红外光谱的特征吸收峰
红外光谱的特征吸收峰
(C-H面外弯曲) 官能团
2 R C H C H
吸收频率(cm-1) 1000和900
______________________________________________________
顺式 R C H C H R 反式
730~675
970~960 880 840~800
R2C CHR
C-H 伸缩 (cm-1)
3300
5. 组成化学键的原子质量
原子质量越小,红外吸收频率越大
C-H C-C C-O C-Cl C-Br C-I 800 550 500
伸缩 (cm-1) ~3000 1200 1100
各类官能团的特征吸收峰
4000~2400cm-1(主要为Y-H伸缩振动吸收) 官能团 吸收频率(cm-1) _______________________________________________________ -醇,酚 3650~3600(自由) OH3500~3200(分子间氢键)
R2C CH2
(C-H面外弯曲)
官能团 吸收频率(cm-1) ______________________________________________
R
770~和710~690 770~735 810~和725~680 860~800
R R
R R
R
R
官能团区
3600 ~ 1500 cm-1 吸收带不多,化学键和官能团的特征频率区 OH 3650~3100 cm-1 1700 cm-1
C
O
指纹区
1500~400 cm-1 吸收带多,整个分子振动转动引起的,反映整个 分子的特征。可用于鉴定两个化合物是否同一化合物
红外吸收光谱特征峰
红外吸收光谱特征峰1. 水平振动峰:大部分物质在红外光谱中显示出实数振动峰,这些峰通常位于1500-4000 cm^-1区间。
在这个区间内,主要的振动模式有:C-H拉伸振动,C=O伸缩振动,C-N伸缩振动和O-H伸缩振动等。
2. 弯曲振动峰:这些峰通常位于500-1500 cm^-1区间,代表物质中相对较低能量的振动模式。
其中,主要的弯曲振动包括:C-H弯曲振动、O-H弯曲振动和C-N弯曲振动等。
3. 拉曼峰:拉曼光谱是一种与红外光谱类似的光谱,主要用于研究物质的分子振动。
拉曼光谱中的峰通常位于200-4000 cm^-1区间,包括了与红外光谱重叠的水平和弯曲振动。
4. 振动-转动峰:当分子既有振动运动又有转动运动时,红外光谱中会出现振动-转动峰。
这些峰通常位于0-500 cm^-1区间,具有特定的振动和转动组合频率,可以用来确定分子的对称性。
5. 过渡金属峰:一些过渡金属化合物在红外光谱中显示出独特的吸收峰。
这些峰通常位于400-2000 cm^-1区间,对应于金属-配体之间的振动模式。
6. 质子峰:质子(H+)在红外光谱中呈现为一个孤立线峰。
质子峰的位置通常在1500-2500 cm^-1之间,变化范围较大,取决于质子的环境。
红外吸收光谱中的这些特征峰可以提供物质的结构、键合和功能基团等信息。
通过分析化合物在红外光谱中的峰值位置和形状,可以确定其化学组成和化学结构,实现化合物的鉴定和分析。
同时,红外光谱还可以用于跟踪反应过程、监测化学变化和定量分析等方面。
这些特征峰在各个研究领域,如有机化学、材料科学和生物化学等中都有广泛的应用。
红外吸收光谱特征峰,史上最全-红外中no吸收峰
表15.1 典范有机化合物的重要基团频率(/cm-1)之迟辟智美创作化合物基团X-H伸缩振动区叁键区双键伸缩振动区部份单键振动和指纹区烷烃-CH3asCH:2962±10(s)asCH:1450±10(m)sCH:2872±10(s)sCH:1375±5(s)-CH2-asCH:2926±10(s)CH:1465±20(m)sCH:2853±10(s)CH:2890±10(s)CH:~1340(w)烯烃CH:3040~3010(m)C=C:1695~1540(m)CH:1310~1295(m)CH:770~665(s)CH:3040~3010(m)C=C:1695~1540(w)CH:970~960(s)炔烃-C≡C-H CH:≈3300(m)C≡C:2270~2100(w)芳烃CH:3100~3000(变)泛频:2000~1667(w)C=C:1650~1430(m)2~4个峰CH:1250~1000(w) CH:910~665单取代:770~730(vs)≈700(s)邻双取代:770~735(vs) 间双取代:810~750(vs)725~680(m)900~860(m) ~对双取代:860~790(vs)醇类R-OH OH:3700~3200(变)OH:1410~1260(w)CO:1250~1000(s)OH:750~650(s)酚类Ar-OH OH:3705~3125(s)C=C:1650~1430(m)OH:1390~1315(m)CO:1335~1165(s)脂肪醚R-O-R'CO:1230~1010(s) 酮C=O:≈1715(vs)醛CH:≈2820,≈2720(w)双峰C=O:≈1725(vs)羧酸OH:3400~2500(m)C=O:1740~1690(m)OH:1450~1410(w)CO:1266~1205(m)酸酐C=O:1850~1880(s)C=O:1780~1740(s)CO:1170~1050(s)酯泛频C=O:≈3450(w)C=O:1770~1720(s)COC:1300~1000(s)胺-NH2NH2:3500~3300(m)双峰NH:1650~1590(s,m) CN(脂肪):1220~1020(m,w)CN(芳香):1340~1250(s)-NH NH:3500~3300(m)NH:1650~1550(vw)CN(脂肪):1220~1020(m,w)CN(芳香):1350~1280(s)酰胺asNH:≈3350(s)C=O:1680~1650(s)CN:1420~1400(m) sNH:≈3180(s)NH:1650~1250(s)NH2:750~600(m)NH:≈3270(s)C=O:1680~1630(s) CN+NH:1310~NH+CN:1750~1515(m)1200(m)C=O:1670~1630酰卤C=O:1810~1790(s)腈-C≡N C≡N:2260~2240(s)硝基化合物R-N02NO2:1565~1543(s)NO2:1385~1360(s)CN:920~800(m)Ar-NO2NO2:1550~1510(s)NO2:1365~1335(s)CN:860~840(s)不明:≈750(s)吡啶类CH:≈3030(w)C=C及C=N:1667~1430(m)CH:1175~1000(w)CH:910~665(s)嘧啶类CH:3060~3010(w)C=C及C=N:1580~1520(m)CH:1000~960(m)CH:825~775(m)* 表中vs,s,m,w,vw用于定性地暗示吸收强度很强,强,中,弱,很弱.中红外光谱区一般划分为官能团区和指纹区两个区域,而每个区域又可以分为若干个波段.官能团区官能团区(或称基团频率区)波数范围为4000~1300cm-1,又可以分为四个波段.★4000~2500cm-1为含氢基团x—H(x为O、N、C)的伸缩振动区,因为折合质量小,所以波数高,主要有以下五种基团吸收● 醇、酚中O —H :3700~3200cm-1,无缔合的O —H 在高 一侧,峰形尖锐,强度为s缔合的O —H 在低一侧, 峰形宽钝, 强度为s● 羧基中O —H : 3600~2500cm-1,无缔合的O —H 在高 一侧,峰形尖锐,强度为s缔合可延伸至2500 cm-1,峰非常宽钝,强度为s● N —H : 3500~3300 cm-1, 伯胺有两个H ,有对称和非对称两个峰,强度为s—m叔胺无H ,故无吸收峰●C —H : <3000 cm-1为饱和C :~2960 cm-1 (),~2870 cm-1()强度为m-s~2925 cm-1 (),~2850 cm-1()强度为m-s~2890 cm-1强度为w>3000 cm-1为不饱和C :(及苯环上C-H)3090~3030cm-1强度为m~3300 cm-1强度为m● 醛基中C —H :~2820及~2720两个峰强度为m-s ★2500~2000 cm-1 为叁键和累积双键伸缩振动吸收峰,主要包括-C≡C -、-C≡N 叁键的伸缩振动及、等累积双键的非对称伸缩振动,呈现中等强度的吸收.在此波段区中,还有S —H 、Si —H 、P —H 、B —H 的伸缩振动. ★2000~1500 cm-1 为双键的伸缩振动吸收区,这个波段也是比力重要的区域,主要包括以下几种吸收峰带.●C=O伸缩振动,呈现在1960~1650 cm-1,是红外光谱中很特征的且往往是最强的吸收峰,以此很容易判断酮类、醛类、酸类、酯类、酸酐及酰胺、酰卤等含有C=O的有机化合物.●C=N、C=C、N=O的伸缩振动,呈现在1675~1500 cm-1.在这波段区中,单核芳烃的C=C骨架振动(呼吸)呈现2~4个峰(中等至弱的吸收)的特征吸收峰,通常分为两组,分别呈现在1600 cm-1和1500 cm-1左右,在确定有否芳核的存在时具有重要意义.●苯的衍生物在2000~1670 cm-1波段呈现C—H面外弯曲振动的倍频或组合数.由于吸收强度太弱,应用价值不如指纹区中的面外变形振动吸收峰,如图15.9所示.如在分析中有需要,可加年夜样品浓度以提高其强度.图15.9 苯环取代类型在2000~1667cm-1和900~600cm-1的谱形★1500~1300 cm-1饱和C—H变形振动吸收峰,—CH3呈现在1380及1450 cm-1两个峰,呈现在1470 cm-1,呈现在1340 cm-1.这些吸收带强度均为m至w .指纹区指纹区:波数范围为1300~600cm-1.指纹区可以分为两个波段:★1300~900cm-1这个波段区的光谱信息很丰富,较为主要的有如下几种:●几乎所有不含H的单键的伸缩振动,如C—O、C—N、C—S、C—F、C—P、Si—O、P—O等,其中C—O的伸缩振动在1300~1000cm-1,是该区吸收最强的峰,较易识别.●部份含H基团的弯曲振动,如RCH=CH2,端烯基C—H弯曲振动为990、910cm-1的两个吸收峰;RCH=CHR反式结构的C—H吸收峰为970 cm-1(顺式为690 cm-1)等.●某些较重原子的双键伸缩振动,如C=S、S=O、P=O等.另外,某些分子的整体骨架振动也在此区发生吸收.★900~600cm-1这波段中较为有价值的两种特征吸收:●长碳链饱和烃,,n≥4时,呈现722cm-1有一中至强的吸收峰,n减小时,变年夜;●苯环上C—H面外变形振动吸收峰的变动,可以判断取代情况,此区域的吸收峰比泛频带2000~1670cm-1灵敏,因此更具使用价值,见所示.其吸收峰位置为:无取代的6个C—H,670~680cm-1,单吸收带;苯:单取代苯:5个C—H,690~700cm-1,740~750cm-1,两个吸收带;邻位双取代4个C—H,740~750cm-1,单吸收带;苯:间位双取代3个C—H,690~700cm-1,780~800cm-1,两个吸收带;苯:另一个C—H,~860cm-1,弱带,供参考;对位双取代2个C—H,800~850cm-1,单吸收带.苯:这些吸收带的强度为中等(有时强)。
红外吸收光谱特征峰,史上最全-红外中no吸收峰
表15.1 典型无机化合物的紧张基团频率(/cm-1)之相礼和热创作化合物基团X-H伸缩振动区叁键区双键伸缩振动区部分单键振动和指纹区烷烃-CH3asCH:2962±10(s)asCH:1450±10(m)sCH:2872±10(s)sCH:1375±5(s)-CH2-asCH:2926±10(s)CH:1465±20(m)sCH:2853±10(s)CH:2890±10(s)CH:~1340(w)烯烃CH:3040~3010(m)C=C:1695~1540(m)CH:1310~1295(m)CH:770~665(s)CH:3040~3010(m)C=C:1695~1540(w)CH:970~960(s)炔烃-C≡C-H CH:≈3300(m)C≡C:2270~2100(w)芳烃CH:3100~3000(变)泛频:2000~1667(w)C=C:1650~1430(m)2~4个峰CH:1250~1000(w) CH:910~665单取代:770~730(vs)≈700(s)邻双取代:770~735(vs) 间双取代:810~750(vs)725~680(m)900~860(m) ~对双取代:860~790(vs)醇类R-OH OH:3700~3200(变)OH:1410~1260(w)CO:1250~1000(s)OH:750~650(s)酚类Ar-OH OH:3705~3125(s)C=C:1650~1430(m)OH:1390~1315(m)CO:1335~1165(s)脂肪醚R-O-R'CO:1230~1010(s) 酮C=O:≈1715(vs)醛CH:≈2820,≈2720(w)双峰C=O:≈1725(vs)羧酸OH:3400~2500(m)C=O:1740~1690(m)OH:1450~1410(w)CO:1266~1205(m)酸酐C=O:1850~1880(s)C=O:1780~1740(s)CO:1170~1050(s)酯泛频C=O:≈3450(w)C=O:1770~1720(s)COC:1300~1000(s)胺-NH2NH2:3500~3300(m)双峰NH:1650~1590(s,m) CN(脂肪):1220~1020(m,w)CN(芳香):1340~1250(s)-NH NH:3500~3300(m)NH:1650~1550(vw)CN(脂肪):1220~1020(m,w)CN(芳香):1350~1280(s)酰胺asNH:≈3350(s)C=O:1680~1650(s)CN:1420~1400(m) sNH:≈3180(s)NH:1650~1250(s)NH2:750~600(m)NH:≈3270(s)C=O:1680~1630(s) CN+NH:1310~NH+CN:1750~1515(m)1200(m)C=O:1670~1630酰卤C=O:1810~1790(s)腈-C≡N C≡N:2260~2240(s)硝基化合物R-N02NO2:1565~1543(s)NO2:1385~1360(s)CN:920~800(m)Ar-NO2NO2:1550~1510(s)NO2:1365~1335(s)CN:860~840(s)不明:≈750(s)吡啶类CH:≈3030(w)C=C及C=N:1667~1430(m)CH:1175~1000(w)CH:910~665(s)嘧啶类CH:3060~3010(w)C=C及C=N:1580~1520(m)CH:1000~960(m)CH:825~775(m)* 表中vs,s,m,w,vw用于定性地暗示吸取强度很强,强,中,弱,很弱.