高中数学基本不等式解题技巧
高中数学x基本不等式--三项注意
基本不等式----三大注意事项例题解答基本不等式是高中阶段的重要内容,是学生不容易掌握的重点知识之一,关键是其变形灵活,形式多姿多样,基本不等式“(0,0)2a b ab a b +≥>>”沟通了两个正数的“和”与“积”之间的关系,利用它可以解决求最值或者不等式证明问题.在运用基本不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形,造条件满足应用情境后再解决问题. 因此需要掌握一些变形技巧,注意三大方面. 一个技巧:运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab +≥逆用就是222a b ab +≤,2a b ab +≥ (0,0)a b >>逆用就是2()2a b ab +≤等. 两个变形: (1) 2221122a b a b ab a b ++≤≤≤+ (,)a b R +∈,即调和平均数≤几何平均数≤算术平均数≤平方平均数;(当且仅当a b =时取等号) (2) 222()22a b a b ab ++≤≤ (,)a b R ∈(当且仅当a b =时取等号). 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.例题.一、注意运用不等式链例1 已知0a >,0b >,1a b +=,求11a b +的最大值. 解析:由0a >,0b >,又2112a b a b +≤+,因为1a b +=,所以21112a b ≤+,所以11a b +4≥,当且仅当12a b ==时,等号成立. 评注:本题利用基本不等式链简化了问题,是题目的证明思路一目了然.二、注意结论成立的条件 对2221122a b a b ab a b++≤≤≤+来讲,一是要求,a b R +∈,二是和或积或平方和为定值,三是等号要成立即a b =.即所谓的一正、二定、三相等;但是对不等式222()22a b a b ab ++≤≤来讲,a b R ∈均可.例2 求函数()()y x x x=++49的最值. 错解: ()()y x x x x x x =++=++4913362=++≥+⋅=133********x x x x 当且仅当x x=36即x =±6时取等号. 所以当x =±6时,y 的最小值为25,此函数没有最大值.错因分析: 上述解题过程中应用了基本不等式,却忽略了应用基本不等式求最值时的条件—两个数都应大于零,因而导致错误.因为函数()()y x x x =++49的定义域为(,0)(0,)-∞+∞,所以必须对x 的正负加以分类讨论.正解: (1)当x >0时,25362133613=⋅+≥++=x x x x y , 当且仅当x x=36即6=x 时取等号.所以当x =6时,y min =25. (2)当x <0时,->->x x 0360,, ()()-+-⎛⎝ ⎫⎭⎪≥--⎛⎝ ⎫⎭⎪=x x x x 3623612, 11213)]36()[(13=-≤-+--=∴x x y .当且仅当-=-x x36,即x =-6时取等号,所以当x =-6时,y max =-=13121.评注:在利用基本不等式链时,一定要注意使用范围.例3 已知0,0x y >>,且191x y+=,求x y +的最小值. 错解:0,0x y >>,且191x y +=,∴()1992212x y x y xy x y xy ⎛⎫+=++≥= ⎪⎝⎭. 故 ()min 12x y += .错因分析:解法中两次连用基本不等式,在2x y xy +≥等号成立条件是x y =,在1992x y xy+≥等号成立条件是19x y=即9y x =,取等号的条件的不一致,产生错误. 正解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭ 当且仅当9y x x y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += . 评注:在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法.三、注意要掌握三种拼凑方法由基本不等式链可以看出在运用基本不等式解决问题时主要是凑定和、定积或平方和为常数.例4 当04x <<时,求(82)y x x =-的最大值.解析:由04x <<知,820x ->,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可.211282(82)[2(82)]()8222x x y x x x x +-=-=-≤=. 当282x x =-,即2x =时取等号 ,所以当2x =时,(82)y x x =-的最大值为8.评注:本题无法直接运用基本不等式,但凑系数后可得到和为定值,从而可利用基本不等式求最大值. 例5 已知54x <,求函数14245y x x =-+-的最大值. 解析:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->, 11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =. 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值.例6 已知x ,y 为正实数,且2212y x +=,求21x y +的最大值. 解析:因条件和结论分别是二次和一次,故采用公式222a b ab +≤.同时还应化简21y +中前面的系数为12,22211122222y y x y x x ++==+.下面将x ,2122y +分别看成两个因式:则2211222y x y x +=+2212222y x ++≤324=, 当且仅当2122y x =+且2212y x +=,即32x =,22y =时,等号成立. 所以21x y +的最大值为324. 评注:本题注意到适当添加常数配凑后,两项的平方和为常数,故而进行变形利用基本不等式链解决问题.。
高中数学基本不等式的解法十例
解 析 : 由 三 点 共 线 可 得 a b 1 , 观 察 形 式 采 用 “1” 的 代 换 , 故 而
1
1
1 a
1 b
a
b
2
b
a
,等式右侧积为定值,故而利用积定和最小法则可
ab
1
ab
得 : b a 2 ba 2 , 当 且 仅当 b aab1 时 取 等号 。故 而 可 得
a b ab
2x 2y
42x
y
2
2x 2y 42x y 4 , 当 且 仅 当
2x y 2x 2y
2x y 2x 2y
2x 2y 2x y
42x y
2x 2y
2 ,亦即
x
y
0 3 2
时取等号。此时可得 4 x
3y min
9 2
。
问题 3:方程中的基本不等式
解题思路:将需要利用不等式的项移到方程的一边,利用基本不等式求解即可。
3
2
3 a
2 b
2a
3b
12
9b a
4a b
,观察分子可得分子积为定值,根据积定和
ab
6
6
最小法则可得: 9b 4a 2
ab
9b a
4a b
12
,当且仅当
9b a
4a b
a b
3 2
1
时取等号,故
而可得
3
2
12
9b a
4a b
4
。
ab
6
(不等式与解三角形)例题 7: .
