电动机基本控制回路

合集下载

电机基本控制回路、正反转控制回路

电机基本控制回路、正反转控制回路

电机基本控制回路、正反转控制回路电机基本控制回路I .1 L2 1.3X3KM、各元件作用断路器QF 压断路器从总体来说就是接通和断开电流的作用。

一般断路器具有过流保护和短路保护; 欠压线圈即可具有欠电压保护;增加漏电模块可具有漏电保护;一般不具备过压保护,需 压保护需要另配过电压继电器。

接触器KM流接触器是一种中间控制元件,其优点是可频繁的通、断线路,以小电流控制大电流。

配 继电器工作还能对负载设备起到一定的过载保护作用。

因为它是靠电磁场吸力通、 断工作 对于人手动分、合闸电路,它更高效率,更灵活运用,可以同时分、合多处负载线路,还 锁功能,通过手动短接J□—KF1KM33KVT I HC ;吸合后,就能进入自锁状态持续工作。

过九成以上的自动化控制电力系统都用到了接触器,可见它的使用范围有多么广热继电器KH要用来对异步电动机进行过载保护,他的工作原理是过载电流通过热元件后,使双金属片弯曲去推动动作机构来带动触点动作,从而将电动机控制电路断开实现电动机断电停车,过载保护的作用。

鉴于双金属片受热弯曲过程中,热量的传递需要较长的时间,因此,热器不能用作短路保护,而只能用作过载保护熔断器FU断器的主要作用是短路保护。

熔断器的选择要求是:电气设备正常运行时,熔断器不应熔断;在出现短路时,应立即熔断;在电流发生正常变如电机起动过程)时,熔断器不应熔断;在用电设备持续过载时,应延时熔断。

熔断器的电压要大于或等于电路的额定电压。

熔断器的选用主要包括熔断器类型选择和熔体额定电流的确定。

断器的类型根据不同的使用场合、电压等级、保护对象和要求,有很多品种和类型。

压熔断器,高压熔断器又分为户内式和户外式两种,这里不赘述。

压熔断器常见有插入式、管式、螺旋式三大类。

又可分为开启式、半封闭式和封闭式三熔断器;C-插入式;L -螺旋式;M-密闭管式;S-快速;T-有填料管式。

如RC1、R(插人式;RM-无填料管式;R T0、RL1、RLS 分别为有填料管式和有填料螺旋式。

电机控制线路图大全

电机控制线路图大全

电机控制线路图大全Y-△(星三角)降压启动控制线路-接触器应用接线图Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。

由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。

Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。

OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。

OX3—13型Y-△自动启动器的控制线路如图11—11所示。

()合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I星形—三角形降压起动控制线路星形——三角形降压起动控制线路星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。

Y —△起动只能用于正常运行时为△形接法的电动机。

1.按钮、接触器控制 Y —△降压起动控制线路图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。

线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。

2.时间继电器控制 Y —△降压起动控制线路图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。

图2定子串电阻降压起动控制线路图2是定子串电阻降压起动控制线路。

直流电动机控制电路

直流电动机控制电路

直流电动机控制电路一、直流电动机的启动1.并励直流电动机的启动并励直流电动机的启动控制电路如图1-15所示。

图中,KA1是过电流继电器,作直流电动机的短路和过载保护。

KA2欠电流继电器,作励磁绕组的失磁保护。

启动时先合上电源开关QS,励磁绕组获电励磁,欠电流继电器KA2线圈获电,KA2常开触点闭合,控制电路通电;此时时间继电器KT线圈获电,KT常闭触点瞬时断开。

然后按下启动按钮SB2,接触器KM1线圈获电,KM1主触点闭合,电动机串电阻器R启动;KM1的常闭触点断开,KT线圈断电,KT常闭触点延时闭合,接触器KM2线圈获电,KM2主触点闭合将电阻器R短接,电动机在全压下运行。

2. 他励直流电动机的启动(见图1-16)图1-15 并励直流电动机启动控制电路图1-16 他励直流电动机启动控制电路3. 串励直流电动机的启动(见图1-17)图1-17 串励直流电动机启动控制电路请注意,串励直流电动机不允许空载启动,否则,电动机的高速旋转,会使电枢受到极大的离心力作用而损坏,因此,串励直流电动机一般在带有20%~25%负载的情况下启动。