中红外光谱区一样平常划分为官能团区和指纹区两个区域,而每个区域又可以分为多少个波段.官能团区官能团区(或称基团频率区)波数范围为4000~1300cm-1,又可以分为四个波段.★4000~2500cm-1为含氢基团x—H(x为O、N、C)的伸缩振动区,由于折合质量小,以是波数高,次要有以下五种基团吸取● 醇、酚中O —H :3700~3200cm-1,无缔合的O —H 在高 一侧,峰形尖锐,强度为s缔合的O —H 在低一侧, 峰形宽钝, 强度为s● 羧基中O —H : 3600~2500cm-1,无缔合的O —H 在高 一侧,峰形尖锐,强度为s缔合可延伸至2500 cm-1,峰非常宽钝,强度为s● N —H : 3500~3300 cm-1, 伯胺有两个H ,有对称和非对称两个峰,强度为s—m叔胺无H ,故无吸取峰●C —H : <3000 cm-1为饱和C :~2960 cm-1 (),~2870 cm-1()强度为m-s~2925 cm-1 (),~2850 cm-1()强度为m-s~2890 cm-1强度为w>3000 cm-1为不饱和C :(及苯环上C-H)3090~3030cm-1强度为m~3300 cm-1强度为m● 醛基中C —H :~2820及~2720两个峰强度为m-s ★2500~2000 cm-1 为叁键和累积双键伸缩振动吸取峰,次要包含-C≡C -、-C≡N 叁键的伸缩振动及、等累积双键的非对称伸缩振动,呈现中等强度的吸取.在此波段区中,还有S —H 、Si —H 、P —H 、B —H 的伸缩振动. ★2000~1500 cm-1 为双键的伸缩振动吸取区,这个波段也是比较紧张的区域,次要包含以下几种吸取峰带.●C=O伸缩振动,出如今1960~1650 cm-1,是红外光谱中很特征的且每每是最强的吸取峰,以此很容易判别酮类、醛类、酸类、酯类、酸酐及酰胺、酰卤等含有C=O的无机化合物.●C=N、C=C、N=O的伸缩振动,出如今1675~1500 cm-1.在这波段区中,单核芳烃的C=C骨架振动(呼吸)呈现2~4个峰(中等至弱的吸取)的特征吸取峰,通常分为两组,分别出如今1600 cm-1和1500 cm-1左右,在确定有否芳核的存在时具有紧张意义.●苯的衍生物在2000~1670 cm-1波段出现C—H面外弯曲振动的倍频或组合数.由于吸取强度太弱,运用价值不如指纹区中的面外变形振动吸取峰,如图15.9所示.如在分析中有必要,可加大样品浓度以进步其强度.图15.9 苯环取代类型在2000~1667cm-1和900~600cm-1的谱形★1500~1300 cm-1饱和C—H变形振动吸取峰,—CH3出如今1380及1450 cm-1两个峰,出如今1470 cm-1,出如今1340 cm-1.这些吸取带强度均为m至w .指纹区指纹区:波数范围为1300~600cm-1.指纹区可以分为两个波段:★1300~900cm-1这个波段区的光谱信息很丰富,较为次要的有如下几种:●几乎全部不含H的单键的伸缩振动,如C—O、C—N、C—S、C—F、C—P、Si—O、P—O等,其中C—O的伸缩振动在1300~1000cm-1,是该区吸取最强的峰,较易辨认.●部分含H基团的弯曲振动,如RCH=CH2,端烯基C—H弯曲振动为990、910cm-1的两个吸取峰;RCH=CHR反式结构的C—H吸取峰为970 cm-1(顺式为690 cm-1)等.●某些较重原子的双键伸缩振动,如C=S、S=O、P=O等.此外,某些分子的团体骨架振动也在此区发生吸取.★900~600cm-1这波段中较为有价值的两种特征吸取:●长碳链饱和烃,,n≥4时,呈现722cm-1有一中至强的吸取峰,n减小时,变大;●苯环上C—H面外变形振动吸取峰的变更,可以判别取代状况,此区域的吸取峰比泛频带2000~1670cm-1灵敏,因而更具运用价值,见所示.其吸取峰地位为:无取代的6个C—H,670~680cm-1,单吸取带;苯:单取代苯:5个C—H,690~700cm-1,740~750cm-1,两个吸取带;邻位双取代4个C—H,740~750cm-1,单吸取带;苯:间位双取代3个C—H,690~700cm-1,780~800cm-1,两个吸取带;苯:另一个C—H,~860cm-1,弱带,供参考;对位双取代2个C—H,800~850cm-1,单吸取带.苯:这些吸取带的强度为中等(偶然强)。
2红外光谱特征吸收峰
—CH2— 2930 cm-1 反对称伸缩振动 以下 2850 cm-1 对称伸缩振动
—C—H 2890 cm-1 弱吸收
2. 叁键(C C)伸缩振动区(2500 1900 cm-1 )
(1)RC CH (2100 2140 cm-1 ) RC CR’(2190 2260 cm-1 )
2.2.3影响红外吸收的结构因素 3、共轭效应
共轭作用使单双键平均化,消弱了双键的 键强,因此,共轭作用使吸收向低频方向 移动。
2.2.3影响红外吸收的结构因素
4、成键碳原子的杂化状态
C-H > =C-H > — C-H
SP
SP2
SP3
3300
3100 2900
一般化学键的原子轨道S成分越多,k越大, 吸收频率越高。
苯衍生物在 1650 2000 cm-1 出现 C-H 和C=C键的面内变形振动的泛频吸收(强 度弱),可用来判断取代基位置。
(3)C=O (1850 1600 cm-1 ) 碳氧双键的特征峰,强度大,峰尖锐。
4、 C-O,C-X的伸缩振动;如C-O的伸缩振 动1200-1100 cm-1
R=R’ 时, 对称伸缩振动无红外活性
(2)RC N (2100 2140 cm-1 )
3.双键伸缩振动区(1200 1900 cm-1 )
(1) RC=CR’ 1620 1680 cm-1 强度 弱,
R=R’(对称)时, 无红外活性。
(2)单核芳烃 的C=C键伸缩振动(1626 1650 cm-1 )
3 、1900 1300 cm-1 双键伸缩振动区
红外吸收光谱特征峰特别整理版
