高等数学上册知识点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学上册
第一章 函数与极限 (一) 函数
1、 函数定义及性质(有界性、单调性、奇偶性、周期性);
2、 反函数、复合函数、函数的运算;
3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函
数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;
函数)(x f 在
0x 连续 )()(lim 00
x f x f x
x =→
第一类:左右极限均存在。 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。 无穷间断点、振荡间断点
5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定
理、介值定理及其推论。
(二) 极限 1、 定义 1) 数列极限
εε<->∀N ∈∃>∀⇔=∞
→a x N n N a x n n n , , ,0lim 2) 函数极限
δδε-<-<∀>∃>∀⇔=→A
x f x x x A x f x x )( 0 , ,0 ,0)(lim 00
时,当
左极限:)(lim )(0
0x f x f x x -
→-= 右极限:)(lim )(0
0x f x f x x +→+
= )()( )(lim 000
+
-→=⇔=x f x f A x f x x 存在
2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤
2
)
a z y n n n n ==→∞
→∞
lim lim a x n n =∞
→lim
2) 单调有界准则:单调有界数列必有极限。 3、 无穷小(大)量
1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷
大量。
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无
穷小 Th1 )(~
ααββαo +=⇔;
Th2 αβαβαβββαα'
'
=''''lim lim lim
,~,~存在,则(无穷小代换)
4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;
3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0
=→x
x
x
b)e x
x x
x x
x =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)
x x x x x arctan ~arcsin ~tan ~sin ~
b) 2
2
1~cos 1x x -
c) x e x
~1- (a x a x
ln ~1-)
d) x x ~)1ln(+ (a x
x a ln ~)1(log +)
e)
x x αα
~1)1(-+
第二章 导数与微分 (一) 导数
1、 定义:0
00)
()(lim )(0
x x x f x f x f x x --='→
左导数:000)
()(lim )(0
x x x f x f x f x x --='-→-
右导数:0
00)
()(lim )(0
x x x f x f x f x x --='+
→+
函数
)(x f 在0x 点可导)()(00x f x f +-'='⇔
2、 几何意义:)(0x f '为曲线)(x f y =
在点())(,00x f x 处的切线的
斜率。
3、 可导与连续的关系:
4、 求导的方法
1) 导数定义; 2) 基本公式; 3) 四则运算;
4) 复合函数求导(链式法则); 5) 隐函数求导数; 6) 参数方程求导; 7) 对数求导法。
5、 高阶导数
1) 定义:⎪⎭
⎫
⎝⎛=dx dy dx d dx y d 22 2) Leibniz 公式:()∑=-=n
k k n k k n n v u C uv 0)
()()
( (二) 微分
1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与
x ∆无关。
2) 可微与可导的关系:可微
⇔
可导,且
dx x f x x f dy )()(00'=∆'=
第三章 微分中值定理与导数的应用 (一) 中值定理
1、 Rolle 定理:若函数
)(x f 满足:
1)
],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3)
)()(b f a f =;
则0)(),,(='∈∃ξξf b a 使.
2、 Lagrange 中值定理:若函数
)(x f 满足:
1)
],[)(b a C x f ∈; 2)),()(b a D x f ∈;
则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使. 3、 Cauchy 中值定理:若函数)(),(x F x f 满足:
1)
],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)
),(,0)(b a x x F ∈≠'
则)()
()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使
(二) 洛必达法则
1、尽量先化简(有理化、无穷小代换、分离非零因子)
再用洛必达法则!
:
如:x
x
x x 420tan cos 1lim --→2、对于某些数列极限问题,可化为连续变量的极限,
然后用洛必达法则!
n
n
n
n b a ⎪⎪⎭
⎫
⎝⎛+∞→2lim 如: