x x -<<. 故选C例2.函数y ( )(A )(3,+∞) (B )[3, +∞) (C )(4, +∞) (D )[4, +∞) 命题意图: 本题主要考查含有无理式和对数的函数的定义域的求法.解:由20 4.log 20x x x >⎧⇒>⎨->⎩,故选D.2.求函数的反函数求函数的反函数,有助与培养人的逆向思维能力和深化对函数的定义域、值域,以及函数概念的理解.例3.函数22,0,0x x y x x ≥⎧=⎨-<⎩ 的反函数是( ) (A),020xx y x ⎧≥⎪=< (B)2,00x x y x ≥⎧=< (C),020xx y x ⎧≥⎪=⎨⎪<⎩(D)2,00x x y x ≥⎧⎪=⎨<⎪⎩ 命题意图: 本题主要考查有关分段函数的反函数的求法.()121:2,.(),(0);22,0,()0.,020.yxy x x f x x y x y f x x xx y x --=∴=∴=≥=-<∴=<⎧≥⎪∴=⎨⎪<⎩解又故选C.例4.已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 命题意图: 本题主要考查反函数的求法及待定系数法等知识.解:()()11112,,.2222y x a x y a y x a x a =-∴=+∴=+=+与3y bx =+比较得a =6,1.2b =故填162;3.复合函数问题复合函数问题,是新课程、新高考的重点.此类题目往往分为两类:一是结合函数分析式的求法来求复合函数的值.二是使用已知函数定义域求复合函数的定义域.例5.对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①②B.①③C.②D.③命题意图: 本题主要考查利用复合函数和函数单调性等知识解决问题的能力.解:22()(2),(2)f x x f x x =-∴+=是偶函数,又函数2()(2)f x x =-开口向上且在()-∞2,上是减函数,在(2)+∞,上是增函数.故能使命题甲、乙均为真的函数仅有2()(2)f x x =-.故选C例6.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________.命题意图: 本题主要考查代数式恒等变形和求复合函数的值的能力. 解:由()()12f x f x +=,得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+.4.函数的单调性、奇偶性和周期性函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.例7.已知函数()1,1xf x a z =-+,若()f x 为奇函数,则a =________.命题意图: 本题主要考查函数的分析式的求解以及函数的奇偶性使用. 常规解法:由f(x)为奇函数,所以f(x)+f(-x)=0,即,0121121=+-++--x xa a .2112212112112121=++⋅=⎪⎭⎫ ⎝⎛+++=∴-x x x x a 应填21.巧妙解法:因为f(x)为奇函数,所以f(0)=0,即.21,01210=∴=+-a a 应填21.点评:巧妙解法巧在利用了f(x)为奇函数,所以f(0)=0,这一重要结论.例8. ()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件命题意图: 本题主要考查两个函数的加法代数运算后的单调性以及充分条件和必要条件的相关知识.解 先证充分性:因为()f x ,()g x 均为偶函数, 所以()(),f x f x -=()()g x g x -=,有()()()()()()h x f x g x f x g x h x -=-+-=+=,所以 ()h x 为偶函数.反过来,若()h x 为偶函数,()f x ()g x 不一定是偶函数.如2()h x x =,(),f x x =2()g x x x =-,故选B.方法二:可以选取两个特殊函数进行验证. 故选B点评:对充要条件的论证,一定既要证充分性,又要证必要性,二着缺一不可.同时,对于抽象函数,有时候可以选取特殊函数进行验证. 5.函数的图象与性质函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想.例9.函数y=1+a x (0<a <1)的反函数的图象大致是 ( )(A ) (B ) (C ) (D )命题意图: 本题主要考查对数函数的图象,互为反函数图象间关系及对数的运算性质等知识.解:∵y=1+a x (0<a <1),∴()()1log (1),01a f x x a -=-<<.此函数图象是由函数()()log ,01a f x x a =<<向右平移一个单位得到的.故选A. 6. 函数综合问题函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样. 这里主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养读者的思维和创新能力. 例10.已知.|1|)(22kx x x x f ++-= (Ⅰ)若k = 2,求方程0)(=x f 的解;(Ⅱ)若关于x 的方程0)(=x f 在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明.41121<+x x命题意图:本题主要考查函数的基本性质、方程与函数的关系等基础知识,以及综合运用所学知识、分类讨论等思想方法分析和解决问题的能力。

一次函数和不等式的解题技巧

一次函数和不等式的解题技巧

一次函数和不等式的解题技巧一次函数和不等式是数学中非常基础的概念,也是我们日常生活中经常会遇到的问题。

在学习和解决这些问题时,我们需要掌握一些解题技巧,以便更好地理解和应用这些概念。

本文将介绍一些解决一次函数和不等式问题的技巧和方法。

一、一次函数一次函数是指形如y = kx + b的函数,其中k和b是常数。

在解决一次函数问题时,我们需要掌握以下几点:1. 确定函数的斜率和截距一次函数的斜率k表示函数在直线上的倾斜程度,截距b表示函数与y轴的交点。

根据这些信息,我们可以画出函数的图像并更好地理解函数的性质。

2. 确定函数的定义域和值域一次函数的定义域是指函数可取的x值的范围,值域是指函数可取的y值的范围。

在解决问题时,我们需要根据实际情况确定函数的定义域和值域,并注意函数的限制条件。

3. 利用函数的性质解决问题一次函数具有很多性质,如单调性、奇偶性、周期性等。

在解决问题时,我们可以利用这些性质来简化问题,例如确定函数的最值、解决方程等。

二、不等式不等式是指形如ax + b < c或ax + b > c的式子,其中a、b、c是常数。

在解决不等式问题时,我们需要掌握以下几点:1. 确定不等式的解集不等式的解集是指满足不等式的x值的范围。

在解决问题时,我们需要根据不等式的符号和常数确定解集,并注意解集的限制条件。

2. 利用不等式的性质解决问题不等式具有很多性质,如可加性、可减性、可乘性等。

在解决问题时,我们可以利用这些性质来简化问题,例如确定不等式的最值、解决方程等。

3. 联立不等式解决问题有时候,我们需要联立多个不等式来解决问题。

在联立不等式时,我们需要注意不等式的符号和常数,并根据实际情况确定解集。

三、综合应用在解决实际问题时,我们需要综合运用一次函数和不等式的知识和技巧。

例如,当我们需要求解一条直线与坐标轴围成的三角形的面积时,我们可以利用一次函数的性质确定直线的斜率和截距,并利用不等式的性质确定三角形的顶点坐标和面积。

利用函数单调性求不等式问题的三种技巧

利用函数单调性求不等式问题的三种技巧

Җ㊀安徽㊀孙光元㊀㊀函数的单调性会在很多题型中出现或应用,如求解函数最值㊁解函数不等式㊁求函数中参数的范围等.因此,利用函数的单调性就成为解题的关键,我们要学会巧妙利用题干中的条件把原问题进行等价转换,利用函数单调性顺利求解问题.1㊀直接法采用直接法构造函数要求考生掌握函数㊁不等式和方程之间的关系,熟悉不等式和方程所对应的函数的单调性,从而熟练构造函数,利用单调性顺利完成问题求解.直接法是构造函数最常用的一种方法,在解题时要学会灵活运用.例1㊀已知1x +1+1x +2+ +12x ȡ112l o g a (a -1)+23对于大于1的正整数x 恒成立,试确定a 的取值范围.构造函数f (x )=1x +1+1x +2+ +12x,因为f (x +1)-f (x )=12x +1+12x +2-1x +1=12x +1-12x +2>0,所以函数f (x )是增函数.又因为x 是大于1的正整数,所以f (x )ȡf (2)=712.若要使目标不等式成立,那么112lo g a (a -1)+23ɤ712,即l o g a (a -1)ɤ-1,解得1<a ɤ1+52.2㊀作差或作商法作差㊁作商法简单来说就是在解题过程中,可直接利用作差f (x 1)-f (x 2)或作商f (x 1)f (x 2)(f (x 2)>0)来构造函数,这是比较直观和简单的一个方法.例2㊀已知x >-1,且x ʂ0,n ɪN ∗,当n ȡ2时,求证:(1+x )n>1+n x .令f (n )=1+n x(1+x )n,因为x >-1,且x ʂ0,所以f (n +1)-f (n )=1+(n +1)x (1+x )n +1-1+n x (1+x )n =-n x 2(1+x )n +1<0,故f (n )在N ∗上是减函数,则f (2)<f (1)=1+x1+x=1,所以当n ȡ2时,f (n )<1,即(1+x )n>1+n x .3㊀分离参数法题目中含有参数的情况比较复杂,会使解题的过程变得有些困难,而这个时候就需要把参数单独分离在等号或者不等号的一边,让另外一边的函数关系变得清晰明了,从而利用函数单调性进行求解.例3㊀已知x >0时,1+l n (x +1)x >k x +1恒成立,求正整数k 的最大值.当x >0时,1+l n (x +1)x >k x +1恒成立,即[1+l n (x +1)](x +1)x>k 恒成立.设f (x )=[1+l n (x +1)](x +1)x(x >0),则要使f m i n (x )>k ,易知fᶄ(x )=x -1-l n (x +1)x 2.设g (x )=x -1-l n (x +1)(x >0),所以gᶄ(x )=xx +1>0,所以g (x )在区间(0,+ɕ)上单调递增,且g (2)=1-l n3<0,g (3)=2-2l n2>0.所以存在唯一实数a ,使得g (x )=0,且a ɪ(2,3).当x >a 时,g (x )>0,f ᶄ(x )>0,函数f (x )单调递增;当0<x <a 时,g (x )<0,fᶄ(x )<0,函数f (x )单调递减.所以f mi n (x )=f (a )=(a +1)[1+l n (a +1)]a =a +1ɪ(3,4).综上,正整数k 的最大值为3.直接法㊁作差或作商法㊁分离参数法等都是构造函数最常用的几种技巧和方法,除此之外,还有很多其他方法,如换元法㊁辅助法等,在解题的过程中要善于举一反三㊁灵活运用.(作者单位:安徽省肥东第一中学)51。

掌握高考数学中的三角函数方程与不等式求解方法

掌握高考数学中的三角函数方程与不等式求解方法

掌握高考数学中的三角函数方程与不等式求解方法在高考数学中,三角函数方程与不等式求解是一项重要的内容。

掌握这些方法可以帮助我们解决各种与三角函数相关的问题。

本文将详细介绍三角函数方程与不等式的基本概念,并提供一些常见的求解方法。

一、三角函数方程的基本概念三角函数方程是指含有三角函数的数学方程。

在高考数学中,我们通常会遇到包括正弦、余弦、正切等三角函数的方程。

我们首先来了解下三角函数的基本性质:1. 正弦函数(sin):正弦函数是指以单位圆上某个角对应点的纵坐标作为函数值的函数。

其定义域为实数集,值域为[-1,1]。

2. 余弦函数(cos):余弦函数是指以单位圆上某个角对应点的横坐标作为函数值的函数。

其定义域为实数集,值域为[-1,1]。

3. 正切函数(tan):正切函数是指以单位圆上某个角的正切值作为函数值的函数。

其定义域为实数集,值域为(-∞,+∞)。

了解了三角函数的基本性质后,我们可以开始介绍三角函数方程的求解方法。

二、三角函数方程的求解方法在高考考查的三角函数方程中,一般会出现如下几种类型:1. 正弦函数方程:形如sin(x) = a 的方程。

其中a为已知实数。

对于这类方程,我们可以通过反函数sin^-1来求解。

即,如果sin(x) = a,则x = sin^-1(a)。

2. 余弦函数方程:形如cos(x) = a的方程。

其中a为已知实数。

和正弦函数方程一样,我们可以通过反函数cos^-1来求解。

3. 正切函数方程:形如tan(x) = a的方程。

其中a为已知实数。

对于这类方程,我们同样可以通过反函数tan^-1来求解。

在实际求解中,可以将三角函数方程转化为代数方程,然后再通过代数方程的求解方法来解答。

这样可以简化计算,提高解题效率。

三、三角函数不等式的基本概念除了三角函数方程外,我们还经常会遇到三角函数不等式。

三角函数不等式的解集是满足不等式的实数的集合。

下面我们来了解一些常见的三角函数不等式。

数学不等式与函数题解题技巧和思路分享

数学不等式与函数题解题技巧和思路分享

数学不等式与函数题解题技巧和思路分享数学是一门既抽象又具体的学科,其中不等式与函数是数学中的重要内容。

解题技巧和思路在数学学习中起到至关重要的作用。

本文将分享一些解决数学不等式与函数题的技巧和思路,帮助读者更好地应对这类题目。

一、不等式题解题技巧不等式题是数学中常见的题型,解题时需要注意以下几个技巧:1. 观察不等式的形式:不等式可以分为一元不等式和多元不等式。

对于一元不等式,我们可以通过图像、区间、符号等方式进行分析;对于多元不等式,需要考虑各个变量之间的关系。

2. 利用性质进行转化:有时候,我们可以通过一些性质将不等式转化为更简单的形式。

例如,对于二次不等式,可以利用平方差公式将其转化为完全平方差形式,从而更方便进行求解。

3. 运用数学方法:在解决不等式问题时,可以借助数学方法进行推导和证明。

例如,可以利用数列的性质、平均值不等式、柯西-施瓦茨不等式等进行推导,从而得到更加准确的结果。

4. 注意特殊情况:在解决不等式问题时,需要注意特殊情况的存在。

例如,当不等式中的变量为负数或零时,不等式的符号可能会发生变化,需要进行特殊处理。

二、函数题解题技巧函数题是数学中的重要内容,解题时需要注意以下几个技巧:1. 理解函数的定义与性质:在解决函数题时,首先需要理解函数的定义与性质。

例如,对于一元函数,需要了解其定义域、值域、单调性、奇偶性等性质,从而更好地进行分析和推导。

2. 利用函数的图像进行分析:函数的图像可以直观地反映函数的性质。

通过观察函数的图像,可以获得一些关于函数的信息,从而更好地解决函数题。

3. 运用函数的性质进行推导:在解决函数题时,可以利用函数的性质进行推导和证明。

例如,可以利用导数的定义和性质进行函数的最值求解,利用函数的连续性进行函数的极限计算等。

4. 注意函数的特殊情况:在解决函数题时,需要注意函数的特殊情况。

例如,当函数的定义域存在间断点时,需要进行特殊处理;当函数存在极值点时,需要进行极值点的求解。

高中数学不等式的解题方法与技巧

高中数学不等式的解题方法与技巧

高中数学不等式的解题方法与技巧
高中数学不等式的解题方法与技巧有以下几点:
1. 确定不等式的范围:首先要确定不等式的变量范围,例如确
定变量为正数、自然数等,以便后续的推导和计算。