中,角
的对边分别为
a
2
b
2
ab
可
得
高中数学不等式的解题方法与技巧
高中数学不等式的解题方法与技巧
高中数学不等式的解题方法与技巧有以下几点:
1. 确定不等式的范围:首先要确定不等式的变量范围,例如确
定变量为正数、自然数等,以便后续的推导和计算。
2. 利用基本不等式:基本不等式是指常见的数学不等式,例如
平均不等式、柯西-施瓦茨不等式、均方根不等式等。
通过运用这些
基本不等式,可以简化和推导复杂的不等式。
3. 分析不等式的性质:通过观察不等式的形式和特点,可以得
出不等式的一些性质。
例如,不等式是否对称、是否单调递增等,这些性质可以为解题提供线索。
4. 使用增减法:对于复杂的不等式,可以通过增减法将不等式
变换成简单的形式。
增减法是指在不等式两边同时加减相同的数,从而改变不等式的形式。
通过多次的增减操作,可以逐步简化不等式的形式。
5. 运用数学归纳法:对于涉及自然数的不等式,可以使用数学
归纳法进行证明。
数学归纳法是通过证明某个命题对于自然数n成立,然后再证明对于n+1也成立,从而得出该命题对于所有自然数成立的结论。
6. 剖析复杂不等式:对于特别复杂的不等式,可以使用分段函数、图像、积分等方法进行剖析。
这些方法可以将不等式转化为求解函数的最值或积分的问题,进而求解不等式。
总之,解决高中数学不等式需要灵活运用各种方法和技巧,通过
观察、推导和计算,找到合适的途径来简化不等式、得出结论。
掌握了这些解题方法与技巧,可以提高解决数学不等式问题的能力。
高一不等式恒成立问题3种基本方法
高一不等式恒成立问题3种基本方法文章标题:探讨高一不等式恒成立问题的三种基本方法在高中数学学习中,不等式恒成立问题是一个很常见的题型。
学生们通常需要掌握多种方法来解决这类问题,而这些方法通常可以分为三种基本类型。
本文将会详细介绍这三种基本方法,帮助读者全面理解这一数学概念。
1. 方法一:代数法我们来介绍代数法。
这种方法是在不等式两边进行代数变换,使得不等式变成一个容易解决的形式。
代数法通常包括加减变形、乘除变形以及平方去根等技巧。
以不等式ax+b>0为例,我们可以通过移项得到ax>-b,然后再除以a的正负来确定不等式的方向,从而得到不等式的解集。
代数法在解决不等式恒成立问题中应用广泛,能够快速简便地找到解的范围和规律。
2. 方法二:图像法我们介绍图像法。
图像法是通过绘制不等式所代表函数的图像,来直观地找出不等式恒成立的区间。
对于一元一次不等式ax+b>0,我们可以画出函数y=ax+b的图像,从而通过观察图像的上升或下降趋势来确定不等式的解集。
图像法能够帮助我们更直观地理解不等式的性质和范围,提高我们的思维逻辑和空间想象能力。
3. 方法三:参数法我们介绍参数法。
参数法是通过引入一个或多个参数,将不等式转化为一个有参数的等式问题,进而进行求解。
参数法的典型应用包括辅助角法、二次函数法等。
以不等式ax²+bx+c>0为例,我们可以引入Δ=b²-4ac,然后根据Δ的正负来确定不等式的解集。
参数法在解决不等式问题中能够简化问题的复杂度,将不等式的求解转化为参数的求解,从而提高解题的效率和准确度。
总结回顾通过对以上三种基本方法的介绍,我们可以发现它们各有特点,应用范围和解题思路有所不同。
代数法能够利用代数变形快速求解不等式问题,图像法能够帮助我们直观地理解不等式的性质,而参数法则能够将问题转化为参数的求解,提高解题的效率。
个人观点和理解在实际解题中,我们应该根据具体情况灵活选用这三种方法,结合题目的特点和自身的掌握程度来选择合适的解题方法。
运用基本不等式求最值需注意的两个问题
基本不等式a +b 2≥ab (a ,b ∈R +)是高中数学中的重点知识,其应用范围较广,尤其在求最值时,运用基本不等式能使问题快速获解.而在运用基本不等式求最值时,我们需要注意以下两个问题.一、把握应用基本不等式的条件运用基本不等式求最值需把握三个条件:一正、二定、三相等.“一正”是指两个数或两个式子都是大于0的;“二定”是指两个数或两个式子的积或和为定值;“三相等”指在两个数或两个式子相等时不等式可取等号.运用基本不等式求最值,这三个条件缺一不可.例1.求函数y =x 2+1x 2+2的最值.解析:很多同学在解题时会直接利用基本不等式进行求解:y =x 2+2+1x 2+2-2≥2-2=0.出错的原因在于,忽略了“三相等”这一条件,很显然x 2+2≠1x 2+2,导致得到错误的答案.解答本题,我们需通过换元,令t =x 2+2(t ≥2),则y =t +1t-2,根据对勾函数y =t +1t -2在[2,+∞)上为增函数,得出y =x 2+1x 2+2的值域为[12,+∞).很多同学在运用基本不等式时往往会注意到“一正”“二定”两个条件,却忽略“三相等”这个条件.大家在解题时要警惕,避免出现这样的错误.二、灵活运用配凑技巧运用基本不等式求最值,关键是配凑出两式的和或积的定值.如何配凑呢?常见的配凑技巧有拆项、裂项、添项等,下面我们结合实例来说明.1.拆项在拆项时,我们要学会将某些项拆为两项之和、差、积的形式,以便配凑出两式的和或积.常见的拆项形式有:a +b =a 2+a 2+b 、x 2+m x =x +m x 等.例2.当x >0时,试求y =16x +9x2的最小值.分析:可将目标式中的16x 拆为8x +8x ,这样便构造出三项8x 、8x 、9x2积的定值,便可利用基本不等式求得最值.解:因为x >0,所以y =8x +8x +9x 2≥=1293,当且仅当8x =9x 2,即x =时,y 的最小值为1293.2.裂项裂项是指将某一项分裂为两项、三项之和或者差的形式,然后将各式重新组合,配凑出两式的和或积,运用基本不等式求得最值.裂项常用于求分式的最值.例3.已知x >-1,求函数y =x 2+7x +10x +1的最小值.分析:要运用基本不等式求得y 的最小值,需先将函数式中的分式裂项,配凑出分母x +1,才可利用基本不等式求得最值.解:∵x >-1,∴y =x 2+7x +10x +1=[]()x +1+4[]()x +1+1x +1=()x +1+4x +1+5≥+5=9,当且仅当x +1=4x +1,即x =1时,等号成立,∴y 的最小值为9.3.添项添项,即通过恒等变换,在代数式中添加某些项,从而配凑出两式的和或者积.常见的添项形式有:a +1a +m =()a +m +1a +m-m 、a =a -b +b 等.例4.已知a >1,b >1,且ab -()a +b =1,求a +b 的最小值.分析:因为ab -()a +b =1,所以()a -1()b -1=2,将其与目标式对比可发现,只需通过添项,构造出a -1、b -1,便可运用基本不等式求得问题的答案.解:a +b =()a -1+()b -1+2≥2()a -1()b -1+2=22+2,当且仅当a -1=b -1,即a =b =1+2时,等号成立,因此a +b 的最小值为22+2.虽然,基本不等式法是一种常用的解题方法,也是大家比较熟悉的方法,但是同学们在解题时一定要注意这两个问题,只有把握了应用基本不等式的条件,学会灵活运用配凑的技巧,才能顺利求得问题的答案.(作者单位:江苏省海门证大中学)思路探寻49。
高中数学不等式解题技巧
不等式解题漫谈一、活用倒数法则 巧作不等变换——不等式的性质和应用不等式的性质和运算法则有许多,如对称性,传递性,可加性等.但灵活运用倒数法则对解题,尤其是不等变换有很大的优越性.倒数法则:若ab>0,则a>b 与1a <1b等价。
此法则在证明或解不等式中有着十分重要的作用。
如:(1998年高考题改编)解不等式log a (1-1x)>1.分析:当a>1时,原不等式等价于:1-1x >a,即 1x <1-a ,∵a>1,∴1-a<0, 1x <0,从而1-a,1x 同号,由倒数法则,得x>11-a ; 当0<a<1时,原不等式等价于 0<1- 1x <a,∴1-a<1x <1, ∵0<a<1,∴ 1-a>0, 1x >0, 从而1-a, 1x 同号,由倒数法则,得1<x<11-a;综上所述,当a>1时,x ∈(11-a ,+∞);当0<a<1时,x ∈(1,11-a).注:有关不等式性质的试题,常以选择题居多,通常采用特例法,排除法比较有效。
二、小小等号也有大作为——绝对值不等式的应用绝对值不等式:||a|-|b||≤|a ±b|≤|a|+|b|。
这里a,b 既可以表示向量,也可以表示实数。
当a,b 表示向量时,不等式等号成立的条件是:向量a 与b 共线;当a,b 表示实数时,有两种情形:(1)当ab ≥0时,|a+b|=|a|+|b|, |a-b|=||a|-|b||;(2)当ab ≤0时,|a+b|=||a|-|b||, |a-b|=|a|+|b|.简单地说就是当a,b 同号或异号时,不等式就可转化为等式(部分地转化),这为解决有关问题提供了十分有效的解题工具。
如:若1<1a <1b,则下列结论中不正确的是( )A 、log a b>log b aB 、| log a b+log b a|>2C 、(log b a)2<1D 、|log a b|+|log b a|>|log a b+log b a|分析:由已知,得0<b<a<1,∴a,b 同号,故|log a b|+|log b a|=|log a b+log b a|,∴D 错。
高一基本不等式题型及解题方法
高一基本不等式题型及解题方法高一基本不等式是数学中的重要内容,它在实际生活中有着重要的应用价值。
通过学习基本不等式,可以帮助学生理解数学的逻辑推理和解决实际问题的能力。
在高中数学的学习中,基本不等式是一个非常基础的知识点,因此学生需要掌握其基本概念和解题方法。
一、基本不等式的定义基本不等式是指在数字和代数问题中最基础的不等式关系。
它通常以不等式的形式表示,包括大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。
不等式的解是指满足不等式关系的一组实数。
在解不等式时,通常需要找出使不等式成立的一组解集。
解不等式的方法通常包括化简、加减法则、乘除法则、分拆法则、平方法则等。
学生需要掌握这些方法,并能够灵活应用于解题过程中。
二、基本不等式的题型在高一的数学学习中,基本不等式通常包括一元一次不等式、一元二次不等式、绝对值不等式等。
以下将分别介绍这些不等式的解题方法。
1.一元一次不等式一元一次不等式是指含有一个未知数的一次不等式。
其一般形式为ax+b>0或者ax+b<0,其中a和b为常数,x为未知数。
解一元一次不等式的基本步骤通常为:(1)移项:把不等式中的常数项移到一边,未知数移到另一边;(2)合并同类项;(3)整理化简;(4)根据不等式的正负情况给出解的范围。
例如,解不等式2x+3>5,首先将常数项3移到另一边,得到2x >2,然后除以2得到x>1。
因此,不等式的解为x的取值范围为大于1的实数。
2.一元二次不等式一元二次不等式是指含有一个未知数的二次不等式。
其一般形式为ax^2+bx+c>0或者ax^2+bx+c<0,其中a、b和c为常数,x为未知数。
解一元二次不等式的基本步骤通常为:(1)化简:将不等式化为标准形式,即将不等式移项并合并同类项;(2)求解方程:求出二次方程ax^2+bx+c=0的两个根;(3)根据方程的根和系数的关系求解不等式的解集。
例如,解不等式x^2+2x-3>0,首先化简得到(x+3)(x-1)>0,然后求出方程x^2+2x-3=0的解为x=-3和x=1,再根据不等式的正负情况得到不等式的解集为x<-3或者x>1。
高中数学-基本不等式---求最值的常见技巧
高中数学-基本不等式---求最值的常见技巧【理论解析】一个技巧:222a b ab+≥逆用就是222a bab+≤,2a b+≥(0,0)a b>>逆用就是2()2a bab+≤等.两个变形:(1) 2112a ba b+≤≤≤+(,)a b R+∈,即调和平均数≤几何平均数≤算术平均数≤平方平均数;(当且仅当a b=时取等号)(2)222()22a b a bab++≤≤(,)a b R∈(当且仅当a b=时取等号).三个注意“一正、二定、三相等”的忽视.【解题方法技巧举例】1、添、减项(配常数项)例1 求函数221632y xx=++的最小值.222221620,32163(2)6266x y xxxx+>=++=++-+≥=解:当且仅当22163(2)2xx+=+,即22x=时,等号成立. 所以y的最小值是6.2、配系数(乘、除项)例2 已知0,0x y>>,且满足3212x y+=,求lg lgx y+的最大值.分析lg lg lg()x y xy+=, xy是二项“积”的形式,但不知其“和”的形式x y+是否定值,而已知是3x与2y的和为定值12,故应先配系数,即将xy变形为326x y⋅,再用均值不等式.220,032lg lg lg()lg6132112lg lg 6262lg 6x y x y x y xy x y >>⋅+==⎡⎤⎡⎤+⎛⎫⎛⎫≤=⎢⎥⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦=解: 当且仅当32x y =,即2,3x y ==时,等号成立. 