二、直流电动机的正、反转1.电枢反接法这种方法是改变电枢电流的方向,使电动机反转。

并励直流电动机的正、反转控制电路如图1-18所示。

启动时按下启动按钮SB2,接触器KM1线圈获电,KM1常开触点闭合,电动机正转。

若要反转,则需先按下SB1,使KM1断电,KM1连锁常闭触点闭合。

这时再按下反转按钮SB3,接触器KM2线圈获电,KM2常开触点闭合,使电枢电流反向,电动机反转。

2.磁场反接法这种方法是改变磁场方向(即励磁电流的方向)使电动机反转。

此法常用于串励电动机,因为串励电动机电枢绕组两端的电压很高,而励磁绕组两端的电压很低,反转较容易,其控制电路如图1-19所示。

其工作原理同上例相似,请自己分析。

图1-18并励直流电动机正,反转控制电路图1-19串励电动机正,反转控制电路三、直流电动机的制动在实际生产中有时要求机械能迅速停转,这就要求直流电动机可以制动。

电动机常见启动控制回路讲解课件

电动机常见启动控制回路讲解课件

软启动控制回路的工作原理
1
软启动控制回路通过控制电动机的输入电压或电 流,使电动机在启动过程中实现平稳加速或减速 。
2
软启动控制回路通常采用电子元件或微处理器来 控制电压或电流的波形,以达到平滑启动的效果 。
3
在启动过程中,软启动控制回路会逐渐增加电动 机的输入电压或电流,使电动机的转速逐渐增加 ,直到达到额定转速。
转动。
在启动时,通过控制接触器的触 点闭合,将电源接入电动机,使
其开始转动。
当需要停止电动机时,只需控制 接触器断开,切断电源即可。
直接启动控制回路的优缺点
优点
简单、可靠、成本低。
缺点
启动电流大,对电网冲击较大,不适合频繁启动或重载启动。
直接启动控制回路的适用范围
适用于小功率、轻载、空载或短时工 作的场合。
CHAPTER 06
电动机启动控制回路的选择与配置
电动机启动控制回路的选择原则
安全性原则 选择能够确保电动机安全启动的 控制回路,避免启动过程中出现 电流过大、电压过高或启动过于 剧烈等情况。
适应性原则 选择与电动机及其所驱动的设备 相匹配的控制回路,确保电动机 能够在不同工况下正常启动和运 行。
优点
要点二
缺点
智能启动控制回路具有自动化程度高、操作简便、保护功 能完善等优点。
相对于传统启动方式,智能启动控制回路成本较高,且对 维护要求较高。
智能启动控制回路的适用范围
01 适用于需要自动化控制、安全性能要求高的电动 机控制系统。
02 适用于对电动机运行状态有严格监控要求的场合 。
03 适用于需要节能减排、绿色环保的电动机控制系 统。
随着电动机转速的增加,控制回路逐渐恢复电 动机的正常电压,完成启动过程。

电机基本控制回路、正反转控制回路

电机基本控制回路、正反转控制回路

电机基本控制回路一、各元件作用1、断路器QF低压断路器从总体来说就就是接通与断开电流得作用。

一般断路器具有过流保护与短路保护;增加欠压线圈即可具有欠电压保护;增加漏电模块可具有漏电保护;一般不具备过压保护,需要过压保护需要另配过电压继电器。

2、接触器KM交流接触器就是一种中间控制元件,其优点就是可频繁得通、断线路,以小电流控制大电流。

配合热继电器工作还能对负载设备起到一定得过载保护作用、因为它就是靠电磁场吸力通、断工作得,相对于人手动分、合闸电路,它更高效率,更灵活运用,可以同时分、合多处负载线路,还有自锁功能,通过手动短接吸合后,就能进入自锁状态持续工作。

超过九成以上得自动化控制电力系统都用到了接触器,可见它得使用范围有多么广3、热继电器KH主要用来对异步电动机进行过载保护,她得工作原理就是过载电流通过热元件后,使双金属片加热弯曲去推动动作机构来带动触点动作,从而将电动机控制电路断开实现电动机断电停车,起到过载保护得作用。

鉴于双金属片受热弯曲过程中,热量得传递需要较长得时间,因此,热继电器不能用作短路保护,而只能用作过载保护4、熔断器FU熔断器得主要作用就是短路保护。

ﻫ对熔断器得选择要求就是:在电气设备正常运行时,熔断器不应熔断;在出现短路时,应立即熔断;在电流发生正常变动(如电机起动过程)时,熔断器不应熔断;在用电设备持续过载时,应延时熔断。