2. 利用基本不等式:基本不等式是指常见的数学不等式,例如
平均不等式、柯西-施瓦茨不等式、均方根不等式等。

通过运用这些
基本不等式,可以简化和推导复杂的不等式。

3. 分析不等式的性质:通过观察不等式的形式和特点,可以得
出不等式的一些性质。

例如,不等式是否对称、是否单调递增等,这些性质可以为解题提供线索。

4. 使用增减法:对于复杂的不等式,可以通过增减法将不等式
变换成简单的形式。

增减法是指在不等式两边同时加减相同的数,从而改变不等式的形式。

通过多次的增减操作,可以逐步简化不等式的形式。

5. 运用数学归纳法:对于涉及自然数的不等式,可以使用数学
归纳法进行证明。

数学归纳法是通过证明某个命题对于自然数n成立,然后再证明对于n+1也成立,从而得出该命题对于所有自然数成立的结论。

6. 剖析复杂不等式:对于特别复杂的不等式,可以使用分段函数、图像、积分等方法进行剖析。

这些方法可以将不等式转化为求解函数的最值或积分的问题,进而求解不等式。

总之,解决高中数学不等式需要灵活运用各种方法和技巧,通过
观察、推导和计算,找到合适的途径来简化不等式、得出结论。

掌握了这些解题方法与技巧,可以提高解决数学不等式问题的能力。

不等式基本解题技巧梳理

不等式基本解题技巧梳理

不等式基本解题技巧梳理技巧一: 配凑法对加法型,两个因式的未知数部分凑成倒数关系,配凑成符合基本不等式成立的三个条件“一正二定三相等”。

技巧二: 分离常数法1.已知函数的表达式的特征,如分子(或分母)是二次形式且分母(或分子)是一次形式;2. 把分母或分子的一次形式当成一个整体,并将分子或分母的二次形式配凑成一次形式的二次函数形式;3. 将其化简即可得到基本不等式的形式,并运用基本不等式对其进行求解即可得出所求的结果. 技巧三: 对勾函数法:用基本不等式求解时,若遇等号取不到的情况1.运用凑项或换元法将所给的函数化简为满足基本不等式的形式;2.结合函数()a f x x x =+的单调性,并运用其图像与性质求出其函数的最值即可; 技巧1 配凑法【例1】(2021·广西河池市)函数19()(1)41f x x x x =+>-的最小值为( ) A .134 B .3C .72D .94 【举一反三】1.已知2244x y +=,则2211x y +的最小值为( ) A .52 B .9 C .1 D .942.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 3.若正实数a ,b 满足111122a b +=++,则ab a b ++的最小值为_______. 技巧2 分类常数法 【例2】已知52x ≥,则2332x x y x -+=-有( ) A .最大值1B .最小值1C .最大值3D .最小值3【举一反三】 1.函数233(1)1x x y x x ++=<-+的最大值为( )A .3B .2C .1D .-12.若函数()()22422x x f x x x -+=>-在x a =处取最小值,则a =( )A .1+B .2C .4D .63.若72x ,则2610()3x x f x x -+=-有( )A .最大值52 B .最小值52 C .最大值2 D .最小值24.已知函数()2sin sin 2xf x x =+,则()f x 的最大值为( )A .2-B .1-C .0D .1技巧3 对勾函数【例3】函数()2436x x f x x ++=-的值域为__________.【举一反三】1.函数2y =的最小值为( )A .2B .52 C .1 D .不存在2.函数()ln 22ln xf x x =+,(]1,e x ∈的最小值为________.3.设(0,)x π∈,则函数sin 22sin =+xy x 的最小值是___________.巩固练习一、单选题1.已知正实数x 、y 、z 满足2221x y z ++=,则58xyz -的最小值是( )A .6B .5C .4D .32.已知x y R +∈,,若不等式110232mx y x y x y ++≥+++恒成立,则实数m 的最值情况为() A .有最小值4- B .有最大值4- C .有最小值4 D .有最大值43.已知0a >,0b >,若不等式122ma b a b +≥+恒成立,则实数m 的最大值为( )A .10B .9C .8D .74.已知不等式()19a x y x y ⎛⎫++⎪⎝⎭≥对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2 B .4C .6D .8 5.若对任意满足8a b +=的正数a ,b 都有14111x a b x ++≥+-成立,则实数x 的取值范围是( ) A .[)0,1 B .()1,+∞ C .(](),01,-∞+∞ D .()(),01,-∞⋃+∞6.已知0x >,0y >,若2288yx ym m x y ++>-恒成立,则实数m 的取值范围是() A .19m -<< B .91m -<< C .9m ≥或1m ≤- D .m 1≥或9m ≤- 7.当104x <<时,不等式11014m x x +-≥-恒成立,则实数m 的最大值为( )A .7B .8C .9D .108.已知0,0x y >>且111211x y +=++,则x y +的最小值为________.9.已知正实数a 、b 满足21a b +=,则11aba b +--的最小值为____________.10.函数2221()0sin cos 2f x x x x π⎛⎫=+<< ⎪⎝⎭的最小值是________.11.当0x >时,函数231x x y x ++=+的最小值为_________.12.函数2(2)2x y x x =>-的最小值为_______________13.若实数,x y 满足22321x xy y --=,则2252x yx xy y +++的最大值为___________.14.求()271011x x y x x ++=>-+的最小值______.15.()21147x x x x ->-+的最大值为______.16.已知()()23601x x f x x x ++=>+,则()f x 的最小值是________.。

含参数的方程、不等式的问题解题策略

含参数的方程、不等式的问题解题策略

含参数的方程、不等式的问题解题策略含参数的方程、不等式的问题是历年高考常考的题型,由于含有参数对很多同学来说感到困难重重,一重困难是选择什么样的解题方法(如2012年山东卷第12题),二重困难是含参数问题涉及到的分类讨论(如2017年全国卷1第21题),根据我多年的研究发现,(1)这类题目解题方法有规可循,基本方法有:分离参数构建函数,不分离参数构建函数,半分离参数构建函数,总之,如何构建函数是解题的关键。