:770 〜735(vs) :810 〜750(vs)725 〜680(m) 900 〜860(m)〜对双取代:860〜790(vs)CO 1250 〜1000(s)''OH :750 〜650(s)表典型有机化合物的重要基团频率(/cm-1)化合物 基团X-H 伸缩振动区叁键区双键伸缩振动区部分单键振动和指纹区烷烃-CH3P asCH 2962 士 10(s)右 asCH 1450 士 10(m)卩 sCH 2872 士 10(s)占 sCH 1375 士 5(s)-CH2-P asCH 2926 士 10(s)5 CH 1465 士 20(m)P SCH 2853 士 10(s)_______________——1 1P CH 2890 士 10(s) 右 CH 〜1340(w)烯烃>=\HHvCH 3040 〜3010(m)VC=C 1695 〜1540(m) ® CH 1310 〜1295(m)丫 CH 770 〜665(s)H?-<P CH 3040 〜3010(m)VC=C 1695 〜1540(w) Y CH 970 〜960(s)炔烃dC-HP CH - 3300(m)yOC2270〜2100(w)芳烃 泛频:2000 〜1667(w)CH 3100 〜3000(变)右 CH 1250 〜1000(w)'C =C 1650 〜1430(m)2〜4个峰丫 CH 910 〜665 单取代: 770 〜730(vs)〜700(s)邻双取代 间双取代 醇类 R-OH1OH :3700 〜3200(变)OH :1410 〜1260(w)*表中vs,s,m,w,vw用于定性地表示吸收强度很强,强,中,弱,很弱。
中红外光谱区一般划分为官能团区和指纹区两个区域,而每个区域又可以分为若干个波段。
官能团区官能团区(或称基团频率区)波数范围为4000〜1300cm-1,又可以分为四个波段★ 4000〜2500cm-1为含氢基团x—H (x为O、N、C)的伸缩振动区,因为折合质量小,所以波数高,主要有以下五种基团吸收醇、酚中O—H:3700 〜3200cm-1,无缔合的O—H在高■' 一侧,峰形尖锐,强度为s羧基中cm-1,N —H: C—H:缔合的O—H在低■■ 一侧,峰形宽钝,强度为sO—H: 3600 〜2500无缔合的O—H在高F3500〜3300 cm-1,一侧,峰形尖锐,强度为S缔合可延伸至2500 cm-1,峰非常宽钝, 伯胺有两个H,有对称和非对称两个峰, 叔胺无H,故无吸收峰v 3000 cm-1为饱和C: 丄:〜2960 cm-11p),〜2870 cm-1(强度为s 强度为s —m)强度为m -s"C 比〜2925 cm -1心),〜2850 cm-1 &)强度为m - s_T'■〜2890 cm -1强度为w> 3000 cm-1为不饱和•-_(及苯环上C _H )3090〜3030强度为mcm -1——-=■■-〜3300 cm•醛基中C —H :〜2820及〜2720两个峰★ 2500〜2000 cm -1为叁键和累积双键伸缩振动吸收峰, 主要包括—C^(-、-C^N 叁键的伸缩振动及•-''•.、「;一」,一・等累积双键的非对称伸缩振动, 呈现中等强度的吸收。
红外光谱特征吸收峰讲解
红外光谱特征吸收峰讲解在红外光谱中,红外光与物质分子相互作用,使得分子中不同的化学键发生振动,从而吸收特定的红外辐射能量。
这些振动涉及键的拉伸、弯曲、扭转等运动,其振动频率和强度与分子结构和化学键的性质有关。
因此,红外光谱特征吸收峰可以提供分子结构和化学键信息。
红外光谱的横坐标是波数(cm-1),波数是光的频率的倒数,与光的能量成反比。
而纵坐标则是吸光度,表示物质对红外光的吸收程度。
吸收峰的位置可以通过测量吸收带的最大峰值处的波数来确定。
下面介绍一些常见的红外光谱特征吸收峰:1. 羧酸吸收峰(1700-1715 cm-1):羧酸的OH键弯曲振动和C=O双键伸缩振动引起的强吸收峰。
该吸收峰可以用来鉴别羧酸。
2. 羧酸盐吸收峰(1560-1640 cm-1):与羧酸吸收峰相比,羧酸盐的C=O双键伸缩振动引起的吸收峰位置左移。
3. 醛和酮吸收峰(1690-1750 cm-1):与羧酸吸收峰类似,它们也是由于C=O双键伸缩而引起的吸收峰。
但醛和酮的吸收峰位置通常比羧酸略高。
4. 羧酸和酮醇吸收峰(3200-3550 cm-1):由于羟基(OH)的振动引起的宽吸收峰。
在红外光谱中,羧酸和酮醇的羟基吸收峰位置和形状相似。
5. 烷基的C-H伸缩振动吸收峰(2850-3000 cm-1):烷基的C-H键伸缩振动引起的吸收峰。
短直链烷烃的C-H伸缩振动吸收峰出现在2850-2960 cm-1的范围内,而长直链烷烃的C-H伸缩振动峰则出现在2960-3000 cm-16. 芳香族化合物的C-H伸缩振动吸收峰(3020-3100 cm-1):芳香环中C-H键伸缩振动引起的吸收峰的位置通常在3020-3100 cm-17. N-H伸缩振动吸收峰(3300-3500 cm-1):含氮化合物中的氮氢键伸缩振动引起的吸收峰。
在氮-氢键的存在下,吸收峰位置可能出现在3300-3500 cm-1之间。
这些是红外光谱中常见的一些特征吸收峰范围和其对应的化学结构或基团。
红外吸收光谱特征峰特别整理版
红外吸收光谱特征峰特别整理版红外吸收光谱是一种常见的分析技术,可以通过观察物质在红外辐射下吸收的特定波长的光来确定它的结构和组成。
红外吸收光谱在许多领域都得到广泛应用,包括有机化学、药物研发、食品安全等。
在红外吸收光谱中,一些特定的吸收峰代表了特定的官能团或化学键,因此可以用于识别和鉴定物质。
下面是一些常见的红外吸收光谱特征峰的整理。
1. 羟基(OH)吸收峰:羟基的吸收峰通常出现在3200-3600 cm^-1的范围内。
在醇、酚和羧酸等化合物中,羟基的振动可产生广泛的吸收峰。
2. 胺基(NH)吸收峰:胺基的吸收峰通常出现在3100-3500 cm^-1之间。
在胺类化合物中,氨基的振动会引起这些吸收峰的出现。
3. 羧基(COOH)吸收峰:羧基的吸收峰通常出现在1700-1750 cm^-1之间。
在羧酸和酰胺等化合物中,这些吸收峰代表了羧基的存在。
4. 醛基(C=O)吸收峰:醛基的吸收峰通常出现在1700-1750 cm^-1之间。
在醛和酮等化合物中,醛基的振动会产生这些吸收峰。
5. 烯烃(C=C)吸收峰:烯烃的吸收峰通常出现在1600-1680 cm^-1之间。
在芳香烃和烯烃等化合物中,双键的振动会引起这些吸收峰的出现。
6. 芳香环(C-H)吸收峰:芳香环的吸收峰通常出现在3000-3100cm^-1之间。
在含芳香环的化合物中,芳香环上的氢原子的振动会产生这些吸收峰。
7. 硝基(NO2)吸收峰:硝基的吸收峰通常出现在1500-1600 cm^-1之间。
在含硝基的化合物中,硝基的振动会引起这些吸收峰的出现。
8. 卤素(C-X)吸收峰:卤素的吸收峰通常出现在500-800 cm^-1之间。
在含卤素的化合物中,卤素的振动会产生这些吸收峰。
上述仅是一些常见的红外吸收光谱特征峰,实际上还有很多其他化学键和官能团的吸收峰可供分析使用。
红外吸收光谱是一种非常有用的工具,可用于鉴定和定量分析不同物质。
通过观察红外光谱图中的吸收峰,我们可以获得有关被测物质结构和组成的重要信息,从而在科学研究和工业生产中得到广泛应用。
红外光谱的特征吸收峰
CH2
CH
1465(C-H面内弯曲) 1340(C-H面内弯曲)
(C-H面外弯曲)
官能团
吸收频率(cm-1)
______________________________________________________
R CH CH2
1000和900
顺式
RCH CHR
反式
730~675 970~960