所以lg lg x y +的最大值是lg 6.3、 裂项例3已知1x >-,求函数()()521x x y x ++=+的最小值.分析 在分子的各因式中分别凑出1x +,借助于裂项解决问题.()()141110,14(1)5519x x x y x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦+>=+=+++≥+=解:当且仅当411x x +=+,即1x =时,取等号.所以min 9y =.4、 取倒数例4 已知102x <<,求函数2(1)(12)x y x x +=-的最小值. 分析 分母是x 与(12)x -的积,可通过配系数,使它们的和为定值;也可通过配系数,使它们的和为(1)x + (这是解本题时真正需要的).于是通过取倒数即可解决问题.解 由102x <<,得10x +>,120x ->.221(12)1312(1)31131211113212x x x x y x x x x x x x --==⋅⋅+++-⎡⎤+⎢⎥++≤=⎢⎥⎢⎥⎣⎦当且仅当31211x xxx -=++,即15x =时,取等号. 故y 的最小值是12.5、 平方例5 已知0,0x y >>且22283y x +=求.分析 条件式中的x 与y 都是平方式,而所求式中的x 是一次式,y 是平方式但带根号.初看似乎无从下手,但若把所求式平方,则解题思路豁然开朗,即可利用均值不等式来解决.222222222((62)32(1)32(1)9333()22y x y x y x =+=⋅+⎡⎤++⎢⎥≤=⎢⎥⎢⎥⎢⎥⎣⎦解:当且仅当222(1)3y x =+,即32x =,2y =时, 等号成立.故的最大值是评注 本题也可将x纳入根号内,即将所求式化为.6、 换元(整体思想)例6求函数y =的最大值.分析t =,进行换元,再使分子常数化,然后运用均值不等式来解决.22,0,2,(0)2100;1014212=.23,2t t x t t y t t t y t y t t t t t x =≥=-=≥+==>=≤=+==-则当时,当时,当且仅当,即所以时7、 逆用条件例7 已知191(0,0)x y x y +=>>,则x y +的最小值是( ) .分析 直接利用均值不等式,只能求xy 的最小值,而无法求x y +的最小值.这时可逆用条件,即由191x y =+,得19()()x y x y x y +=++,然后展开即可解决问题.190,0,1199()()1010169,4,12.16.x y x y y xx y x y x y x yy x x y x yx y >>+=+=++=++≥====+解:由,得当且仅当即时,等号成立故的最小值是 评注 若已知0,0,x y >>1x y += (或其他定值),要求19x y +的最大值,则同样可运用此法. 8、 巧组合 例8 若,,0a b c >且()4a a b c bc +++=-求2a b c ++的最小值 .分析 初看,这是一个三元式的最值问题,无法利用a b +≥来解决.换个思路,可考虑将2a b c ++重新组合,变成()()a b a c +++,而()()a b a c ++等于定值4-,于是就可以利用均值不等式了.,,0,2()()2,,1.2 2.a b c a b c a b a c b c b c a a b c >++=+++≥======-++解:由知当且仅当即时,等号成立故的最小值为9、 消元例9、设,,x y z 为正实数,230x y z -+=,则2y xz 的最小值.分析 本题也是三元式的最值问题.由题意得32x zy +=,则可对2y xz 进行消元,用,x z 表示,即变为二元式,然后可利用均值不等式解决问题.22223,0,,29666=3,443,,=33.x zx z y y x z xz xz xz xz xz xzyx z x y z y xz +>=+++≥====解:由可得当且仅当即时,取“”.故的最小值为【例题解析】 例1 求函数()()yx x x=++49的最值.解: (1)当x >0时,25362133613=⋅+≥++=xx x x y , 当且仅当xx=36即6=x 时取等号.所以当x =6时,y min =25. (2)当x <0时,->->xx0360,, ()()-+-⎛⎝ ⎫⎭⎪≥--⎛⎝ ⎫⎭⎪=x x x x 3623612, 11213)]36()[(13=-≤-+--=∴xx y .当且仅当-=-x x 36,即x =-6时取等号,所以当x =-6时,y max =-=13121.例2已知0,0x y >>,且191x y+=,求x y +的最小值. 解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当9y x x y =时,上式等号成立,又191x y+=,可得4,12x y ==时,()min 16x y += . 例3 当04x <<时,求(82)y x x =-的最大值.解析:此题为两个式子积的形式,但其和不是定值.注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可.211282(82)[2(82)]()8222x x y x x x x +-=-=-≤=当282x x =-,即2x =时取等号 ,所以当2x =时,(82)y x x =-的最大值为8.例4 已知54x <,求函数14245y x x =-+-的最大值. 解析:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =.例5已知x,y为正实数,且2212yx+=,求的最大值.解析:因条件和结论分别是二次和一次,故采用公式222a bab+≤.12,==下面将x=2212222yx++≤4=当且仅当x=2212yx+=,即2x=,2y=时,等号成立.所以的最大值为4.评注:本题注意到适当添加常数配凑后,两项的平方和为常数,故而进行变形利用基本不等式链解决问题.【基本不等式课堂练习】一、选择题1.已知0,0a b >>,则112ab a b++的最小值是( )A .2 B .22 C .4 D .5 2.当0<x <2π时,函数f (x )=x x x 2sin sin 82cos 12++的最小值为( )A.2B.23C.4D.433.设y=x 2+2x+5+2125x x ++,则此函数的最小值为()A .174B .2C .265D .以上均不对 4,若,下列不等式恒成立的是( )A .B .C .D .5,若且,则下列四个数中最大的是 ( )A. B. C.2ab D.a6. 设x>0,则的最大值为 ( )A.3 B.C.D.-1 7,设的最小值是( ) A. 10 B.C.D.8. 若x, y 是正数,且,则xy 有( )A最大值16 B.最小值 C.最小值16 D.最大值9. a,b 是正数,则三个数的大小顺序是( )A. B.C. D.10.下列函数中最小值为4的是( )A B C D11、已知二次函数f(x)=ax 2-(a +2)x +1(a ∈Z),且函数f(x)在(-2,-1)上恰有一个零点,则不等式f(x)>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)12、已知M 是△ABC 内的一点,且AB →·AC →=23,∠BAC =30°,若△MBC ,△MCA 和△MAB 的面积分别为12,x ,y ,则1x +4y 的最小值是( )A .20B .18C .16D .913.设x,y 为正数, 则(x+y)(1x + 4y)的最小值为 ( )A.6 B.9 C.12 D.1514. 已知定义域为R 的偶函数在上是增函数,且,则不等式的解集为( )A .B .C .D .15.若,则的最小值为( )A .8 B .C .2D .417.若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是( ) A. 245 B. 285C.5D.6 18.下列不等式一定成立的是( )A .21lg()lg (0)4xx x +>> B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈D .211()1x R x >∈+ 19若点(,)A x y 在第一象限且在236x y +=上移动,则3322log log x y + ( )A 、最大值为1B 、最小值为1C 、最大值为2D 、没有最大、小值 20、 已知01x <<,求函数411y x x=+-的最小值.21、已知0,0a b >>,328a b +=,求函数的最大值.。
高中数学解题方法系列:用基本不等式求最值的4种策略
高中数学解题方法系列:用基本不等式求最值的4种策略基本不等式ab b a ≥+2(0,0>>b a 当且仅当b a =时等号成立)是高中必修五《不等式》一章的重要内容之一,也是高考常考的重要知识点。
从本质上看,基本不等式反映了两个正数和与积之间的不等关系,所以在求取积的最值、和的最值当中,基本不等式将会焕发出强大的生命力,它将会是解决最值问题的强有力工具。
本文将结合几个实例谈谈运用基本不等式求最值的三大策略。
一、基本不等式的基础知识[1]基本不等式:如果0,0>>b a ,则ab b a ≥+2,当且仅当b a =时等号成立。
在基本不等式的应用中,我们需要注意以下三点:“一正”:a 、b 是正数,这是利用基本不等式求最值的前提条件。
“二定”:当两正数的和b +a 是定值时,积ab 有最大值;当两正数的积ab 是定值时,和b +a 有最小值。
“三相等”:b a =是ab b a =+2的充要条件,所以多次使用基本不等式时,要注意等号成立的条件是否一致。
二、利用基本不等式求最值的四大策略策略一利用配凑法,构造可用基本不等式求最值的结构通过简单的配凑(凑系数或凑项)后,使原本与基本不等式结构不一致的式子,变为结构一致,再利用均值不等式求解最值。
题型一配凑系数例1 设230<<x ,求函数)23(4x x y -=的最大值。
分析:因为x x x 23)23(4+=-+不是个定值,所以本题无法直接运用基本不等式求解。
但凑系数将4x 拆为x 22⋅后可得到和3)23(2=-+x x 为定值,从而可利用基本不等式求其最大值。
解:因为230<<x ,所以023>-x 故2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=23,043x 时等号成立. 所以原式的最大值为29. 题型二配凑项1 配凑常数项例2 已知54x <,求函数54124-+-=x x y 的最大值。
学习基本不等式注意三事项
学习基本不等式注意三事项基本不等式是高中阶段的重要内容,是学生不容易掌握的重点知识之一,关键是其变形灵活,形式多姿多样,基本不等式“0,0)2a b a b +≥>>”沟通了两个正数的“和”与“积”之间的关系,利用它可以解决求最值或者不等式证明问题.在运用基本不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形,造条件满足应用情境后再解决问题. 因此需要掌握一些变形技巧,注意三大方面.【一个技巧】运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab +≥逆用就是222a b ab +≤,2a b +≥ (0,0)a b >>逆用就是2()2a b ab +≤等.还要注意“添、拆项”技巧和公式等号成立的条件等.【两个变形】(1) 2112a b a b +≤≤+ (,)a b R +∈,即调和平均数≤几何平均数≤算术平均数≤平方平均数;(当且仅当a b =时取等号) (2) 222()22a b a b ab ++≤≤ (,)a b R ∈(当且仅当a b =时取等号). 这两个不等式链用处很大,注意掌握它们.【三个注意】(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.下面举例析之.一、注意运用不等式链从某种意义上来讲要学好基本不等式的变形关键是掌握上述两个不等式链.不等式中的常见变形主要围绕这两个基本不等式链进行.例1 已知0a >,0b >,1a b +=,求11a b +的最大值. 解析:由0a >,0b >,又2112a b a b +≤+,因为1a b +=,所以21112a b≤+,所以11a b +4≥,当且仅当12a b ==时,等号成立. 评注:本题利用基本不等式链简化了问题,是题目的证明思路一目了然.二、注意结论成立的条件对2112a b a b +≤≤≤+来讲,一是要求,a b R +∈,二是和或积或平方和为定值,三是等号要成立即a b =.