(2)很多求参数取值范围的问题,其实有时可以避开分类讨论这个陷阱。

本文就结合实例谈谈这类问题的求解策略。

一、分离参数构建函数:若方程或不等式中的参数容易分离出来,即参数分离 在方程或不等式的一边,另一边是关于自变量的函数,分离后的函数不复杂,容易求出导函数,容易研究函数的性质,就选择分离参数法构建函数。

例1(2017年全国高考卷1第21题)已知函数2()(2)x x f x ae a e x =+-- 若()f x 有两个零点,求a 的取值范围.分析:2f(x)=ae (-2)e x x a x +-有两个零点,转化为方程2(2)0x x ae a e x +--=有两个根先分离参数22a x x x e x e e +=+,令222(1)(21)()g ()(1)x x x x x x x e x e x e g x x e e e e +-+-+'==++,设1x h x -+(x)=-e ,则()h x 递减,(0)0h =当(,0)x ∈-∞时()0h x > ()0g x '∴>()g x ∴递增,当(0,)x ∈+∞时,()0,()0,()h x g x g x '<∴<∴递减,所以当x →+∞时()0g x →,当x →-∞时,g(x)-→∞如图01a ∴<<评析:查阅高考评分标准,看出对参数a>0共分了三种情况讨论:(1)a=1(2)a>1(3)0<a<1,其中0<a<1时,要用函数零点的判定定理,找区间端点时非常困难,绝大多数同学完成不了。

一次函数和不等式的解题技巧

一次函数和不等式的解题技巧

一次函数和不等式的解题技巧一次函数和不等式是数学中基础的概念,也是学习数学的重要门槛。

在学习这两个知识点时,我们需要掌握一些解题技巧,以便更好地理解和应用这些知识点。

一、一次函数的解题技巧一次函数是指形如y=kx+b的函数,其中k和b为常数。

在解题时,我们需要掌握以下技巧:1. 确定函数的斜率和截距斜率k决定了函数的变化趋势,截距b决定了函数的位置。

因此,我们需要先确定函数的斜率和截距,才能更好地理解函数的性质。

2. 理解函数的图像一次函数的图像是一条直线,我们需要理解直线的性质,比如斜率越大,函数的变化越快;截距越大,函数的位置越高。

3. 利用函数的性质解题一次函数具有一些特殊的性质,比如斜率为正时,函数单调增加;斜率为负时,函数单调减少。

我们可以利用这些性质来解题,比如求函数的最值、最小值等。

二、不等式的解题技巧不等式是指形如a<b或a≤b的数学式子,其中a和b可以是数字、变量或表达式。

在解题时,我们需要掌握以下技巧:1. 理解不等式的含义不等式的含义是比较大小关系,我们需要理解不等式的含义,才能更好地应用不等式解题。

2. 利用不等式的性质解题不等式具有一些特殊的性质,比如加减不等式、乘除不等式、绝对值不等式等,我们可以利用这些性质来解题,比如求不等式的解集、证明不等式等。

3. 注意不等式的变形在解题时,我们需要注意不等式的变形,比如加减、乘除、开方等操作会改变不等式的性质,需要根据具体情况来进行变形。

三、一次函数和不等式的综合应用一次函数和不等式常常在实际生活中综合应用,比如求解线性规划问题、解决经济问题、分析统计数据等。

在综合应用时,我们需要掌握以下技巧:1. 理解实际问题的背景和条件在应用一次函数和不等式解决实际问题时,我们需要先理解问题的背景和条件,才能更好地应用数学知识解决问题。