官能团
吸收频率(cm-1)
_______________________________________________________
-醇,酚
3650~3600(自由)
OH-
3500~3200(分子间氢键)
-羧酸
3400~2500(缔合)
NH- 伯,仲胺,酰胺
3500~3100
CH-
CCH
~3300
R2C CHR R2C CH2
880 840~800
(C-H面外弯曲)
官能团
吸收频率(cm-1)
______________________________________________
R R
R R
R
770~和710~690 770~735 810~和725~680
R
R
860~800
官能团区
官能团
吸收频率(cm-1)
______________________________________________
NO2
1565~1545和1385~1360
C O(醇,酚,羧酸,酯,酸酐) 1300~1000
胺1350~1000源自CN伸缩酰胺
1420~1400
CH3
红外吸收光谱特征峰,史上最全-红外中no吸收峰
表15.1 典范有机化合物的重要基团频率(/cm-1)之羊若含玉创作化合物基团X-H伸缩振动区叁键区双键伸缩振动区部分单键振动和指纹区烷烃-CH3asCH:2962±10(s)asCH:1450±10(m)sCH:2872±10(s)sCH:1375±5(s)-CH2-asCH:2926±10(s)CH:1465±20(m)sCH:2853±10(s)CH:2890±10(s)CH:~1340(w)烯烃CH:3040~3010(m)C=C:1695~1540(m)CH:1310~1295(m)CH:770~665(s)CH:3040~3010(m)C=C:1695~1540(w)CH:970~960(s)炔烃-C≡C-H CH:≈3300(m)C≡C:2270~2100(w)芳烃CH:3100~3000(变)泛频:2000~1667(w)C=C:1650~1430(m)2~4个峰CH:1250~1000(w) CH:910~665单取代:770~730(vs)≈700(s)邻双取代:770~735(vs) 间双取代:810~750(vs)725~680(m)900~860(m) ~对双取代:860~790(vs)醇类R-OH OH:3700~3200(变)OH:1410~1260(w)CO:1250~1000(s)OH:750~650(s)酚类Ar-OH OH:3705~3125(s)C=C:1650~1430(m)OH:1390~1315(m)CO:1335~1165(s)脂肪醚R-O-R'CO:1230~1010(s) 酮C=O:≈1715(vs)醛CH:≈2820,≈2720(w)双峰C=O:≈1725(vs)羧酸OH:3400~2500(m)C=O:1740~1690(m)OH:1450~1410(w)CO:1266~1205(m)酸酐C=O:1850~1880(s)C=O:1780~1740(s)CO:1170~1050(s)酯泛频C=O:≈3450(w)C=O:1770~1720(s)COC:1300~1000(s)胺-NH2NH2:3500~3300(m)双峰NH:1650~1590(s,m) CN(脂肪):1220~1020(m,w)CN(芬芳):1340~1250(s)-NH NH:3500~3300(m)NH:1650~1550(vw)CN(脂肪):1220~1020(m,w)CN(芬芳):1350~1280(s)酰胺asNH:≈3350(s)C=O:1680~1650(s)CN:1420~1400(m) sNH:≈3180(s)NH:1650~1250(s)NH2:750~600(m)NH:≈3270(s)C=O:1680~1630(s) CN+NH:1310~NH+CN:1750~1515(m)1200(m)C=O:1670~1630酰卤C=O:1810~1790(s)腈-C≡N C≡N:2260~2240(s)硝基化合物R-N02NO2:1565~1543(s)NO2:1385~1360(s)CN:920~800(m)Ar-NO2NO2:1550~1510(s)NO2:1365~1335(s)CN:860~840(s)不明:≈750(s)吡啶类CH:≈3030(w)C=C及C=N:1667~1430(m)CH:1175~1000(w)CH:910~665(s)嘧啶类CH:3060~3010(w)C=C及C=N:1580~1520(m)CH:1000~960(m)CH:825~775(m)* 表中vs,s,m,w,vw用于定性地暗示吸收强度很强,强,中,弱,很弱.中红外光谱区一般划分为官能团区和指纹区两个区域,而每个区域又可以分为若干个波段.官能团区官能团区(或称基团频率区)波数规模为4000~1300cm-1,又可以分为四个波段.★4000~2500cm-1为含氢基团x—H(x为O、N、C)的伸缩振动区,因为折合质量小,所以波数高,主要有以下五种基团吸收● 醇、酚中O —H :3700~3200cm-1,无缔合的O —H 在高 一侧,峰形尖利,强度为s缔合的O —H 在低一侧, 峰形宽钝, 强度为s● 羧基中O —H : 3600~2500cm-1,无缔合的O —H 在高 一侧,峰形尖利,强度为s缔合可延伸至2500 cm-1,峰异常宽钝,强度为s● N —H : 3500~3300 cm-1, 伯胺有两个H ,有对称和非对称两个峰,强度为s—m叔胺无H ,故无吸收峰●C —H : <3000 cm-1为饱和C :~2960 cm-1 (),~2870 cm-1()强度为m-s~2925 cm-1 (),~2850 cm-1()强度为m-s~2890 cm-1强度为w>3000 cm-1为不饱和C :(及苯环上C-H)3090~3030cm-1强度为m~3300 cm-1强度为m● 醛基中C —H :~2820及~2720两个峰强度为m-s ★2500~2000 cm-1 为叁键和累积双键伸缩振动吸收峰,主要包含-C≡C -、-C≡N 叁键的伸缩振动及、等累积双键的非对称伸缩振动,呈现中等强度的吸收.在此波段区中,还有S —H 、Si —H 、P —H 、B —H 的伸缩振动. ★2000~1500 cm-1 为双键的伸缩振动吸收区,这个波段也是比较重要的区域,主要包含以下几种吸收峰带.●C=O伸缩振动,出现在1960~1650 cm-1,是红外光谱中很特征的且往往是最强的吸收峰,以此很容易断定酮类、醛类、酸类、酯类、酸酐及酰胺、酰卤等含有C=O的有机化合物.●C=N、C=C、N=O的伸缩振动,出现在1675~1500 cm-1.在这波段区中,单核芳烃的C=C骨架振动(呼吸)呈现2~4个峰(中等至弱的吸收)的特征吸收峰,通常分为两组,分离出现在1600 cm-1和1500 cm-1左右,在确定有否芳核的存在时具有重要意义.●苯的衍生物在2000~1670 cm-1波段出现C—H面外弯曲振动的倍频或组合数.由于吸收强度太弱,应用价值不如指纹区中的面外变形振动吸收峰,如图15.9所示.