一原子吸收光谱的产生及共振线

合集下载

原子吸收光谱法

原子吸收光谱法
但是石墨炉原子化法的分析速度较慢,分析成本高 ,精密度差,基体干扰比较大。
低温原子化法:低温原子化法也称为化学原子化法 ,包括冷原子化法和氢化物发生法。
一般冷原子化法与氢化物发生法可以使用同一装置 。
冷原子化法:直接测量Hg 氢化物发生法:氢化物发生器生成金属或类金属元
素氢化物,进入原子化器。
第四节 干扰及其消除方法
物理干扰:由于溶液的物理性质(如粘度、表面张力、密度和蒸 气压等)的变化引起的试液抽吸过程、雾化过程和蒸发过程的比 例不同。消除物理干扰的主要方法是配制与被测试样相似组成的 标准溶液,或采用标准加入法。
电离干扰:在高温下,原子电离成离子,而使基态原子数目减少 ,导致测定结果偏低,此种干扰称电离干扰。消除办法是向试液 中加入过量比待测元素电离电位低的其他元素(通常为碱金属元 素)。例如,测钙时可加入过量的KCl溶液消除电离干扰。钙的 电离电位为6.1eV,钾的电离电位为4.3eV。由于K电离使钙离子 得到电子而生成原子。
{ C2H2:空气
> ¼ 富燃火焰 ≈¼ 中性火焰 化学计量火焰
< ¼ 贫燃火焰
根据燃气和助燃气的种类不同常用的有以下火焰:
乙炔-空气火焰; 氢-空气火焰; 乙炔-氧化亚氮火焰。
① Al,Ti,Ta,Zr等易形成难解离氧化物,不宜使用
② As 193.64,197.20nm;Se 196.09nm 不易使用 乙炔—空气火焰 是原子吸收测定中最常用的火焰,该火焰 燃烧稳定,重现性好,温度较高,可达23000C ,对大多数元
化学干扰:被测元素与共存组分发生化学反应,生成更稳定的 化合物,影响被测元素的原子化。由于PO43-的存在,钙与其形 成了磷酸钙、焦磷酸钙等化合物,这些化合物其键能很高,在 火焰中不易分解产生钙原子,结果偏低。消除方法:加入干扰 抑制剂的方法,如加入锶盐后Sr与PO43-反应生成比磷酸钙更加 稳定的化合物,从而释放出钙原子,消除了磷酸根离子对钙的 干扰。

分析化学-原子吸收与原子荧光

分析化学-原子吸收与原子荧光

(二) Graphite furnace atomizer 石墨炉原子化器
1. 构造:
2. 分析过程
T
Time drying ashing atomizing cleaning
干燥-----灰化-----原子化----净化
paring with flame atomizer
原子化原理 原子化效率 试样体积 固体进样 灵敏度 重现性 背景干扰 分析速度
1. Hollow cathode lamp
2. Electrodeless discharge lamp
mg MX
400Pa Ar 3 ~ 8 cm
10mm
As, Cd, Pb, Se, Zn, Hg, P, Sn, Te, Tl…...
二、 原子化器 Atomizer
M(* 激发态原子)
MX(试样)
消除方法: 1. 稀释待测溶液 2. 采用标准加入法进行定量 3. 配制与试样溶液物理性质相似的
标准溶液
五、背景吸收 Background absorption
背景吸收包括: 分子吸收、光散射、火焰气体吸收。 背景吸收干扰主要存在于石墨炉原子化器。
减小背景吸收的方法:
减小进样量 增加灰化温度和灰化时间 增加石墨管内气流 采用基体改进剂 (增加共存物的挥发性或 降低待测元素的挥发性)
Characteristics: ☆Sensitivity ☆Selectivity ☆Analysis speed ☆Application:
determination of (metal) elements
§1. 原子吸收光谱法基本原理
一、原子吸收光谱的产生 1.原子能级跃迁 Atomic energy level transition

仪器分析 复习 重修 自学 预习5 原子吸收光谱分析法

仪器分析 复习 重修 自学 预习5 原子吸收光谱分析法
第四章
原子吸收光谱分析法
原子吸收基本原理
第一节
一、共振线 二、基态原子数与原子化温度 三、定量基础
历史
原子吸收光谱法是一种基于待测基态原子对特征谱线的 吸收而建立的一种分析方法。这一方法的发展经历了3个发 展阶段:
原子吸收现象的发现
1802年Wollaston发现太阳光谱的暗线; 1859年Kirchhoff和 Bunson解释了暗线产生的原因;
试样雾滴在火焰中,经蒸发,干燥,离解(还原)等过 程产生大量基态原子。火焰原子化的方法就是使试样变成 原子蒸汽。 火焰温度的选择: (a)保证待测元素充分离解为基态原子的前提下,尽量 采用低温火焰;因为火焰温度越高,产生的热激发态原子 越多,则基态原子数量减少;但太低温就会使盐类无法解
离,降低灵敏度。
I
Ve
I 0V e KV L dv;当发射线宽《吸收线宽时,可以认为
0 Ve
KV 是常数,相当峰值吸收系数K 0:I e K 0 L 于是A lg 1 e
K0L
I
0
0V
dv
0.4343 K 0 L
K0=?
吸收线轮廓仅取决于多普勒变宽时 1 KV dv 2 ln 2 K 0v,结合积分吸收式 KV dv的值 2 ln 2 e 2 解得:K 0 fN 0 v mc
太阳光
暗 线
第一激发态
E
热能
基态
E = h = h
C

发现钠蒸汽发出的光线通过温度比较低的钠蒸汽,会引起 钠光的吸收,并且钠发射线和暗线在光谱中位置相同,由此 判断太阳连续光谱中的暗线是太阳外层中的钠原子对太阳光 谱中钠辐射吸收的结果
原子吸收光谱基本原理:

原子吸收光谱工作原理

原子吸收光谱工作原理

原子吸收光谱工作原理原子吸收光谱法的原理:蒸汽中待测元素的气态基态原子会吸收从光源发出的被测元素的特征辐射线,具有一定选择性,由辐射减弱的程度求得样品中被测元素的含量。

当辐射通过原子蒸汽,且辐射频率等于原子中电子由基态跃迁到较高能态所需要的能量的频率时,原子从入射辐射中吸收能量,产生共振吸收。

原子吸收光谱是由于电子在原子基态和第一激发态之间跃迁产生的。

每一种原子的能级结构均是独特的,故原子有选择性的吸收辐射频率。

因此,在所有情况下,均可产生反映该种原子结构特征的原子吸收光谱。

原子吸收光谱检测方法:1、氢化物发生法氢化物发生法适用于容易产生阴离子的元素,如Se、Sn、Sb、As、Pb、Hg、Ge、Bi等。

这些元素一般不采取火焰原子化法检测,而是用硼氢化钠处理,因为硼氢化钠具有还原性,可以将这些元素还原成为阴离子,与硼氢化钠中电离产生的氢离子结合成气态氢化物。

如土壤监测中运用流动注射氢化物原子吸收检测河流中所含的沉积物汞和砷,经过试验后,检出砷限为2ng/L,精密度为1.35%至5.07%,准确度在93.5%至106.0%;检出汞限为2ng/L,精密度为0.96%至5.52%,精准度在93.1%至109.5%。

这种方法不仅快速、简便,且准确度和精密度非常高,能更好的测试和分析环境样品。

2、石墨炉原子吸收光谱法石墨炉原子吸收光谱法是一种用电流加热原子化的分析方法。

横向加热石墨炉解决了温度分布不均匀的问题。

石墨炉原子化的出现非常之重要,对于火焰原子化有着较为明显的优越性,与火焰原子化技术对比,灵敏度提高到3到4个数量线,达到了10-12至10-14g的灵敏度,但是石墨炉原子吸收光谱法还是存在一定的局限性:重现性还没有火焰法高,当待测样品比较复杂时,产生的结果会有很大的误差。

3、火焰原子吸收光谱法目前,火焰原子吸收光谱法还是应用最为广泛的方法。

因为其对大多数的元素都适用,而且具有速度快,成本低,操作简单,结果误差不大的优势。

第七章原子吸收光谱分析法

第七章原子吸收光谱分析法
? 由于原子的吸收线比发射线的数目少的多,谱线重叠的概率就小的多,空 心阴极灯一般不发射临近波长的辐射线,因而其他辐射线干扰较小,故原 子吸收法选择性高,干扰小且易于克服。
原子吸收光谱法(也称原子吸收分光光法 )与可 见、紫外分光光度法基本原理相同,都是基于物质 对光选择吸收而建立起来的光学分析法。
2010年1月25日1时53分
组成:阳极(吸气金属)、空心圆筒形(使待测原子集中)阴极(W+ 待测元素)、低压惰性气体(谱线简单、背景小)。
工作过程:高压直流电(300V)---阴极电子---撞击隋性原子---电离(二 次电子维持放电)---正离子---轰击阴极---待测原子溅射----聚集空 心阴极内被激发----待测元素特征共振发射线。
? 自然宽度(约在10-5nm数量级)。
?
?2.多普勒变宽(热变宽):
? 由于多普勒效应而导致的谱线 变宽。由于原子热运动引起的。 其宽度约为 10-3nm数量级。
?3.压力变宽:由于同类原子或 与其它粒子(分子、原子、离子、 电子等)相互碰撞而造成的吸收 谱线变宽。其宽度也约为 10-3nm 数量级。
区别:在可见、紫外分光光度法中,吸光物质 是溶液中被测物质的分子或离子对光的选择吸收, 原子吸收光谱法吸光物质是待测元素的基态原子对 光的选择吸收,这种光是由待测元素制成的空心阴 极灯(称元素灯)作光源。
原子吸收光谱分析的过程:
A元素含量测定----- A元素的空心阴极灯发射特征辐射 --------试样在原子化器中变为气态的基态原子-------吸收空心 阴极灯发射特征辐射---------空心阴极灯发射特征辐射减弱-----产生吸光度------元素定量分析
钨丝灯光源和氘灯,经分光后,光谱通带0.2nm。而原子吸收线

原子吸收光谱法基本原理

原子吸收光谱法基本原理

原子吸收光谱法模块1 原子吸收光谱法基本原理仪器结构:光源;检测系统;分光系统;原子化系统一、 原子吸收法定义原子吸收法是一种利用元素的基态原子对特征辐射线的吸收程度进行定量的分析方法。

测定对象:金属元素及少数非金属元素。

二、原子吸收光谱的产生当有光辐射通过自由原子蒸气,且入射光辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。

原子吸收光谱是原子由基态向激发态跃迁产生的原子线状光谱。

分光法:分子或离子的吸收为带状吸收。

原子法:基态原子为线状吸收。

三、原子吸收光谱几个重要概念共振吸收线:当电子吸收一定能量从基态跃迁到第一激发态时所产生的吸收谱线,称为共振吸收线,简称共振线。

共振发射线:当电子从第一激发态跃回基态时,则发射出同样频率的光辐射,其对应的谱线称为共振发射线,也简称共振线。

分析线:用于原子吸收分析的特征波长的辐射称为分析线,由于共振线的分析灵敏度高,光强大常作分析线使用。

(亦称为特征谱线)四、原子吸收线的形状(光谱的轮廊 )原子对光的吸收是一系列不连续的线,即原子吸收光谱。

原子吸收光谱线并不是严格几何意义上的线,而是具有一定的宽度。

νI ν0I 频率为ν0的入射光和透过光的强度νK 原子蒸气对频率ν0的入射光的吸收系数 L 原子蒸气的宽度吸收线轮廓——描绘吸收率随频率或波长变化的曲线。

发射线轮廓——描绘发射辐射强度随频率或波长变化的曲线。

原子吸收光谱的轮廓以原子吸收谱线的中心频率和半宽度来表征。

中心频率:曲线极大值对应的频率υ0 峰值吸收系数:中心频率所对应的吸收系数吸收线的半宽度:指在中心频率处,最大吸收系数一半处,吸收光谱线轮廓上A 、B 两点之间的频率差。