2. 建立数学模型在理解问题的背景和条件后,我们需要建立数学模型,将实际问题转化为数学问题,以便更好地进行求解。

高考数学中的三角函数方程与不等式求解技巧

高考数学中的三角函数方程与不等式求解技巧

高考数学中的三角函数方程与不等式求解技巧高考数学中,三角函数方程和不等式的求解是一个重要的考点。

掌握了相关的求解技巧,不仅可以提升数学成绩,还能在解决实际问题时起到关键作用。

本文将介绍一些常见的三角函数方程和不等式求解技巧,希望能对广大考生有所帮助。

一、三角函数方程的求解技巧1. 化简与等价变形在解三角函数方程时,首先要将复杂的方程化简为简单的形式。

通过等价变形,将方程转化为更易求解的形式,例如利用倒数公式、和差化积公式、和差化简等。

2. 观察周期性大多数三角函数具有周期性。

因此,在求解三角函数方程时,要充分利用函数图像的周期性质。

可以通过观察函数值的变化规律,找到方程在一个周期内的解,并推广到整个定义域。

3. 递推思想当遇到复杂的三角函数方程时,可以通过递推思想来解决。

即将方程中的变量逐步代入,化简为只含有一个未知数的方程,并逐步求解得到最终结果。

4. 回代与验证在得到方程的解后,要进行回代与验证。

将解代入原方程,验证等式是否成立。

如果成立,则解是方程的解;如果不成立,则需要重新检查求解过程。

二、三角函数不等式的求解技巧1. 图像法在解三角函数不等式时,可以绘制函数的图像来直观地找到不等式的解集。

通过观察图像的上升和下降趋势,确定不等式的取值范围。

2. 移项与化简与方程求解类似,不等式的求解也要通过移项和化简来将复杂的不等式转化为简单的形式。

通过等价变形,将不等式转化为更易求解的形式。

3. 考虑周期性与对称性三角函数的周期性和对称性是解三角函数不等式的重要技巧。

利用函数图像的周期性和对称性,可以将不等式的解集缩小到一个周期内,然后推广到整个定义域。

4. 关系式的转化有时候,将不等式转化为等价的关系式,可以更方便地求解。

例如,将不等式化为方程,然后根据方程的解集求解不等式的解集。

总结:高考数学中的三角函数方程与不等式求解技巧可以通过化简与等价变形、观察周期性、递推思想、图像法、移项与化简、考虑周期性与对称性、关系式的转化等方法来解决。

含ex,ln x函数或不等式的解题策略

含ex,ln x函数或不等式的解题策略

含e x ,ln x 函数或不等式的解题策略 近几年高考中的导数问题常以e x ,ln x 组合的函数为基础来命制,将基本初等函数与导数相结合,研究函数的性质,下面介绍解决这类问题的几种策略.一、函数零点设而不求例1 证明:e x -ln x >2.证明 设f (x )=e x -ln x (x >0),则f ′(x )=e x -1x .令h (x )=f ′(x ),则h ′(x )=e x +1x 2>0, ∴f ′(x )在(0,+∞)上是增函数,又f ′⎝⎛⎭⎫12=e -2<0,f ′(1)=e -1>0, ∴在⎝⎛⎭⎫12,1上存在x 0使f ′(x 0)=0,即x 0=-ln x 0.∴在(0,x 0)上f (x )递减,在(x 0,+∞)上f (x )递增,∴f (x )在x =x 0处有极小值,也是最小值.∴f (x 0)=0e x -ln x 0=1x 0+x 0>2, 故f (x )>2,即e x -ln x >2.二、分离ln x 与e x例2 (2019·长沙三校统考)已知函数f (x )=ax 2-xln x .(1)若函数f (x )在(0,+∞)上递增,求实数a 的取值范围;(2)若a =e ,证明:当x >0时,f (x )<xe x +1e. (1)解 由题意知,f ′(x )=2ax -ln x -1. 因为函数f (x )在(0,+∞)上递增,所以当x >0时,f ′(x )≥0,即2a ≥ln x +1x 恒成立.令g (x )=ln x +1x (x >0),则g ′(x )=-ln x x 2, 易知g (x )在(0,1)上递增,在(1,+∞)上递减,则g (x )max =g (1)=1,所以2a ≥1,即a ≥12. 故实数a 的取值范围是⎣⎡⎭⎫12,+∞.(2)证明 若a =e ,要证f (x )<xe x +1e, 只需证ex -ln x <e x +1e x,即ex -e x <ln x +1e x.令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x 2, 易知h (x )在⎝⎛⎭⎫0,1e 上递减,在⎝⎛⎭⎫1e ,+∞上递增,则h (x )min =h ⎝⎛⎭⎫1e =0,所以ln x +1e x≥0. 再令φ(x )=ex -e x ,则φ′(x )=e -e x , 易知φ(x )在(0,1)上递增,在(1,+∞)上递减,则φ(x )max =φ(1)=0,所以ex -e x ≤0. 因为h (x )与φ(x )不同时为0,所以ex -e x <ln x +1e x, 故原不等式成立.三、借助e x ≥x +1和ln x ≤x -1进行放缩 例3 (2019·长春质检)已知函数f (x )=e x -a .(1)若函数f (x )的图像与直线l :y =x -1相切,求a 的值;(2)若f (x )-ln x >0恒成立,求整数a 的最大值.解 (1)f ′(x )=e x ,因为函数f (x )的图像与直线y =x -1相切,所以令f ′(x )=1, 即e x =1,得x =0,即f (0)=-1,解得a=2.(2)先证明e x≥x+1,设F(x)=e x-x-1,则F′(x)=e x-1,令F′(x)=0,则x=0,当x∈(0,+∞)时,F′(x)>0,当x∈(-∞,0)时,F′(x)<0,所以F(x)在(0,+∞)上递增,在(-∞,0)上递减,所以F(x)min=F(0)=0,即F(x)≥0恒成立,即e x≥x+1,即e x-2≥x-1,当且仅当x=0时等号成立,同理可得ln x≤x-1,当且仅当x=1时等号成立,所以e x-2>ln x,当a≤2时,ln x<e x-2≤e x-a,即当a≤2时,f (x)-ln x>0恒成立.当a≥3时,存在x=1,使e x-a<ln x,即e x-a>ln x不恒成立.综上,整数a的最大值为2.。

三角函数的方程与不等式

三角函数的方程与不等式

三角函数的方程与不等式三角函数的方程与不等式是数学中重要的概念和技巧,广泛应用于各个领域。

本文将探讨三角函数的方程与不等式,介绍其基本定义和性质,并通过具体的例子展示解题方法和技巧。

一、三角函数的方程(1)正弦函数的方程正弦函数是三角函数中最基本的函数之一,其方程常用于描述周期性的现象。

一般而言,正弦函数的方程形式为:sin(x) = a其中,a为常数。

解这类方程的关键在于确定函数的周期,通过周期性的性质找出所有解。

例如,解方程sin(x) = 0,可以通过观察正弦函数图像知道,当x为整数倍的π时,sin(x)为0。

因此,该方程的解集为{x | x = nπ,n为整数}。

(2)余弦函数的方程余弦函数是另一种常见的三角函数,其方程形式为:cos(x) = a同样,通过观察余弦函数的图像,可以得知余弦函数在x = 2nπ ± arccos(a)时等于a。

因此,解该方程的解集为{x | x = 2nπ ± arccos(a),n 为整数}。

二、三角函数的不等式(1)正弦函数的不等式对于正弦函数的不等式,我们常需找到其周期内满足不等式条件的解集。

例如,要求解sin(x) > a的不等式,可以通过以下步骤得出解集:1. 确定sin(x)的周期为2π;2. 根据a的大小关系,确定sin(x)的取值范围;3. 根据取值范围,得出满足sin(x) > a的解集。

举例说明,当a = 0时,sin(x) > 0的解集为{x | x = nπ,n为非负整数}。

(2)余弦函数的不等式对于余弦函数的不等式,解题方法与正弦函数类似。

例如,要求解cos(x) < a的不等式,可以按照以下步骤进行:1. 确定cos(x)的周期为2π;2. 根据a的大小关系,确定cos(x)的取值范围;3. 根据取值范围,得出满足cos(x) < a的解集。

举例说明,当a = 0时,cos(x) < 0的解集为{x | x = nπ + π/2,n为整数}。

如何解决高考数学中的三角函数方程与不等式难题

如何解决高考数学中的三角函数方程与不等式难题

如何解决高考数学中的三角函数方程与不等式难题高考数学中,三角函数方程与不等式是一类较为复杂的难题,对于考生来说,解决这类题目往往是一项具有挑战性的任务。

然而,只要我们掌握一定的解题方法和技巧,就可以在高考数学中游刃有余地应对这些难题。

本文将从解三角函数方程和不等式的基本方法、常见类型的解题技巧以及应试策略方面进行探讨,帮助考生们顺利解决高考数学中的三角函数方程与不等式难题。

一、解三角函数方程的基本方法想要解决三角函数方程,首先需要掌握常见的三角函数关系式。

例如,正弦函数和余弦函数的平方和等于1、正切函数和割函数的平方差等。

掌握这些基本的三角函数关系式有助于我们在解题过程中做出正确的推断和判断。

其次,了解三角函数的周期性质也是解决三角函数方程的重要一环。

根据正弦函数和余弦函数的周期为2π,正切函数和割函数的周期为π,我们可以通过对周期区间内的解进行推广,找到方程的全部解。

最后,通过观察和变形方程,运用代换、恒等变换、倒置等技巧,将原方程转化为等价的简单方程。

在此过程中,我们要注意选择合适的变量代换,将复杂的方程简化为易于求解的形式。

二、常见类型的解题技巧1. 倍角、半角关系:对于三角函数方程中出现的倍角、半角关系,可以利用倍角、半角公式将其转化为使用较为简单的角度求解。

2. 和差化积公式:当三角函数方程中出现和差化积的形式时,可以利用和差化积公式将其转化为乘积的形式,便于我们解题。

3. 格式转换:对于一些复杂的三角函数方程,可以通过合理的格式转换,将其转化为更简单的方程或不等式,从而方便我们求解。

4. 引入辅助角:在解三角函数方程时,有时可以引入一个合适的辅助角来简化方程。

通过选取适当的辅助角,我们可以将原来复杂的方程转化为具有较简单结构的方程,从而求得解。

三、应试策略1. 确定解题思路:在解决高考数学中的三角函数方程与不等式难题时,需要根据题目的要求,确定解题思路。

可以通过观察题目中给出的条件,判断所给方程的类型,进而采取相应的解题方法。

数学运算综合技巧巧妙解决指数对数函数不等式的运算

数学运算综合技巧巧妙解决指数对数函数不等式的运算

数学运算综合技巧巧妙解决指数对数函数不等式的运算数学中,指数和对数函数是非常重要的概念和工具。

它们在不等式解题中经常出现,对于解决这类问题,掌握一些巧妙的数学运算综合技巧是非常重要的。

本文将介绍一些解决指数对数函数不等式的运算技巧。

一、指数和对数函数回顾在开始介绍运算技巧之前,我们先回顾一下指数和对数函数的基本性质。

指数函数的一般形式为$f(x) = a^x$,其中$a > 0$且$a \neq 1$。

对数函数的一般形式为$f(x) = log_a(x)$,其中$a > 0$且$a \neq 1$。

指数和对数函数是互逆的,即$f^{-1}(x) = log_a(x)$,$a^{log_a(x)} = x$。

二、基本技巧1. 指数函数中的指数运算当指数函数中出现指数相乘或指数相除的情况时,我们可以利用指数运算的性质将其进行简化。

例如,对于指数函数$f(x) = 2^{3x} \cdot2^{2x}$,我们可以将其简化为$f(x) = 2^{3x+2x} = 2^{5x}$。

同样地,对于指数函数中的指数相除,也可以进行类似的运算。

2. 对数函数中的对数运算对于对数函数中的对数运算,我们可以利用对数运算的性质进行简化。

例如,对于对数函数$f(x) = log_a(x) + log_a(y)$,根据对数运算的性质,我们可以将其简化为$f(x) = log_a(xy)$。

同样地,对于对数函数中的对数相减,也可以进行类似的运算。

三、应用技巧1. 利用指数和对数函数性质重写不等式在解决指数对数函数不等式时,我们可以通过重写不等式的形式来简化计算。

例如,对于不等式$2^{3x} > 8$,我们可以将其重写为$2^{3x} > 2^3$,进而得到不等式$3x > 3$。

通过这种方式,我们可以将原始的指数不等式转化为更简单的形式,更容易求解。

2. 利用指数和对数函数的图像特点解不等式指数和对数函数的图像具有一些特点,我们可以利用这些特点来解决不等式。

高中数学讲义:利用函数性质与图像解不等式

高中数学讲义:利用函数性质与图像解不等式

利⽤函数性质与图像解不等式高中阶段解不等式大体上分为两类,一类是利用不等式性质直接解出解集(如二次不等式,分式不等式,指对数不等式等);一类是利用函数的性质,尤其是函数的单调性进行运算。

相比而言后者往往需要构造函数,利用函数单调性求解,考验学生的观察能力和运用条件能力,难度较大。

本章节以一些典型例题来说明处理这类问题的常规思路。

一、基础知识:(一)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x "Î<Û<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x $Î=,则()0,x a x Î时,()0f x <;()0,x x b Î时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+(2)()()()()()()()'''2f x f x g x f x g x g x g x æö-=ç÷èø4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点。