熔断器得额定电压要大于或等于电路得额定电压。

ﻫ对熔断器得选用主要包括熔断器类型选择与熔体额定电流得确定。

ﻫ熔断器得类型根据不同得使用场合、电压等级、保护对象与要求,有很多品种与类型。

ﻫ高压熔断器,高压熔断器又分为户内式与户外式两种,这里不赘述。

低压熔断器常见有插入式、管式、螺旋式三大类。

又可分为开启式、半封闭式与封闭式三种。

R-熔断器; C-插入式;L -螺旋式; M-密闭管式; S—快速;T—有填料管式。

如RC1、RC1A 为插人式;RM-无填料管式;RT0、RL1、RLS分别为有填料管式与有填料螺旋式。

电动机控制线路

电动机控制线路

电动机控制线路图1手动正转控制利用铁壳开关或胶盖瓷底刀开关的控制线路如图1所示。

在一般工厂中使用的三相电风扇及砂轮机等设备常采用这种控制线路。

图中QS-FU表示铁壳开关(或胶盖瓷底刀开关)。

当合上铁壳开关,电动机就能转动,从而带动生产机械旋转。

拉闸后,熔断器就脱离电源,以保证安全。

2.采用转换开关的控制转换开关控制线路如图2所示。

图中QS为转换开关,也叫组合开关。

它的作用是引入电源或控制小容量电动机的启动和停止。

图2采用转换开关的控制机床电气控制中常用的转换开关有HZ10系列。

这种转换开关有3副静触片,每一触片的一端固定在绝缘垫板上,另一端伸出盒外,并附有接线柱,以便和电源、用电设备相接。

3个动触片装至绝缘垫板上,垫板套在附有手柄的绝缘杆上。

手柄能向任一方向每次转动90°,并带动3个动触片分别与3副静触片同时通断。

3.用倒顺开关的正反转控制常用的倒顺开关有HZ3-132型和QX1-13M/4.5型,其控制线路如图3所示。

图3用倒顺开关的正反转控制倒顺开关有6个接线柱,L1、L2和L3分别接三相电源,D1、D2和D3分别接电动机。

倒顺开关的手柄有3个位置:当手柄处于停止位置时,开关的两组动触片都不与静触片接触,所以电路不通,电动机不转;当手柄拨到正转位置时,A、B、C、F触点闭合,电动机接通电源正向运转;当电动机需向反方向运转时,可把倒顺开关手柄拨到反转位置上,这时A、B、D、E触片接通,电动机换相反转。

在使用过程中电动机处于正转状态时欲使它反转,必须先把手柄拨至停转位置,使它停转,然后再把手柄拨至反转位置,使它反转。

倒顺开关一般适用于4.5kW以下的电动机控制线路。

4.具有自锁的正转控制具有自锁的正转控制线路如图4所示。

当启动电动机时合上电源开关QS,按下启动按钮SB1,接触器KM线圈获电,KM主触点闭合,使电动机M运转;松开SB1,由于接触器KM常开辅助触点闭合自锁,控制电路仍保持接通,电动机M继续运转。

几个最基本的电动机控制回路

几个最基本的电动机控制回路

几个最基本的电动机控制回路
想要电动机启动,可不是合上闸这幺简单。

想要实现远程控制和多点控制,需要做的还有很多。

本文列举几个最基本的电动机控制回路,除了在生产中的机械控制需要用到外,在设计PLC电路时,这些也是必备单元。

本文将由易到难逐一讲解。

 电动机控制回路常用元件
 按钮▼
 按钮分为启动按钮、停止按钮和机械互锁按钮。

前两者共4个接线柱,后者有6个接线柱。

 启动按钮多为绿色,平时内部为断开状态,按下按钮后内部闭合,松开后恢复断开;
 停止按钮多为红色,平时内部为闭合状态,按下按钮后内部断开,松开后恢复闭合;
 机械互锁按钮可以看作是一个双投开关,共6个接线柱,平时左侧接线柱接通,按下后右侧接线柱接通,松开后恢复左侧接线柱接通,可任意作为启动按钮或停止按钮。

 按钮一般用SB表示,如果有多个按钮同时存在,会在SB后面加数字,如SB1,SB2。

 接触器/继电器▼
 上图是接触器,继电器与之相比较小,但原理相同。

共有两排共12个接线柱(2个接线柱,一进一出算1组)。

最上面一排接线柱中,有2组常闭触点,。

常用电机控制电路图

常用电机控制电路图

SB2
KM1
KM2
KT1 KM2
KT2
KM3 KT3 KM4
KM3 KM4
KM1 KT1 KM2 KT2 KM3 KT3 KM4
图2-15(c)
第二十二页,共33页。
(c) 电路 的动
作 (dò ngz uò) 时序
FR SB1
SB2
KM1
KM2
KT1 KM2
KT2
KM3 KT3 KM4
KM1
KM3 KM4
L1 L2 L3
QS FU
KM2
KM1 R
FR
M
第二页,共33页。
控制线路:
1、基本原理:用时间继电器 KT控制KM1、KM2切换。
2、KM1、KM2允许同时吸合, 但是电动机正常运行后,一 般(yībān)应该将KM1释放, 以降低运行损耗。
3、图2-8(a)为KM1不退出 的控制线路。
4、图2-8(b)为KM1退出而 KT 不退出的控制线路。
SB2
KM1
1、按时间原则(yuánzé)控 制
M
KT1
KT2
KT3
KM4 3R
KM3
KM1 KT1 KM2 KT2 KM3 KT3 KM4
2R
(a)基本(jīběn)电
KM2 1R
图2-15时间原则控制路(kòngzhì)转子电路串
电阻起动控制(kòngzhì)线路
第十八页,共33页。
基 本 电 路
KM1 KM2 KT
KM2先通电,KM1后断电(duàn diàn); KM1,KM2同时切换; KM1先断电(duàn diàn),KM2
后通电
第八页,共33页。
自锁回路(huílù)的转换

并励直流电动机的基本控制线路

并励直流电动机的基本控制线路

L
KM3
KM6
KM7
KA RB
R1 SB3
KM3
R2 SB1
KM1
KV KM1
KT1 KM1
KM2
KM2 KM2 KM3 KM1 KM4 KM2 KM5
按下SB1 KM1线
KM2 KM1
M
SB2 KM5 KM4
圈得电
KT2
KM2 KM1 KV
KM1 KM2
I<
KA
KM1
KM2
KM3
KM4
KM5 KT1 KT2 KM6 KM7
KM1 KM2 KA
KT1 KT2KM3 KM4
QF L+ L
KT2瞬时断 开延时闭 合触头闭 合
并励直流电动机能耗制动原理
KM2 KM1
KA
SB2 SB1 KA1
KV A
KM1
M
V KM1
KM4
R
U<
RB
RB R1
KM1
I<
KM3
R2 KM1
KM1 KT1 KT2
KM1 KM2 KA
KT1 KT2KM3 KM4
头延时闭合, KM2 KM1
KM7线圈得
M

KM7触头闭

切除全部电
KV

电动机继续 KM1 KM2 I< 启动
全速运行
KM1
KM1
SB2 KM5 KM4 KM2 KM1
KA
KM1
KM2
KM3
KM4
KM2 KM2 KM3 KM1 KM4 KM2 KM5
KT1 KM1 KM2
KT2
KM5 KT1 KT2 KM6 KM7

自锁、互锁、等电气基本控制回路ppt课件

自锁、互锁、等电气基本控制回路ppt课件
(四)电气图中技术数据的标注
电气图中各电气元器件和型号,常在电气原 理图中电器元件文字符号下方标注出来。
10/31/2024
返回第一张 上一张幻灯片 下一张幻灯片
10/31/2024
返回第一张 上一张幻灯片 下一张幻灯片
10/31/2024
返回第一张 上一张幻灯片 下一张幻灯片
例:CW6132型车床控制盘电器布置图
电气接线图的绘制原则是:
1)各电气元件 均按实际安装位置 绘出,元件所占图 面按实际尺寸以统 一比例绘制。
2)一个元件中所 有的带电部件均画 在一起,并用点划 线框起来,即采用 集中表示法。
10/31/2024
返回第一张 上一张幻灯片 下一张幻灯片
3)各电气元件的图形符号和文字符号必须与电气 原理图一致,并符合国家标准。
1.图中所有的元器件都应采用国家统一规定的图形 符号和文字符号。
2.电气原理图的组成 电气原理图由主电路和辅助电 路组成。
3.电源线的画法 4.原理图中电气元件的画法 5.电气原理图中电气触头的画法
10/31/2024
返回第一张 上一张幻灯片 下一张幻灯片
6.原理图的布局 7.线路连接点、交叉点的绘制 8.原理图的绘制要层次分明,各电器元件及 触头的安排要合理,既要做到所用元件、触头 最少,耗能最少,又要保证电路运行可靠,节 省连接导线以及安装、维修方便。
10/31/2024
返回第一张 上一张幻灯片 下一张幻灯片
三、多地联锁控制
10/31/2024
图2-9 多地控制电路图
返回第一张 上一张幻灯片 下一张幻灯片
四、顺序控制
按顺序起动与停止的控制电路
10/31/2024
图2-10 两台电动机顺序控制电路图 a 按顺序起动电路 b 按顺序起动、停止的控制电路