吸收曲线的半宽度△υ的数量级约为0.001~0.01nm五、影响原子吸收谱线变宽的原因(1)自然变宽ΔνN不同谱线有不同的自然宽度,在多数情况下,自然宽度约相当于10-5nm 数量级。

第2章原子吸收光谱分析

第2章原子吸收光谱分析

2.1.2谱线轮廓与谱线宽度 2.1.2谱线轮廓与谱线宽度 谱线轮廓
吸收光谱与发射光谱的关系 共振线与吸收线
从基态 跃迁第一激发态,又回到基 跃迁第一激发态,又回到基 态,发射出光谱线,称共振发射线 态,发射出光谱线,称共振发射线。 共振发射线。 同样从基态跃迁 同样从基态跃迁至第一激发态所产生的吸 共振吸收线(简称为共振线)。 收谱线称为共振吸收线 收谱线称为共振吸收线(简称为共振线)。
第2 章
原子吸收光谱分析
Atomic absorption spectroscopy AAS
2.1.1 一、历史
概述
原子吸收光谱法是一种基于待测基态原子对特征 谱线的吸收而建立的一种分析方法。这一方法的发展 经历了3 经历了3个发展阶段:
1、原子吸收现象的发现
• 1802年Wollaston发现太阳光谱的暗线; 1802年Wollaston发现太阳光谱的暗线; • 1859年Kirchhoff和 Bunson解释了暗线产生的原因; 1859年Kirchhoff和 Bunson解释了暗线产生的原因;
3、电热原子化技术的提出
1959年里沃夫提出电热原子化技术,大大提高了原子吸收的 灵敏度
二、原子吸收光谱法的特点
1、灵敏度高(火焰法:1 ng/ml,石墨炉100-0.01 pg); 2、准确度好(火焰法:RSD <1%,石墨炉 3-5%) 3、选择性高(可测元素达70个,相互干扰很小) 缺点:不能多元素同时分析
火焰原子化条件的选择
火焰类型 燃气-助燃气比例 测量高度
原子化过程
试样 雾化为雾滴 雾滴蒸发成固体颗粒 固体颗粒蒸发产生分子 分子 原子 激发分子 离子
火焰原子化器特点. 火焰原子化器特点.

《仪器分析》第十二章_原子吸收光谱法

《仪器分析》第十二章_原子吸收光谱法

当采用锐线光源时,测量是在原子吸收线附近一定频 率范围内进行,即
I 0 I d
0

I I 0e
K l
I e
0

K l
d
锐线光源的很小,可以近似用峰值吸收系数K0 来表 示原子对辐射的吸收,因此有吸光度A为:
I0 A lg lg I


质的强谱线。
空心阴极灯光的强度与灯的工作电流有很大关系。增
大灯电流,可以增加发射强度。但是,灯电流过大,会导 致一些不良现象,如阴极溅射增强,产生密度较大的电子 云,灯本身发生自蚀现象;加快内充气体的“消耗”而缩 短寿命;阴极温度过高,使阴极物质熔化;放电不正常,
灯光强度不稳定灯。灯电流太小,灯光强低,稳定性和信
(2)峰值吸收 1955年Walsh提出,在温度不太高的稳定火焰情况下,
峰值吸收系数与被测元素的原子浓度也成正比。通常情况下,
吸收轮廓决定于多普勒变宽,吸收系数为
2 ( 0 ) ln 2 D 2
K K 0e
K0 2 D
D 是多普勒 半宽度
K d mc N
于分析化学的原因。
e 2
0
f
m 是电子质量,f是振子强度,即能被入射 辐射激发的每个原子的平均电子数,正比 于原子对特定波长光的吸收概率。
若能测定积分吸收,则可以求出原子浓度。但是,测定谱 线宽度仅仅10-3nm的积分吸收,需要分辨率很高的色散仪器,
难以做到,这也是100多年前发现原子吸收现象却一直未能用
空心阴极灯工作原理:
当正、负两电极间施加适当的直流电压(300V—500V)
时,便开始放电,阴极发射的电子在电场作用下,高速射

仪器分析复习资料

仪器分析复习资料

1,原子吸收光谱法的原理,原子吸收光谱仪由哪几部分组成以及每部分的作用。

原理:原子吸收光谱法是基于气态原子外层的电子对共振线的吸收,气态的基态原子数与物质的含量成正比,故可进行定量分析。

共振线:将电子从基态跃迁到最低能量激发态(第一激发态)所产生的吸收谱线称为共振吸收线;将电子从第一激发态跃迁回基态发射出与吸收辐射频率相同的谱线称为共振发射线,两者均称为共振线。

组成部分:A锐线光源:能够发射被测元素共振谱线。

B原子化器:将试液蒸发干燥并使待测元素转变成气态的基态原子,使待测试样中元素原子化的方法有火焰法和非火焰法。

C:单色器:防止原子化器发射的非待测元素的特征谱线进入检测器,同时也可以避免因透射光太强而引起光电倍增管的疲劳。

D:检测系统:将待测光信号转换成电信号,经检波放大后显示结果。

2,原子吸收光谱法中常用的光源是什么?原子化器有哪些?常用的光源:空心阴极管原子化器分为火焰原子化器,其常用的的为预混合型火焰原子化器;无火焰原子化器,其常用的为:高温石墨炉原子化器。

3,原子吸收光谱法进行定量分析的依据是什么?常用的定量分析方法有哪些?依据:气态的基态原子数与物质的含量成正比。

定量分析方法:校正曲线法和标准加入法。

4,电位分析的原理,测量装置。

电分析化学:根据物质在溶液中的电化学性质及其变化来进行分析的方法,是以电导,电位,电流和电荷等电参量与被测物含量之间的关系作为计量基础的。

电位分析法:是利用指示电极电位与溶液中相应离子活度的关系来测定物质含量的一种电分析化学方法。

测量装置:A电位(pH)计B工作电池,由参比电极、指示电极、被测试液组成C磁力搅拌器(附磁力搅拌子)5,什么叫参比电极,工作电极,辅助电极?各类电极常用有哪些,各举两种。

参比电极:在测量过程中,其电位基本不发生变化的电极称参比电极。

银-氯化银电极,甘汞电极。

辅助电极:此电极所发生的电化学反应并非测示或研究所需要的,电极仅作为电子传递的场所以便和工作电极组成电流回路,这种电极称为辅助电极或对电极。

第十章 原子吸收光谱法

第十章  原子吸收光谱法
20
二、原子化系统
作用是将试样中待测元素转变成原子蒸气。 1.火焰原子化法 (1)雾化器:作用是将试样溶液雾化。当助
燃气高速通过时,在毛细管外壁与喷嘴口构 成的环形间隙中,形成负压区,将试样溶液 吸入,并被高速气流分散成气溶胶,在出口 与撞击球碰撞,进一步分散成微米级的细雾。 (2)混合室:作用是将未被细微化的较大雾 滴在混合室内凝结为液珠,沿室壁流入泄漏 管排走;并让气溶胶在室内与燃气充分混匀。
第十章 原子吸收光谱法
§10-1 §10-2 §10-3 §10-4 §10-5 §10-6
试题
概述 原子吸收法的基本原理 原子吸收分光光度计 定量分析方法 干扰及其抑制方法 灵敏度与检出限
1
§10-1 概述
一、 原子吸收光谱法
原子吸收光谱是利用待测元素的原子蒸 气中基态原子对特征电磁辐射(共振线)的吸 收来测定的。
式中ν0为谱线中心频率;M 为吸光原子的相对 原子质量;T 为绝对温度。 ΔνD约10-3数量
级,是谱线变宽的主要原因。 3.碰撞变宽(压力变宽) 由于原子相互碰撞使能量发生轻微变化。
劳伦兹变宽ΔνL :待测原子和其他原子碰撞引
起的谱线变宽。
ΔνL约10-3数量级,是碰撞变宽的主要因素。
10
赫鲁兹马克变宽ΔνH :同种原子碰撞引起的
29
二、标准加入法
取若干份体积相同的试液(cX),依次按比 例加入不同量的待测物的标准溶液(cO), 定容后浓度依次为:cX、cX+cO、cX+2cO、 cX+3cO、cX+4cO,分别测得吸光度为:A0、 A1、A2、A3、A4。以A对浓度c做图得一直 线,图中cX点即待测溶液浓度。
30
注意: 1.本法只能消除基体效应带来的干扰,不能消

第5讲 原子吸收光谱法

第5讲 原子吸收光谱法

00:49:45
三、定量分析方法
1.标准曲线法
配制一系列不同浓度的标准试样,由低到高依次分析, 将获得的吸光度A数据对应于浓度作标准曲线,在相同条件下 测定试样的吸光度A数据,在标准曲线上查出对应的浓度值; 或由标准试样数据获得线性方程, 将测定试样的吸光度A数据带入计算。 注意在高浓度时,标准曲线易发生 弯曲,压力变宽影响所致;
cDL=3SB/Sc
(2)石墨炉法
(单位:μgml-1 )
mDL=3SB/Sm (单位:ng或pg )
SB:标准偏差 Sc(Sm):待测元素的灵敏度,即工作曲线的斜率。
00:49:45
二、测定条件的选择
1.分析线
一般选待测元素的共振线作为分析线,测量高浓度时,
也可选次灵敏线。 2.光谱通带(可调节狭缝宽度改变) 无邻近干扰线(如测碱及碱土金属)时,选较大的通带, 反之(如测过渡及稀土金属),宜选较小通带。
(△λ =10-3,若λ 取600nm,单色器分辨率R =λ /△λ = 6×105 )

解决办法:
00:49:45
提供锐线光源,测定峰值吸收!
2.锐线光源
在原子吸收分析中需要使用锐线 光源,测量谱线的峰值吸收,锐线 光源需要满足的条件: (1)光源的发射线与吸收线的ν0
一致。
(2)发射线的Δν 1/2 小于吸收线 的 Δν1/2。 提供锐线光源的方法:空心阴极灯
(c)火焰温度取决于燃气与助燃气类型,常用空气—乙
炔,最高温度2600K,能测30多种元素。
00:49:45
火焰类型:
化学计量火焰: 温度高,干扰少,稳定,背景低,常用。 富燃火焰: 还原性火焰,燃烧不完全,测定 较易形成难熔氧化物的元素Mo、Cr 稀土等。

单原子紫外可见吸收光谱

单原子紫外可见吸收光谱

单原子紫外可见吸收光谱
单原子紫外可见吸收光谱是指单个原子或离子在紫外至可见光区域对电磁辐射的吸收光谱。

这种光谱通常用于分析原子的电子能级结构和化学性质。

在单原子紫外可见吸收光谱中,吸收峰通常与原子的电子跃迁有关,这些跃迁可以是价电子从基态跃迁到激发态,或者是内层电子的跃迁。

单原子紫外可见吸收光谱的特点包括:
1.尖锐的光谱线:单原子吸收光谱通常由一系列尖锐的光谱线组成,这些光谱线对应于特定的电子跃迁。

2.特定的波长:每种元素的吸收光谱都有其特定的波长,这些波长与元素的电子能级有关。

3.振-转结构:吸收光谱中的每条谱线通常都有振-转结构,即谱线的精细结构,这是由于电子跃迁伴随着振动和/或转动的能级变化。

4.强度:吸收光谱的强度可以提供有关原子的电子配置和能级的信息。

5.化学环境的影响:原子的化学环境(如配位环境)可以显著影响其吸收光谱,因为配位场会对原子的电子能级产生影响。

单原子紫外可见吸收光谱在化学分析、物理研究、材料科学等领域有着广泛的应用。

例如,通过分析金属离子的吸收光谱,可以确定其氧化态和配位环境。

在光谱学中,单原子光谱是理解原子结构和电子配置的基础,也是发展量子力学和计算化学模型的重要依据。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一. 原子吸收光谱的产生及共振线
在一般情况下,原子处于能量最低状态(最稳定态),称为基态(E0 = 0)。

当原子吸收外界能量被激发时,其最外层电子可能跃迁到较高的不同能级上,原子的这种运动状态称为激发态。

处于激发态的电子很不稳定,一般在极短的时间(10-8-10-7s)便跃回基态(或较低的激发态),此时,原子以电磁波的形式放出能量:
(1)
图1 原子光谱的发射和吸收示意图
共振发射线:原子外层电子由第一激发态直接跃迁至基态所辐射的谱线称为共振发射线;
共振吸收线:原子外层电子从基态跃迁至第一激发态所吸收的一定波长的谱线称为共振吸收线;
共振线:共振发射线和共振吸收线都简称为共振线。

由于第一激发态与基态之间跃迁所需能量最低,最容易发生,大多数元素吸收也最强;
因为不同元素的原子结构和外层电子排布各不相同,所以“共振线” 也就不同,
各有特征,又称“特征谱线”,选作“分析线”。

二. 原子吸收值与原子浓度的关系
(一)吸收线轮廓及变宽
图2 基态原子对光的吸收
若将一束不同频率,强度为I0 的平行光通
过厚度为1cm的原子蒸气时,一部分光被吸收,
(2)
透射光的强度In 仍服从朗伯-比尔定律:
式中:Kn ——基态原子对频率为的光的吸收系数,它是光源辐射频率的n函数
由于外界条件及本身的影响,造成对原子吸收的微扰,使其吸收不可能仅仅对应于一条细线,即原子吸收线并不是一条严格的几何线(单色l ),而是具有一定的宽度、轮廓,即透射光的强度表现为一个相似于下图的频率分布:
图3 In与n 的关系
若用原子吸收系数Kn随n变化的关系作图得到吸收系数轮廓图:
图4 原子吸收线的轮廓图
① K0 :峰值吸收系数或中心吸收系数(最大吸收系数);
② n0:中心频率,最大吸收系数K0 所对应的波长;
③ ∆n:吸收线的半宽度,K0 /2 处吸收线上两点间的距离;
④:积分吸收,吸收线下的总面积。

引起谱线变宽的主要因素有:
1. 自然宽度:在无外界条件影响下的谱线宽度谓之
根据量子力学的Heisenberg 测不准原理,能级的能量有不确定量∆E ,可由下式估算:
t —激发态原子的寿命,当t 为有限值时,则能级能量的不确定量∆E 为有限值,此能级
不是一条直线,而是一个“带”。

t 越小,宽度越宽。

但对共振线而言,其宽度一般< 10-5 nm,可忽略不计。

2. 多普勒(Doppler)宽度:由于原子无规则运动而引起的变宽
当火焰中基态原子向光源方向运动时,由于Doppler 效应而使光源辐射的波长n0 增大(l0 变短),基态原子将吸收较长的波长;反之亦反。

因此,原子的无规则运动就使该吸收谱线变宽。

当处于热力学平衡时,Doppler变宽可用下式表示:
(3)
即∆ nD与T 的平方根成正比,与相对分子量A 的平方根成反比。

对多数谱线:
∆ nD :10-3 ~ 10-4 nm
∆nD 比自然变宽大1~ 2个数量级,是谱线变宽的主要原因。

3. 劳伦兹(Lorentz )变宽:原子与其它外来粒子(如气体分子、原子、离子)间的相互作用(如碰撞)引起的变宽。

(5)
式中:P —气体压力,M —气体相对分子量;N0—阿伏加德罗常数;
s2 —为原子和分子间碰撞的有效截面。

劳伦兹宽度与多普勒宽度有相近的数量级,大约为10-3 ~ 10-4nm。

实验结果表明:对于温度在1000 ~ 3000K,常压下,吸收线的轮廓主要受Doppler 和Lorentz 变宽影响,两者具有相同的数量级,约为0.001-0.005nm。