所以处理这类问题要将条件与结论结合着分析。

在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么。

两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数。

在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图像只是辅助手段。

所以如果能够确定构造函数的单调性,猜出函数的零点。

高中数学中的三角函数应用之解三角方程不等式

高中数学中的三角函数应用之解三角方程不等式

高中数学中的三角函数应用之解三角方程不等式解三角方程不等式是高中数学中三角函数应用的一部分。

在解三角方程不等式时,需要运用一些基本的三角函数概念和性质,以及一些解方程和不等式的技巧。

本文将从解三角方程不等式的基本思路、常见问题类型以及解题方法等方面进行介绍。

解三角方程不等式的基本思路如下:1. 确定三角函数的定义域:在解三角方程不等式时,首先需要确定三角函数的定义域。

例如,在解sin x > 0的不等式时,首先需要确定sin x的定义域为[-1, 1],然后再根据sin x > 0的条件进行求解。

2. 转化为方程求解:将不等式转化为等式,然后求解方程。

例如,将sin x > 0转化为sin x = 0的方程,然后求解sin x = 0的解集。

3. 综合解集:根据原不等式的条件,综合解集。

例如,对于sin x > 0的不等式,解集为x ∈ (0, π) ∪ (2π, 3π),这是因为sin x在这些区间内是正数。

下面将介绍一些常见的三角方程不等式问题类型及解题方法:1. sin x > a的不等式:对于这种类型的不等式,首先需要确定sin x的定义域。

然后,根据不等式中的a的值,结合sin x的图像,确定解集的范围。

例如,对于sin x > 1/2的不等式,解集为x ∈ (0, π/6) ∪ (5π/6, π)。

2. cos x < a的不等式:对于这种类型的不等式,首先需要确定cos x的定义域。

然后,根据不等式中的a的值,结合cos x的图像,确定解集的范围。

例如,对于cos x < 0的不等式,解集为x ∈ (π/2, 3π/2)。

3. tan x > a的不等式:对于这种类型的不等式,首先需要确定tan x的定义域。

然后,根据不等式中的a的值,结合tan x的图像,确定解集的范围。

例如,对于tan x > √3的不等式,解集为x ∈ (π/3, 2π/3) ∪ (4π/3, 5π/3)。

2.函数与不等式问题的解题技巧

2.函数与不等式问题的解题技巧

第三讲 函数与不等式问题的解题技巧【例题解析】 1.函数的定义域及其求法函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题. 例1.已知函数()f x 的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M∩N=(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅ 命题意图: 本题主要考查含有分式、无理式和对数的函数的定义域的求法. 解:函数()f x 的定义域M={}1,x x < g(x)=ln(1)x +的定义域N={}1,x x >-∴M∩N={|11}x x -<<. 故选C例2函数y =( )(A )(3,+∞) (B )[3, +∞) (C )(4, +∞) (D )[4, +∞) 命题意图: 本题主要考查含有无理式和对数的函数的定义域的求法.解:由20 4.log 20x x x >⎧⇒>⎨->⎩,故选D.2.求函数的反函数求函数的反函数,有助与培养人的逆向思维能力和深化对函数的定义域、值域,以及函数概念的理解.例3.函数22,0,0x x y x x ≥⎧=⎨-<⎩ 的反函数是( ) (A),020xx y x ⎧≥⎪=< (B)2,00x x y x ≥⎧=< (C),020xx y x ⎧≥⎪=⎨⎪<⎩(D)2,00x x y x ≥⎧⎪=⎨<⎪⎩ 命题意图: 本题主要考查有关分段函数的反函数的求法.()121:2,.(),(0);22,0,()0.,020.yxy x x f x x y x y f x x xx y x --=∴=∴=≥=-<∴=<⎧≥⎪∴=⎨⎪<⎩解又故选C.例4.已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 命题意图: 本题主要考查反函数的求法及待定系数法等知识.解:()()11112,,.2222y x a x y a y x a x a =-∴=+∴=+=+与3y bx =+比较得a =6,1.2b =故填162;3.复合函数问题复合函数问题,是新课程、新高考的重点.此类题目往往分为两类:一是结合函数解析式的求法来求复合函数的值.二是应用已知函数定义域求复合函数的定义域.例5.(2007年北京卷文)对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假: 命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①②B.①③C.②D.③命题意图: 本题主要考查利用复合函数和函数单调性等知识解决问题的能力.解:22()(2),(2)f x x f x x =-∴+=是偶函数,又函数2()(2)f x x =-开口向上且在()-∞2,上是减函数,在(2)+∞,上是增函数.故能使命题甲、乙均为真的函数仅有2()(2)f x x =-. 故选C例6.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________.命题意图: 本题主要考查代数式恒等变形和求复合函数的值的能力. 解:由()()12f x f x +=,得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+.4.函数的单调性、奇偶性和周期性函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.例7. 已知函数()1,1xf x a z =-+,若()f x 为奇函数,则a =________.命题意图: 本题主要考查函数的解析式的求解以及函数的奇偶性应用. 常规解法:由f(x)为奇函数,所以f(x)+f(-x)=0,即,0121121=+-++--x xa a .2112212112112121=++⋅=⎪⎭⎫ ⎝⎛+++=∴-x x x x a 应填21. 巧妙解法:因为f(x)为奇函数,所以f(0)=0,即.21,01210=∴=+-a a 应填21. 点评:巧妙解法巧在利用了f(x)为奇函数,所以f(0)=0,这一重要结论.例8. ()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件命题意图: 本题主要考查两个函数的加法代数运算后的单调性以及充分条件和必要条件的相关知识.解 先证充分性:因为()f x ,()g x 均为偶函数, 所以()(),f x f x -=()()g x g x -=,有()()()()()()h x f x g x f x g x h x -=-+-=+=,所以 ()h x 为偶函数.反过来,若()h x 为偶函数,()f x ()g x 不一定是偶函数.如2()h x x =,(),f x x =2()g x x x =-,故选B.方法二:可以选取两个特殊函数进行验证. 故选B点评:对充要条件的论证,一定既要证充分性,又要证必要性,二着缺一不可.同时,对于抽象函数,有时候可以选取特殊函数进行验证. 5.函数的图象与性质函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想.例9.(2006年山东卷)函数y=1+a x (0<a <1)的反函数的图象大致是 ( )(A ) (B ) (C ) (D )命题意图: 本题主要考查对数函数的图象,互为反函数图象间关系及对数的运算性质等知识.解:∵y=1+a x (0<a <1),∴()()1log (1),01a f x x a -=-<<.此函数图象是由函数()()log ,01a f x x a =<<向右平移一个单位得到的.故选A. 6. 函数综合问题函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样. 这里主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养读者的思维和创新能力. 例10.已知.|1|)(22kx x x x f ++-= (Ⅰ)若k = 2,求方程0)(=x f 的解;(Ⅱ)若关于x 的方程0)(=x f 在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明.41121<+x x命题意图:本题主要考查函数的基本性质、方程与函数的关系等基础知识,以及综合运用所学知识、分类讨论等思想方法分析和解决问题的能力。

函数与不等式综合题

函数与不等式综合题

函数与不等式综合题摘要:1.函数与不等式的概念2.函数与不等式综合题的解题方法3.函数与不等式综合题的实例解析4.总结与展望正文:一、函数与不等式的概念函数是数学中描述一种特定关系的方法,通常表示为一个数的集合(自变量)与另一个数的集合(因变量)之间的对应关系。

不等式是数学中表示大小关系的一种符号,如大于、小于、大于等于、小于等于等。

在数学问题中,函数与不等式常常结合在一起,形成函数与不等式综合题。

二、函数与不等式综合题的解题方法解决函数与不等式综合题,通常需要运用函数的性质(如单调性、奇偶性、周期性等)和不等式的解法(如解不等式、判断不等式的解集等)。

具体解题步骤如下:1.分析题目,明确题目所求,如求函数的值域、定义域,或求解不等式等。

2.根据题目所给条件,建立函数关系式。

3.利用函数的性质,进行函数的变换或求解不等式,得到函数的值域、定义域等信息。

4.根据题目要求,得出最终答案。

三、函数与不等式综合题的实例解析例题:已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,求解不等式f(x) > 0 的解集。

解:首先,根据题目要求,我们需要解不等式f(x) > 0。

其次,对函数f(x) 求导,得到f"(x) = 6x^2 - 6x - 12 = 6(x - 1)(x + 2)。

然后,分析函数的单调性,得知f(x) 在(-∞, -2) 和(1, +∞) 上单调递增,在(-2, 1) 上单调递减。

最后,求出f(x) 的极值点,即x = -2, 1,代入原函数,得到f(-2) = -15, f(1) = -12,因此,不等式的解集为(-∞, -2)∪(1, +∞)。

四、总结与展望函数与不等式综合题是数学中常见的题型,解决这类问题需要掌握函数与不等式的基本概念和解法。

通过实例解析,我们可以发现,解决函数与不等式综合题的关键在于灵活运用函数的性质和不等式的解法。

专题07 利用函数性质解函数不等式的方法-备战高考数学之学会解题必备方法技巧规律(全国通用)