如在剖析中有需要,可加大样品浓度以提高其强度.图15.9 苯环取代类型在2000~1667cm-1和900~600cm-1的谱形★1500~1300 cm-1饱和C—H变形振动吸收峰,—CH3出现在1380及1450 cm-1两个峰,出现在1470 cm-1,出现在1340 cm-1.这些吸收带强度均为m至w .指纹区指纹区:波数规模为1300~600cm-1.指纹区可以分为两个波段:★1300~900cm-1这个波段区的光谱信息很丰硕,较为主要的有如下几种:●几乎所有不含H的单键的伸缩振动,如C—O、C—N、C—S、C—F、C—P、Si—O、P—O等,其中C—O的伸缩振动在1300~1000cm-1,是该区吸收最强的峰,较易识别.●部分含H基团的弯曲振动,如RCH=CH2,端烯基C—H弯曲振动为990、910cm-1的两个吸收峰;RCH=CHR反式构造的C—H吸收峰为970 cm-1(顺式为690 cm-1)等.●某些较重原子的双键伸缩振动,如C=S、S=O、P=O等.此外,某些分子的整体骨架振动也在此区产生吸收.★900~600cm-1这波段中较为有价值的两种特征吸收:●长碳链饱和烃,,n≥4时,呈现722cm-1有一中至强的吸收峰,n减小时,变大;●苯环上C—H面外变形振动吸收峰的变更,可以断定取代情况,此区域的吸收峰比泛频带2000~1670cm-1敏锐,因此更具使用价值,见所示.其吸收峰位置为:无取代的6个C—H,670~680cm-1,单吸收带;苯:单取代苯:5个C—H,690~700cm-1,740~750cm-1,两个吸收带;邻位双取代4个C—H,740~750cm-1,单吸收带;苯:间位双取代3个C—H,690~700cm-1,780~800cm-1,两个吸收带;苯:另一个C—H,~860cm-1,弱带,供参考;对位双取代2个C—H,800~850cm-1,单吸收带.苯:这些吸收带的强度为中等(有时强)。
红外光谱特征吸收峰讲解
O R C Cl
伸缩(cm-1 ) 1715
1815~1785
3. 共轭效应
由于羰基与α 、β 不饱和双键共轭削弱了碳 氧双键,使羰基伸缩振动吸收频率减小
O R C R
O R C C C
R
O C C C
+
C=O伸缩(cm-1)
1715
1685~1670
4. 成键碳原子的杂化类型 化学键的原子轨道 s 成分越多,化学键 力常数 k 越大,吸收频率越大 C H C H C H sp sp2 3100 sp3 2900
C H
(C-H面外弯曲) 官能团 吸收频率(cm-1)
______________________________________________________
R
CH
CH2
1000和900
顺式 RCH CHR 反式
730~675
970~960 880 840~800
R2C CHR
R2C CH2
C
O
指纹区
1500~400 cm-1 吸收带多,整个分子振动转动引起的,反映整个 分子的特征。可用于鉴定两个化合物是否同一化合物
1500~400cm-1 (某些键的伸缩和C-H弯曲振动吸收)
官能团 吸收频率(cm-1) ______________________________________________ NO2 1565~1545和1385~1360 C O(醇,酚,羧酸,酯,酸酐) 1300~1000 胺 1350~1000 C N 伸缩 酰胺 1420~1400 CH3 1460和1380 (C-H面内弯曲) CH2 1465(C-H面内弯曲) 1340(C-H面内弯曲)
红外吸收光谱特征峰,史上最全
表典型有机化合物的重要基团频率(/cm-1)* 表中vs,s,m,w,vw用于定性地表示吸收强度很强,强,中,弱,很弱。
中红外光谱区一般划分为官能团区和指纹区两个区域,而每个区域又可以分为若干个波段。
官能团区官能团区(或称基团频率区)波数范围为4000~1300cm-1,又可以分为四个波段。
★4000~2500cm-1为含氢基团x—H(x为O、N、C)的伸缩振动区,因为折合质量小,所以波数高,主要有以下五种基团吸收●醇、酚中O—H:3700~无缔合的O—H在高一侧,峰形尖锐,强度为s3200cm-1,缔合的O—H在低一侧,峰形宽钝,强度为s●羧基中O—H:3600~2500无缔合的O—H在高一侧,峰形尖锐,强度为scm-1,缔合可延伸至2500 cm-1,峰非常宽钝,强度为s●N—H: 3500~3300伯胺有两个H,有对称和非对称两个峰,强度为s—mcm-1,叔胺无H,故无吸收峰●C—H:<3000 cm-1为饱和C:~2960 cm-1 (),~2870 cm-1 ()强度为m-s~2925 cm-1 (),~2850 cm-1 () 强度为m-s~2890 cm-1强度为w>3000 cm-1为不饱和(及苯环上C-H)3090~3030 cm-1强度为mC:~3300 cm-1强度为m强度为m-s●醛基中C—H:~2820及~2720两个峰★2500~2000 cm-1为叁键和累积双键伸缩振动吸收峰,主要包括-C≡C-、-C≡N叁键的伸缩振动及、等累积双键的非对称伸缩振动,呈现中等强度的吸收。
在此波段区中,还有S—H、Si—H、P—H、B—H的伸缩振动。
★2000~1500 cm-1为双键的伸缩振动吸收区,这个波段也是比较重要的区域,主要包括以下几种吸收峰带。
●C=O伸缩振动,出现在1960~1650 cm-1,是红外光谱中很特征的且往往是最强的吸收峰,以此很容易判断酮类、醛类、酸类、酯类、酸酐及酰胺、酰卤等含有C=O的有机化合物。
红外吸收光谱的特征峰讲解
红外吸收光谱的特征峰讲解红外吸收光谱是一种常用的分析技术,用于鉴定有机化合物的功能团和确定其化学结构。
在红外光谱中,每个特定的功能团都对应着一个特征峰,可以通过峰的位置和强度来确定化合物的结构和成分。
本文将对常见的红外吸收光谱特征峰进行详细讲解。
1.OH的吸收峰羟基(OH)的吸收峰通常出现在3200-3600cm-1的位置,显示为醇类和酚类化合物的特征。
醇类中,酒精的峰位通常在3200-3500cm-1,而酚类的峰位往往在3550-3650cm-1、峰的强度和形状可以提供关于羟基的状态和氢键的信息。
2.NH的吸收峰氨基(NH)也有比较突出的吸收峰,峰位通常出现在3100-3500cm-1的位置。
一般而言,一级胺和二级胺的NH伸缩振动峰位在3200-3500cm-1,而三级胺则没有明显的NH伸缩振动峰。
3.C=O的吸收峰碳氧双键(C=O)是有机化合物中常见的官能团之一,其吸收峰位置可以提供关于官能团的信息。
酮和醛中的C=O伸缩振动峰位分别在1700-1750cm-1和1700-1750cm-1之间,酸中的C=O伸缩振动峰位在1700-1800cm-14.C=C的吸收峰碳碳双键(C=C)是烯烃类化合物的特征官能团,其吸收峰通常出现在1600-1680cm-1的位置。
峰位的具体位置和强度可以提供关于烯烃的信息。
5.C-H的吸收峰碳氢键(C-H)的伸缩振动是有机化合物常见的特征之一、饱和烃中,C-H伸缩振动峰位一般出现在2800-3000cm-1之间。