采用火焰原子化装置时,∆nL是主要的;
采用无火焰原子化装置时,∆nD是主要的。

(二)吸收值的测量——峰值吸收系数K0 与积分吸收
积分吸收就是将原子吸收线轮廓所包含的吸收系数进行积分(即吸收曲线下的总面积)。

根据经典的爱因斯坦理论,积分吸收与基态原子数的关系为:
(6)
式中:e—电子电荷;m—电子质量;c—光速;
N0—单位体积原子蒸气中能够吸收波长l +∆l 范围辐射光的基态原子数;
f —振子强度(每个原子中能够吸收或发射特定频率光的平均电子数,f 与能级间跃迁概率有关,反映吸收谱线的强度)
在一定条件下,为常数,则:
即积分吸收与单位体积原子蒸气中能够吸收辐射的基态原子数成正比,这是原子
吸收光谱分析的理论依据。

若能测得积分吸收值,则可求得待测元素的浓度。

但①要测量出半宽度∆n只有0.001 ~ 0.005nm 的原子吸收线轮廓的积分值(吸收值),所需单色器的分辨率高达50万的光谱仪,这实际上是很难达到的。

②若采用连续光源时,把半宽度如此窄的原子吸收轮廓叠加在半宽度很宽的光源发射线上,实际被吸收的能量相对于发射线的总能量来说及其微小,在这种条件下要准确记录信噪比十分困难。

1955年,澳大利亚物理学家A.Walsh 提出以锐线光源为激发光源,用测量峰值吸收系数(K0)的方法代替吸收系数积分值的方法成功地解决了这一吸收测量的难题。

锐线光源——发射线的半宽度比吸收线的半宽度窄的多的光源
且当其发射线中心频率或波长与吸收线中心频率或波长相一致时,可以认为在发射线半宽度的范围内Kn 为常数,并等于中心频率∆n 处的吸收系数K0 (峰值吸收K0可准确测得)。

理想的锐线光源——空心阴极灯:用一个与待测元素相同的纯金属制成。

由于灯内是低电压,压力变宽基本消除;灯电流仅几毫安,温度很低,热变宽也很小。

在确定的实验条件下,用空心阴极灯进行峰值吸收K0 测量时,也遵守Lamber-Beer 定律:
(7)
峰值吸收系数K0与谱线宽度有关,若仅考虑多普勒宽度∆nD :
(8)
峰值吸收系数K0 与单位体积原子蒸气中待测元素的基态原子数N0 成正比。

(9)
在一定条件下,上式中括号内的参数为定值,则
A = K’N0 (10)
此式表明:在一定条件下,当使用锐线光源时,吸光度A 与单位体积原子蒸气中待测元素的基态原子数N0 成正比。

(三)基态原子数(N0)与待测元素原子总数(N)的关系
在进行原子吸收测定时,试液应在高温下挥发并解离成原子蒸气——原子化过程,其中有一部分基态原子进一步被激发成激发态原子,在一定温度下,处于热力学平衡时,激发态原子数Nj与基态原子数N0 之比服从波尔兹曼分布定律:
(11)
式中:Gj 、G0 分别代表激发态和基态原子的统计权重(表示能级的间并
度,即相同能量能级的状态的数目)
Ej 是激发态能量;K—波尔兹曼常数(1.83′10-23J/K)
T—热力学温度
在原子光谱中,一定波长谱线的Gj /G0 和Ej 都已知,不同T 的Nj /N0 可用上式求出。

当< 3000K 时,都很小,不超过1% ,即基态原子数N0 比Nj 大的多,占总原子数的99% 以上,通常情况下可忽略不计,则
N0 » N
若控制条件是进入火焰的试样保持一个恒定的比例,则A与溶液中待测元素的浓度成正比,因此,在一定浓度范围内:
A=K·c (12)
此式说明:在一定实验条件下,通过测定基态原子(N0 ),的吸光度(A),就可求得试样中待测元素的浓度(c),此即为原子吸收分光光度法定量基础。

相关文档
最新文档