即所谓的一正、二定、三相等;但是对不等式222()22a b a b ab ++≤≤来讲,a b R ∈均可. 例2 求函数()()y x x x=++49的最值. 错解: ()()y x x x x x x=++=++4913362=++≥+⋅=133********x x x x ,当且仅当x x =36即x =±6时取等号. 所以当x =±6时,y 的最小值为25,此函数没有最大值.错因分析: 上述解题过程中应用了基本不等式,却忽略了应用基本不等式求最值时的条件—两个数都应大于零,因而导致错误.因为函数()()y x x x=++49的定义域为(,0)(0,)-∞+∞,所以必须对x 的正负加以分类讨论.正解: (1)当x >0时,25362133613=⋅+≥++=x x x x y , 当且仅当x x=36即6=x 时取等号.所以当x =6时,y min =25. (2)当x <0时,->->x x 0360,, ()()-+-⎛⎝ ⎫⎭⎪≥--⎛⎝ ⎫⎭⎪=x x x x 3623612, 11213)]36()[(13=-≤-+--=∴x x y .当且仅当-=-x x36,即x =-6时取等号,所以当x =-6时,y max =-=13121.评注:在利用基本不等式链时,一定要注意使用范围.例3 已知0,0x y >>,且191x y+=,求x y +的最小值. 错解:0,0x y >>,且191x y +=,∴()1912x y x y x y ⎛⎫+=++≥= ⎪⎝⎭.故 ()min 12x y += .错因分析:解法中两次连用基本不等式,在x y +≥等号成立条件是x y =,在19x y +≥19x y=即9y x =,取等号的条件的不一致,产生错误. 正解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭ 当且仅当9y x x y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += . 评注:在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法.三、要掌握三种拼凑方法由基本不等式链可以看出在运用基本不等式解决问题时主要是凑定和、定积或平方和为常数.例4 当04x <<时,求(82)y x x =-的最大值.解析:由04x <<知,820x ->,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可.211282(82)[2(82)]()8222x x y x x x x +-=-=-≤=. 当282x x =-,即2x =时取等号 ,所以当2x =时,(82)y x x =-的最大值为8.评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值. 已知54x <,求函数14245y x x =-+-的最大值. 解析:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->, 11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =. 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值.例6 、已知x ,y 为正实数,且2212y x +=,求.解析:因条件和结论分别是二次和一次,故采用公式222a b ab+≤.中前面的系数为12,==下面将x分别看成两个因式:则=22122 22yx++≤4=,当且仅当x=2212yx+=,即2x=,2y=时,等号成立.所以.评注:本题注意到适当添加常数配凑后,两项的平方和为常数,故而进行变形利用基本不等式链解决问题.【链接练习】1、已知01x<<,求函数411yx x=+-的最小值.解:因为01x<<,所以10x->.所以[]41414(1)(1)59111x xy x xx x x x x x-⎛⎫=+=+-+=++≥⎪---⎝⎭.当且仅当4(1)1x xx x-=-时,即23x=,上式取“=”,故min9y=.2、已知0,0a b>>,328a b+=.解:利用不等关系2ab+≤4≤=,=且328a b+=,即43a=,2b=时,等号成立.综上可见,许多貌似繁难的不等式问题,运用基本不等式链,恰当拼凑,可创造性地使用基本不等式,轻松获解.这样既开拓了学生的思路,又活跃了学生的思维,培养了学生的数学能力.。
高中不等式的解题方法与技巧
高中不等式的解题方法与技巧高中不等式是数学中的一个重要部分,它在数学竞赛和日常生活中都有广泛应用。
解决不等式问题需要掌握一些方法和技巧,下面将介绍一些常用的解题方法。
1. 移项法移项法是解决不等式问题最基本的方法之一。
当我们遇到一个不等式时,可以将其看做一个方程,然后通过移项使不等式符号变为相反的符号。
例如:2x + 5 > 7移项后得到:2x > 2x > 12. 合并同类项法合并同类项法是指将含有相同未知数的项合并在一起。
例如:3x + 5 > 4x - 1合并同类项后得到:x > -63. 因式分解法因式分解法是指将不等式中的多项式因式分解,并根据因子的正负性来确定未知数的取值范围。
例如:2x^2 - x - 3 > 0将其因式分解得到:(2x + 3)(x - 1) > 0由于两个因子都为二次函数,所以可以画出函数图像来确定未知数的取值范围。
4. 借助图像法借助图像法是指通过画出函数图像来确定未知数的取值范围。
例如:x^2 - 4x + 3 > 0将其转化为函数图像的形式,得到:从图像中可以看出,不等式的解为x < 1或x > 3。
5. 取绝对值法取绝对值法是指将不等式中的绝对值转化为两个不等式,并根据两个不等式的解来确定原不等式的解。
例如:|2x - 3| > 5将其转化为两个不等式,得到:2x - 3 > 5 或者 2x - 3 < -5解得:x > 4 或者 x < -1综合起来,原不等式的解为x < -1或者 x > 4。
以上是一些常用的高中不等式解题方法和技巧。
需要注意的是,在解决问题时要注意符号的变化和特殊情况。
同时,还需要多做题、多思考、多总结,才能够掌握这些方法和技巧,并在实际应用中灵活运用。
高一基本不等式题型及解题方法
高一基本不等式题型及解题方法一、基本不等式的概念基本不等式是指最简单的不等式,通常是一次不等式,或者是通过简单的运算得到的不等式。
基本不等式在高中数学中占据着重要的地位,是学习不等式的基础。
掌握基本不等式的解题方法对于提高学生的数学能力非常重要。
二、基本不等式的分类基本不等式可以分为一元一次不等式、一元二次不等式和一元高次不等式。
1.一元一次不等式一元一次不等式是指只有一个未知数,且次数为一的不等式,通常的形式为ax+b>0或ax+b<0。
2.一元二次不等式一元二次不等式是指只有一个未知数,且次数为二的不等式,通常的形式为ax²+bx+c>0或ax²+bx+c<0。
3.一元高次不等式一元高次不等式是指只有一个未知数,且次数大于二的不等式,通常的形式为P(x)>0或P(x)<0,其中P(x)是一个多项式函数。
三、基本不等式的解题方法解基本不等式的方法有代数法、图像法和试数法。
1.代数法代数法是指通过代数运算来解不等式的方法。
对于一元一次不等式,可以通过移项和合并同类项的方式得到不等式的解。
对于一元二次不等式,可以通过求解二次方程的方法得到不等式的解。
对于一元高次不等式,可以通过因式分解、配方法进行不等式的解。
2.图像法图像法是指通过画出函数的图像来解不等式的方法。
对于一元一次不等式,可以画出一次函数的图像,然后确定不等式的解。
对于一元二次不等式,可以画出二次函数的图像,然后确定不等式的解。
对于一元高次不等式,可以通过画出多项式函数的图像,然后确定不等式的解。
3.试数法试数法是指通过试验一些特殊的数来解不等式的方法。
对于一元一次不等式,可以试验一些简单的数来确定不等式的解。
对于一元二次不等式,可以试验一些特殊的数来确定不等式的解。
对于一元高次不等式,可以通过试验一些特殊的数来确定不等式的解。
四、基本不等式的解题步骤解基本不等式的步骤一般分为以下几步:1.化简不等式将不等式进行合并同类项、移项等操作,使得不等式尽可能简单。
基本不等式十大解题技巧
基本不等式十大解题技巧
基本不等式是数学中的一个重要概念,也是高中数学中的重点和难点之一。
以下是基本不等式解题的十大技巧:
1. 均值不等式法:利用算术平均值与几何平均值的关系,将不等式中的变量转化为平均值的形式,然后利用均值不等式进行证明。
2. 柯西不等式法:利用柯西不等式,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。
3. 均值不等式的逆推法:利用均值不等式的逆命题,将不等式中的变量转化为和的形式,然后利用均值不等式进行证明。
4. 几何平均值不等于算术平均值法:利用几何平均值与算术平均值的关系,将不等式中的变量转化为几何平均值的形式,然后利用不等式进行证明。
5. 利用三角不等式法:利用三角不等式,将不等式中的变量转化为三角形的三边长度,然后利用三角不等式进行证明。
6. 利用柯西不等式的逆推法:利用柯西不等式的逆命题,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。
7. 利用平均不等式法:利用平均不等式,将不等式中的
变量转化为平均值的形式,然后利用不等式进行证明。
8. 利用柯西不等式法的逆推法:利用柯西不等式的逆命题,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。
9. 利用均值不等式的逆推法:利用均值不等式的逆命题,将不等式中的变量转化为和的形式,然后利用均值不等式进行证明。
10. 利用几何平均值不等于算术平均值法的逆推法:利用几何平均值与算术平均值的关系,将不等式中的变量转化为几何平均值的形式,然后利用不等式进行证明。
以上是基本不等式解题的十大技巧,掌握这些技巧可以帮助学生更好地理解和应用基本不等式。
高中数学不等式求最值方法归纳
高中数学不等式求最值方法归纳
高中数学中,不等式求最值是一个重要的部分。
在解决不等式求最值问题时,我们需要遵循一些方法。
本文将介绍一些常用的方法,希望能够帮助学生更好地应对不等式求最值问题。
1. 辅助不等式法
辅助不等式法是一个常用的方法,它的思路是将原不等式中的某些式子替换为一个更容易求解的式子,这个式子通常是一个已知的不等式。
随后,我们就可以根据这个更容易求解的不等式来进一步求解原不等式。
2. 二次函数法
二次函数法是另一个常用的方法。
它的基本思路是将原不等式中的式子转换为一个二次函数,并通过求导或配方法来求解最值。
这种方法通常适用于含有二次项的不等式。
3. 代数方法
代数方法也是一个常用的求最值方法。
它的基本思路是将原不等式中的式子进行一系列代数变换,最终将其转化为一个可以直接求解的形式。
这种方法通常适用于含有分式或根式的不等式。
4. 几何方法
几何方法是一种比较直观的方法。
它的基本思路是通过几何图形来理解不等式的意义,从而求解最值。
这种方法通常适用于含有几何意义的不等式。
总之,不等式求最值是一个需要一定技巧的问题。
通过使用上述
的不等式求最值方法,我们可以更加轻松地处理这类问题。
当然,在实际使用中,我们还需要根据具体情况来灵活运用这些方法。
基本不等式的几点注意
基本不等式的“十”注意基本不等式是高中数学的重要内容之一,是培养学生逻辑推理能力的好手段.基本不等式作为函数的核心组成部分,在不等式的证明、求最值、求解参数问题等方面都有广泛的应用,主要以工具知识的出现.但要想灵活应用基本不等式解题,在学习中特别要注意以下几点.一、注意考纲要求利用均值定理求最值,考纲对均值定理要求是掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均的定理,并会简单的应用.高考中常与函数、三角、数列、解析几何、立体几何、应用问题等知识联系.二、注意基本不等式的结构特征均值不等式的主要两种形式:第一种形式:a ,b ∈R 时,a 2+b 2≥2ab=ab +ab (当且仅当a =b 时“=”号成立);第二种形式:a >0,b >0时,a +b ≥2ab =ab +ab (当且仅当a =b 时“=”号成立).两端的结构、数字具有如下特征:(1)次数相等;(2)项数相等或不等式右侧系数与左侧项数相等;(3)左和右积.这两个公式的结构完全一致,第二种形式可以将条件放宽为但a ≥0,b ≥0,因此在非负实数范围之内,两个公式均成立,当要解决的不等式具有上述特征时,考虑用均值不等式.三、注意从本质上认识基本不等式基本不等式在本质上体现两种转化:(1)在均值不等式中“当且仅当……等号成立”的“当且仅当”是“充要条件”的同义词,它给出了相等与不等的界,是相等与不等转化的突破口;(2)基本不等式的一端是两个正数的和,一端是两个正数的积,因此利用基本不等式可以达到两数和与积的不等转化.