不饱和烃中,C-H伸缩振动峰位通常在3000-3100cm-1之间。
6.N-H的吸收峰氨基(NH)和亚胺基(NH)的伸缩振动峰是鉴定氨基化合物的重要依据。
一级胺中,NH伸缩振动峰位在3200-3500cm-1,而亚胺中的NH伸缩振动峰位在3300-3500cm-17.C-Cl的吸收峰氯代烷烃的C-Cl伸缩振动峰位通常出现在600-800cm-1,可以用于检测氯代烷烃的存在与否。
红外吸收光谱的特征峰
红外吸收光谱的特征峰红外吸收光谱是研究物质结构和化学键性质的重要手段之一、红外光谱实验通过测量物质吸收红外光的能力,可以获得物质的红外吸收光谱图。
红外吸收光谱图中的特征峰是物质分子中一些化学键振动的能级转移所产生的吸收峰,它们的位置和强度可以提供有关物质结构和成分的重要信息。
本文将对红外吸收光谱中的一些常见特征峰进行详细介绍。
1. 羟基振动:羟基振动是物质中羟基(OH)键的振动。
它在红外吸收光谱中一般表现为宽而强烈的吸收峰。
在红外区域,羟基的振动频率一般在3000-3700 cm^-1之间。
确切的位置可以用来判断羟基的类型,如醇类、酚类或羧酸类。
2. 烷基振动:烷基是由碳-碳单键和碳-氢键构成的有机物的官能团。
烷基的振动一般表现为一系列的吸收峰,频率范围在1300-3000 cm^-1之间。
不同碳数和取代基对烷基振动的影响会导致峰位置的差异,从而提供物质结构信息。
3. 羧酸振动:羧酸是含有羧基(-COOH)的化合物。
在红外吸收光谱中,羧酸的振动峰一般位于1700-1800 cm^-1之间。
羧酸的振动可以表现为羰基(C=O)和羧基结合振动,其位置和强度可以反映羧酸的结构和取代基。
4. 羧酸盐振动:羧酸盐是羧酸分子中羧基脱去质子形成的带负电荷的物种。
在红外光谱中,羧酸盐的振动峰一般出现在1400-1600 cm^-1之间,是羧酸振动峰的变化形式。
羧酸盐振动峰的位置和强度可以提供关于酸性和环境pH值的信息。
5. 羰基振动:羰基是碳氧键(C=O)的结构单元。
在红外吸收光谱中,羰基振动分为酮类和醛类两种。
醛类羰基振动峰一般位于1700-1750cm^-1之间,酮类羰基振动峰一般位于1700-1705 cm^-1之间。
羰基振动可以提供关于功能团、取代基和共轭体系的信息。
6. 氨基振动:氨基(-NH2)是含氮有机化合物中的常见官能团。
在红外吸收光谱中,氨基的振动峰一般出现在3200-3500 cm^-1之间。
红外吸收光谱特征峰特别整理版
表15.1 典型有机化合物的重要基团频率(/cm-1)化合物基团X-H伸缩振动区叁键区双键伸缩振动区部分单键振动和指纹区烷烃-CH3asCH:2962±10(s) asCH:1450±10(m)sCH:2872±10(s)sCH:1375±5(s)-CH2-asCH:2926±10(s)CH:1465±20(m)sCH:2853±10(s)CH:2890±10(s)CH:~1340(w)烯烃CH:3040~3010(m) C=C:1695~1540(m) CH:1310~1295(m)CH:770~665(s)CH:3040~3010(m) C=C:1695~1540(w) CH:970~960(s)炔烃-C≡C-HCH:≈3300(m) C≡C:2270~2100(w)芳烃CH:3100~3000(变)泛频:2000~1667(w)C=C:1650~1430(m)2~4个峰CH:1250~1000(w) CH:910~665单取代:770~730(vs)≈700(s)邻双取代:770~735(vs) 间双取代:810~750(vs)725~680(m)900~860(m) ~对双取代:860~790(vs)醇类R-OHOH:3700~3200(变) OH:1410~1260(w)CO:1250~1000(s)OH:750~650(s) 酚类Ar-OHOH:3705~3125(s) C=C:1650~1430(m) OH:1390~1315(m)CO:1335~1165(s)脂肪醚R-O-R'CO:1230~1010(s)酮C=O:≈1715(vs)醛CH:≈2820,≈2720(w)双峰C=O:≈1725(vs)羧酸OH:3400~2500(m) C=O:1740~1690(m) OH:1450~1410(w)CO:1266~1205(m)酸酐C=O:1850~1880(s)C=O:1780~1740(s)CO:1170~1050(s)酯泛频C=O:≈3450(w) C=O:1770~1720(s) COC:1300~1000(s)胺-NH2NH2:3500~3300(m)双峰NH:1650~1590(s,m) CN(脂肪):1220~1020(m,w)CN(芳香):1340~1250(s)-NHNH:3500~3300(m) NH:1650~1550(vw) CN(脂肪):1220~1020(m,w)CN(芳香):1350~1280(s)酰胺asNH:≈3350(s) C=O:1680~1650(s) CN:1420~1400(m)sNH:≈3180(s) NH:1650~1250(s) NH2:750~600(m)NH:≈3270(s) C=O:1680~1630(s)NH+CN:1750~1515(m)CN+NH:1310~1200(m)C=O:1670~1630酰卤C=O:1810~1790(s)腈-C≡NC≡N:2260~2240(s)硝基化合物R-N02NO2:1565~1543(s) NO2:1385~1360(s)CN:920~800(m)Ar-NO2NO2:1550~1510(s) NO2:1365~1335(s)CN:860~840(s)不明:≈750(s)吡啶类CH:≈3030(w) C=C及C=N:1667~1430(m) CH:1175~1000(w) CH:910~665(s)嘧啶类CH:3060~3010(w) C=C及C=N:1580~1520(m) CH:1000~960(m) CH:825~775(m)*表中vs,s,m,w,vw用于定性地表示吸收强度很强,强,中,弱,很弱。
红外吸收光谱特征峰点,史上最全
红外吸收光谱特征峰点,史上最全
红外吸收光谱是分析有机物和无机物化学组成的重要手段之一。
其中特征峰点的识别和解析是红外光谱分析的基础。
本文将介绍常
见物质的红外谱图以及显示其特征峰点的位置。
以下为几种有机物
和无机物的特征峰点:
有机物的特征峰点
- 烷基C--H伸缩振动(脂肪族烃):3000~2850 cm^-1
- 烯丙基C--H伸缩振动(卤代烃):3100~3000 cm^-1
- 芳香族C--H伸缩振动:3100~3000 cm^-1、1500~1450 cm^-1
- 烷基C--O拉伸振动(醇、醚):1300~1000 cm^-1
- 腈类分子C---N伸缩振动:2260、2220 cm^-1
无机物的特征峰点
- 含羟基化合物的水分子O--H伸缩振动:3400~3200 cm^-1
- 硫酸盐分子的S--O拉伸振动:1100~1000 cm^-1
- 亚硝酸盐分子的N--O伸缩振动:1550 cm^-1
- 氨基酸盐分子的N--H伸缩振动:3500~3200 cm^-1
- 硫化物离子分子的S--H伸缩振动:2550~2350 cm^-1
在进行红外光谱分析实验前,有必要将待测试物质和标准物质对比,以确定谱图中的特征峰点。
只有正确地识别了特征峰点,才能准确分析样品的组成结构和含量。
总结
本文介绍了常见物质的红外谱图以及显示其特征峰点的位置。
有机物和无机物的特征峰点各不相同,一般通过与标准物质进行比较来确定谱图中的特征峰。
对于分析组成结构和含量非常重要。
红外吸收光谱的特征峰
质谱
质谱是纯物质鉴定的最有力工具 之一,其中包括相对分子质量测定、 化学式确定及结构鉴定等。 1.相对分子质量的测定
如前所述, 如前所述,从分子离子峰的质荷比的数据可以准确地测 定其相对分子质量,所以准确地确认分子离子峰十分重要。 定其相对分子质量,所以准确地确认分子离子峰十分重要。虽 然理论上可认为除同位素峰外分子离子峰应是最高质量处的峰, 然理论上可认为除同位素峰外分子离子峰应是最高质量处的峰, 但在实际中并不能由此简单认定。 但在实际中并不能由此简单认定。有时由于分子离子稳定性差 而观察不到分子离子峰,因此在实际分析时必须加以注意。 而观察不到分子离子峰,因此在实际分析时必须加以注意。 在纯样品质谱中,分子离子峰应具有以下性质: 在纯样品质谱中,分子离子峰应具有以下性质:
(3)存在合理的中性碎片损失。因为在有 存在合理的中性碎片损失。 机分子中, 经电离后, 机分子中 , 经电离后 , 分子离子可能损 失一个H 等碎片, 失一个H或CH3,H20,C2H4…等碎片,相应 等碎片 15, 18, 28…碎片峰 碎片峰, 为 M-l , M-15 , M-18 , M-28 碎片峰 , 而不可能出现M 14, 21至 而不可能出现 M - 3 至 M—14 , M 一 21 至 M - 14 24范围内的碎片峰 若出现这些峰, 范围内的碎片峰, 24 范围内的碎片峰 , 若出现这些峰 , 则 峰不是分子离子峰。 峰不是分子离子峰。 EI源中 若降低电子轰击电压, 源中, (4)在EI源中,若降低电子轰击电压,则 分子离子峰的相对强度应增加; 分子离子峰的相对强度应增加;若不增 加则不是分子离子峰。 加则不是分子离子峰。
在低分辨的质谱仪上, 在低分辨的质谱仪上,则可以通过同位素相 对丰度法推导其化学式, 对丰度法推导其化学式,同位素离子峰相对强度与 其中各元素的天然丰度及存在个数成正比,对于一 其中各元素的天然丰度及存在个数成正比, 的化合物,其同位素离子峰(M+l) 个CwHxNyOz的化合物,其同位素离子峰(M+l)+、 (M+ 与分子离子峰M (M+2)+与分子离子峰M+的强度之比为
红外吸收光谱特征峰
等,其中 C—O 的伸缩振动在 1300,1000cm,是该区吸收最强的峰,较易识 别。 部分含 H 基团的弯曲振动,如 RCH=CH2,端烯基 C—H 弯曲振动为 990、910cm 的两
个吸收峰;RCH=CHR 反式结构的 C—H 吸收峰为 970 cm(顺式为 690 cm) 等。 某些较重原子的双键伸缩振动,如 C=S、S=O、P=O 等。此外,某些分子 的整体骨架
2500,2000 cm 为叁键和累积双键伸缩振动吸收峰,主要包括,CC-、-CN 叁 键的伸缩振动及、等累积双键的非对称伸缩振动,呈现中等强-1 度的吸收。在此 波段区中,还有 S—H、Si—H、P—H、B—H 的伸缩振动。
2000 ,1500 cm 为双键的伸缩振动吸收区,这个波段也是比较重要的区域, 主要包括以下几种吸收峰带。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各类官能团的特征吸收峰
4000~2400cm-1(主要为Y-H_____________________________________________________
-醇,酚
3650~3600(自由)
OH-
3500~3200(分子间氢键)
-羧酸
3400~2500(缔合)
O
+
RCCC
4. 成键碳原子的杂化类型
化学键的原子轨道 s 成分越多,化学键 力常数 k 越大,吸收频率越大
CH
C H CH
C-H 伸缩 (cm-1)
sp 3300
sp2 3100
sp3 2900
5. 组成化学键的原子质量
原子质量越小,红外吸收频率越大
C-H C-C C-O C-Cl C-Br C-I 伸缩 (cm-1) ~3000 1200 1100 800 550 500
R2C CHR
R2C CH2
880 840~800
(C-H面外弯曲)
官能团
吸收频率(cm-1)
______________________________________________
R R
R R
R
770~和710~690 770~735 810~和725~680
R
R
860~800
官能团区
3600 ~ 1500 cm-1 吸收带不多,化学键和官能团的特征频率区
官能团
吸收频率(cm-1)
______________________________________________
NO2
1565~1545和1385~1360
C O(醇,酚,羧酸,酯,酸酐) 1300~1000
胺
1350~1000
CN
伸缩
酰胺
1420~1400
CH3
1460和1380
(C-H面内弯曲)
CH2 CH
1465(C-H面内弯曲) 1340(C-H面内弯曲)
(C-H面外弯曲)
官能团
吸收频率(cm-1)
______________________________________________________
R CH CH2 1000和900
顺式
RCH CHR
反式
730~675 970~960
OH
CO
指纹区
3650~3100 cm-1 1700 cm-1
1500~400 cm-1 吸收带多,整个分子振动转动引起的,反映整个
分子的特征。可用于鉴定两个化合物是否同一化合物
2. 诱导效应
如羰基连有拉电子基团可增强碳氧双键, 加大常数 k 使吸收向高频方向移动
O
O
RCR
R C Cl
伸缩(cm-1 ) 1715
1815~1785
3. 共轭效应
由于羰基与α、β不饱和双键共轭削弱了碳 氧双键,使羰基伸缩振动吸收频率减小
C=O伸缩(cm-1)
O
O
RCRRC CC
1715 1685~1670
NH- 伯,仲胺,酰胺
3500~3100
CH-
CCH
~3300
C C H(C6H5 H)
3100~3010
CH O
3000~2850
2900~2700
CH
(一般2820和2720)
2400~1500cm-1(主要为不饱和键的伸缩振动吸收)
官能团
吸收频率(cm-1)
______________________________________________
CN
2260~2240
CO
CC
酮,酸 醛,酯 酰胺 酰氯 酸酐
烯 C C 芳环
2250~2100 1725~1700 1750~1700 1680~1630 1815~1785 1850~1800
和1780~1740 1650~1640 1600~1450(多峰)
1500~400cm-1 (某些键的伸缩和C-H弯曲振动吸收)