专题07 利用函数性质解函数不等式的方法-备战高考数学之学会解题必备方法技巧规律(全国通用)
【分析】首先将 转化为 或 ,根据函数单调性解 和 ,进而可以求出结果.
【详解】因为 ,
所以 或 ,
因为 在 上单调递增,且 ,
所以 ,
因为 在 上为奇函数,
所以 在 上单调递增,且 ,
因此 ,
综上:不等式 的解集为 .
故选:C.
【2021届高三5月卫冕联考】
4.已知函数 的定义域为 , , 是偶函数,任意 满足 ,则不等式 的解集为()
所以f(x)>f(0)=0,故x>sinx,
因为 ,
所以 ,所以g(α)<g(2β),
令g(x)=3x+x,显然g(x)单调递增,所以α<2β.
故选:D.
【2021安徽省池州市第一中学临门一脚】
3.若定义在 上的奇函数 在 上单调递增,且 ,则不等式 的解集为()
A. B.
C. D.
【答案】C
【解析】
所以 ,两边平方得 ,
解得 ,
所以实数m的取值范围是(﹣∞, ],
故选:D
【百校联盟2021届高三5月教育质检】
6.设函数 是奇函数 的导函数, .当 时, ,则使得 成立的 的取值范围是()
A. B. C. D.
【答案】B
【解析】
【分析】令 ,由已知条件可得 ,所以 在 上单调递增,由 和 为奇函数,可得 为奇函数,且 ,从而由 的单调性可得答案
解:因为 , ,所以 ,所以 偶函数.因为 当 时, ,所以 在 上单调递增.又因为 是偶函数,所以 在 上单调递减.所以 ,即 ,所以 ,即 ,解得 或 .故答案为: .
方法】偶函数+单调性
最新模拟精选与提高
精选练习
【2021福建省宁德市三模】
1.已知函数 ,实数 , 满足不等式 ,则下列不等式成立的是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲函数与不等式问题的解题技巧【命题趋向】全国高考数学科《考试大纲》为走向高考的莘莘学子指明了复习备考的方向.考纲是考试法典,是命题的依据,是备考的总纲.科学备考的首要任务,就是要认真学习、研究考纲.对照2007年的考纲和高考函数试题有这样几个特点:1.通过选择题和填空题,全面考查函数的基本概念,性质和图象.2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现.3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查.4.一些省市对函数应用题的考查是与导数的应用结合起来考查的.5.涌现了一些函数新题型.6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导.函数类试题在试题中所占分值一般为22---35分.而2007年的不等式试题则有这样几个特点:1.在选择题中会继续考查比较大小,可能与函数、方程、三角等知识结合出题.2.在选择题与填空题中注意不等式的解法建立不等式求参数的取值范围,以及求最大值和最小值应用题.3.解题中注意不等式与函数、方程、数列、应用题、解几的综合、突出渗透数学思想和方法.分值在27---32分之间,一般为2个选择题,1个填空题,1个解答题.可以预测在2008年的高考试题中,会有一些简单求函数的反函数,与导数结合的函数单调性-函数极值-函数最值问题;选择题与填空题中会出现一些与函数、方程、三角等知识结合的不等式问题,在解答题中会出现一些不等式的解法以及建立不等式求参数的取值范围,和求最大值和最小值的应用题特别是不等式与函数、方程、数列、应用题、解几的综合题,这些题目会突出渗透数学思想和方法,值得注意。

【考点透视】1.了解映射的概念,理解函数的概念.2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程.3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数.4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.7.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力.8.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式.9.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题.10.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力. 11.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题. 12.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.【例题解析】1.函数的定义域及其求法函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题.例1.(2007年广东卷理)已知函数()f x =的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M ∩N=(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅命题意图: 本题主要考查含有分式、无理式和对数的函数的定义域的求法.解:函数()f x =的定义域M={}1,x x < g(x)=ln(1)x +的定义域N={}1,x x >-∴M ∩N={|11}x x -<<.故选C例2. ( 2006年湖南卷)函数y ( ) (A )(3,+∞) (B )[3, +∞) (C )(4, +∞) (D )[4, +∞) 命题意图: 本题主要考查含有无理式和对数的函数的定义域的求法.解:由20 4.log 20x x x >⎧⇒>⎨->⎩,故选D.2.求函数的反函数求函数的反函数,有助与培养人的逆向思维能力和深化对函数的定义域、值域,以及函数概念的理解.例3.(2006年安徽卷)函数22,0,0x x y x x ≥⎧=⎨-<⎩ 的反函数是( ) (A),020xx y x ⎧≥⎪=< (B)2,00x x y x ≥⎧=< (C),020xx y x ⎧≥⎪=⎨⎪<⎩(D)2,00x x y x ≥⎧⎪=⎨<⎪⎩ 命题意图: 本题主要考查有关分段函数的反函数的求法.()121:2,.(),(0);22,0,()0.,020.yxy x x f x x y x y f x x xx y x --=∴=∴=≥=-<∴=<⎧≥⎪∴=⎨⎪<⎩Q Q 解又 故选C.例4.(2007年湖北卷理)已知函数2y x a =-的反函数是3y bx =+,则a = ;b = .命题意图: 本题主要考查反函数的求法及待定系数法等知识.解:()()11112,,.2222y x a x y a y x a x a =-∴=+∴=+=+Q 与3y bx =+比较得a =6,1.2b = 故填162;3.复合函数问题复合函数问题,是新课程、新高考的重点.此类题目往往分为两类:一是结合函数解析式的求法来求复合函数的值.二是应用已知函数定义域求复合函数的定义域.例5.(2007年北京卷文)对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①②B.①③C.②D.③命题意图: 本题主要考查利用复合函数和函数单调性等知识解决问题的能力.解:22()(2),(2)f x x f x x =-∴+=Q 是偶函数,又函数2()(2)f x x =-开口向上且在()-∞2,上是减函数,在(2)+∞,上是增函数.故能使命题甲、乙均为真的函数仅有2()(2)f x x =-.故选C例6.(2006年安徽卷)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________.命题意图: 本题主要考查代数式恒等变形和求复合函数的值的能力.解:由()()12f x f x +=,得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+.4.函数的单调性、奇偶性和周期性函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.例7.(2006年全国卷) 已知函数()1,1xf x a z =-+,若()f x 为奇函数,则a =________.命题意图: 本题主要考查函数的解析式的求解以及函数的奇偶性应用. 常规解法:由f(x)为奇函数,所以f(x)+f(-x)=0,即,0121121=+-++--xx a a .2112212112112121=++⋅=⎪⎭⎫ ⎝⎛+++=∴-x x x x a 应填21.巧妙解法:因为f(x)为奇函数,所以f(0)=0,即.21,01210=∴=+-a a 应填21.点评:巧妙解法巧在利用了f(x)为奇函数,所以f(0)=0,这一重要结论.例8.(2007年全国卷理I )()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件命题意图: 本题主要考查两个函数的加法代数运算后的单调性以及充分条件和必要条件的相关知识.解 先证充分性:因为()f x ,()g x 均为偶函数, 所以()(),f x f x -=()()g x g x -=,有()()()()()()h x f x g x f x g x h x -=-+-=+=,所以 ()h x 为偶函数.反过来,若()h x 为偶函数,()f x ()g x 不一定是偶函数.如2()h x x =,(),f x x =2()g x x x =-,故选B. 方法二:可以选取两个特殊函数进行验证. 故选B点评:对充要条件的论证,一定既要证充分性,又要证必要性,二着缺一不可.同时,对于抽象函数,有时候可以选取特殊函数进行验证.5.函数的图象与性质函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想.例9.(2006年山东卷)函数y=1+a x (0<a <1)的反函数的图象大致是 ( )(A ) (B ) (C ) (D )命题意图: 本题主要考查对数函数的图象,互为反函数图象间关系及对数的运算性质等知识.解:∵y=1+a x (0<a <1),∴()()1log (1),01a f x x a -=-<<.此函数图象是由函数()()log ,01a f x x a =<<向右平移一个单位得到的.故选A.6. 函数综合问题函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样. 这里主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养读者的思维和创新能力. 例10.(2007年浙江卷文)已知.|1|)(22kx x x x f ++-=(Ⅰ)若k = 2,求方程0)(=x f 的解;(Ⅱ)若关于x 的方程0)(=x f 在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明.41121<+x x命题意图:本题主要考查函数的基本性质、方程与函数的关系等基础知识,以及综合运用所学知识、分类讨论等思想方法分析和解决问题的能力。

相关文档
最新文档