四、注意把握基本不等式的常见变式(1)ab≤a 2+b 22,ab≤(a +b 2)2,对不等式ab≤a 2+b 22,还有更一般的表达式:|ab|≤a 2+b 22; (2)若a ,b 同号,则a b +b a2(当且仅当a =b 时,取等号); (3)若x >0,则x +1x≥2(当且仅当x =1时,取等号). 五、注意联系等比数列与等差数列由数列知识可知,a +b 2称为a ,b 的等差中项,ab 称为正数a ,b 的等比中项,故算术平均数与几何平均数的定理又可叙述为:“两个正数的等比中项不大于它们的等差中项”.六、注意利用基本不等式求函数的最值的条件利用基本不等式求函数最值的方法使用范围较广泛,既可适用于已学过的二次函数,又可适用于分式函数,高次函数,无理函数,但必须注意其使用三个条件:(1)项项为正:a >0,b >0;(2)和定或积定:a +b 为定值或ab 为定值;(3)项项相等:“a =b ”,三个条件缺一不可.少了“项项为正”,就失去了利用均值定理的前提条件;少了“a +b 为定值或ab 为定值”,求出的不是一个常数,而是一个变量;少了“项项相等”,求出的最值就失去了基础,成了“空中楼阁”.七、注意多次利用基本不等式求最值的条件求解最值问题时,有时需要同时或连续多次使用均值不等式,这时一定要注意几次使用条件必须一致,即每次取得“=”号的条件一致,否则所求的最值是错误的.八、注意利用基本不等式求最值时常见凑配技巧在使用重要不等式证明问题时,根据所证不等式的结构,常常需要配合一定的变形技巧与转化策略,才可以使用重要不等式常用的初等变形手段有均匀裂项,增减项,配系数、平方、引参、换元、裂项、折幂等.一般说来,“见和想积,拆低次,凑积为定值,则和有最小值;见积想和,拆高次,凑和为定值,则积有最大值”.九、注意利用基本不等式证明不等式的条件利用均值定理a +b 2≥ab(a >0,b >0)证明不等式时,没有利用其求最值的条件强,一般只需满足一个条件:“项项为正:a >0,b >0”.十、注意基本不等式的实际应用问题新课标教材与传统教材最大的区别是,新教材淡化了不等式的证明,加强了不等式与日常生活的联系,如实际生活中的方案选择型、材料切割型、造价最低、利润最大等问题.这类问题首先应认真阅读题目、理解题目的意义,注意题目中的关键词和有关数据,然后将实际问题转化为数学问题,即数学建模,再运用均值不等式加以解决.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作者:李浩
来源:《家长·中》2019年第04期
众所周知,数学具有较强的复杂性、逻辑性,导致部分学生会产生畏难心理,难以感受到数学的趣味。在学习不等式的过程中,需要不断积累经验,并提高理论知识运用的能力,从而可以逐渐形成解题技巧,避免出现解题失误或者效率低等问题。
一、高中数学中不等式的反证解题技巧
例2:已知有n个圆,每两个圆会在两点相交,每3个圆不会在同一点相交。请证明:这n个圆将平面分成的部分为f(n)=n²-n+2。
解析:在证明f(n)=n²-n+2公式成立的过程中,可以采用归纳法的方式。等n等于1时,f(1)等于2。因此,当n等于1时,存在公式n²+n+2等于2成立,因此命题是成立的。另外,也可以假设n等于k,同时第k+1个圆的圆心用O表示,并结合题目的条件进行后续的证明。通过以上两种不同的方式,均可以证明f(n)=n²-n+2成立,其中实现了对不等式性质的合理运用,从而有效降低题目的难度,对于获取正确的证明结果具有重要意义。
二、高中数学中不等式的性质解题技巧
在对不等式进行解析的过程中,可以实现对不等式性质的合理运用。实际上,这一解题方式是最为基础的,能够在很多类型的题目中得到应用。例如:不等式具有传递性,如果a大于b,b大于c,則意味着a大于c。另外,不等式还具备可加性的特点,加深a大于b,那么a+c必然大于b+c,同时ac也同样大于bc。结合如下例题,实现对不等式性质应用方式的分析。
三、高中数学中不等式的换元解题技巧
在分析不等式的过程中,可以将其式子看作整体,然后使变量对其进行替换,从而让问题的解题更加简便。此种解题方式,便可以称之为换元法,实现对不等式的转化。在这一过程中,需要重视置换元、构建元两个要素。具体而言,换元法是以等量代换为基础的进一步延伸,可以实现对研究对象的变换,实现对问题的转移。另外,换元法还可以叫做辅助元素法,即在不等式中引入全新的变量,实现对分散条件的综合处理,并使其中的隐藏条件凸显出来。或者解题期间将结论、条件结合起来,使其成为最为熟悉的结构,为解题提供便利。
例1:已知a+b+c大于0,abc大于0,ad+bc+ac大于0。结合已知条件,求解:a大于0、b大于0、c大于0。
解析:在求解以上问题之前,需要对题目进行详细分析。由于abc大于0,所以其中的a、b、c数值均不等于0。如果a小于0,bc小于0,那么满足条件a+b+c大于0,同时b+c大于-a,最终的结果则是a(b+c)小于0。需要注意的是,结合题目条件与上述分析发现,ad+bc+ac+a(b+c)+bc的和小于0,而此结果与题目条件相互冲突,因此上也必须大于0,完成证明。
在不等式的解题中,反证解题技巧的应用相对广泛。具体而言,此种技巧主要是在正难则反的前提下而形成的,可以在计算高中数学不等式的过程中,获取十分理想的效果。采用此种解题技巧,能够证明与不等式相关的问题,同时整个证明的过程具有便捷性、简单性,从而在根本上提高解题效率。结合如下例题,对反证解题技巧的应用方式进行分析:
例3:已知a大于b大于c,请证明:[1(a-b)+1(b-c)≥4(a-c)]。
解析:结合题目的条件与换元法的原则,可以令a-b等于x、b-c等于y。因此,a-c等于x+y,同时x、y的数值均大于0。在对原不等式进行转化以后,可以得出如下不等式:1/x+1/y大于等于4/(x+y)。因此,在证明不等式的过程中,只需要确保(x+y)/x+(x+y)/y大于等于4,1+y/x+1+x/y大于等于4即可。同时,还需要证明y/x+x/y大于等于2且恒成立。通过此种方式,便可以结合的题目条件与换元法的方式,完成对[1(a-b)+1(b-c)≥4(a-c)]的证明。
四、结语
综上所述,不等式是高中数学的重点、难点,经常会出现在习题、考试中。为了避免此种问题的出现,需要结合题目的类型,实现对不同解题技巧的合理应用,从而以最快、最准确的方式得到最终结果。
(责编;唐琳娜)