三相异步电动机基本控制电路全

三相异步电动机基本控制电路全

电源
一部分接成星形,
一部分接成三角形
原始状态
起动结束后
换成三角形联结法
投入全电压
3. 三相绕线转子电动机的起动控制
➢ 转子电路中串接电阻 ➢ 转子电路中串接频敏变阻器
转子绕组串接电阻起动
优点:减小起动电流、提高起动转矩 适用:要求起动转矩较大的场合
起动时,电阻被短接的方式: 三相电阻不平衡短接法(用凸轮控制器)
~ SB1
SBF
KMF
FR
KMF
SBR
KMR
KMR
KMR
KMF
互锁
电器联锁(互锁)作用:两个接触器的辅
助常闭触头互相控制。正转时,SBR不起 作用;反转时,SBF不起作用。从而避免 两接触器同时工作造成主回路短路。
1.鼠笼式电机的正反转控制(3)--双重联锁
~ SB1
机械联锁
SBF
KMF
SBR
KMR
可逆运行反接制动
正转:KSF合 反转:KSR合
可逆运行反接制动
正转:KSF合 反转:KSR合
2. 防止电源电压恢复时, 电动机自行起动而造成 设备和人身事故
3. 避免多台电动机同时起 动造成电网电压的严重 下降。
异步机的直接起动----点动+连续运行控制
方法一: 用钮子开关SA
✓ 断开:点动控制 ✓ 合上:长动控制
异步机的直接起动----点动+连续运行控制
方法二:用复合按钮。
QK
~ SB1
而使线圈保持通电的控制方式
自锁触头: 起自锁作用的辅助常开触头
工作原理:
按下按钮(SB1),线圈(KM)通电, 电机起动;同时,辅助触头(KM)闭合, 即使按钮松开,线圈保持通电状态,电机 连续运行。

三相异步电动机的基本控制电路

三相异步电动机的基本控制电路



基异
本步
控电
制动 电机 路的
点 动 控



1.2
第8页
(a)
图7-15 点动控制电路
(b)


基异
本步
控电
制动 电机 路的
正 反 转 控



1.3
1 接触器无互锁的正反转控制电路
第9页
如图7-16所示为接触器无互锁的正反转控制电路,其工作原理如下: 合上电源开关QS,按下正转启动按钮SB2,KM1线圈通电,其主触头闭 合,接通正序电源,电动机正转。同时,KM1辅助常开触头闭合自锁。按下 停止按钮SB1,KM1线圈断电,电动机停止。反转时,按下反转启动按钮 SB3,KM2线圈通电,其主触头闭合,接通反序电源,电动机反转。 此电路存在的问题是:若KM1,KM2同时通电动作,将会造成电源两相 (L1和L3相)短路,因此,此电路在实际中不能采用。
图7-14 接触器控制的单向控制电路


基异
本步
控电
制动 电机 路的
单 相 控



1.1
2 接触器控制的单向控制电路
第5页
电路的工作原理如下: 电动机启动时,合上电源开关QS,按下启动按钮SB2,KM线圈通电, 其三相主触头闭合,电动机接通三相电源启动。同时,与启动按钮SB2并联 的接触器常开辅助触头闭合。松开SB2后,KM线圈仍通过自身的常开辅助 触头保持通电状态,电动机继续运转。这种依靠接触器自身的常开辅助触头 保持线圈通电的方法称为自锁(或自保),这种起自锁作用的常开辅助触头 称为自锁触头(或自保触头)。 电动机停止时,按下停止按钮SB1,KM线圈断电,其三相主触头断开, 电动机停止旋转。同时,KM的常开辅助触头也断开。此时,即使放开停止 按钮SB1,KM线圈也不会通电,电动机不会再次启动。

三相异步电动机常用控制电路图

三相异步电动机常用控制电路图

三相异步电动机的控制电路1.直接启动控制电路直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说,电动机的容量不大于直接供电变压器容量的20%—30%时,都可以直接启动。

1).点动控制合上开关S,三相电源被引入控制电路,但电动机还不能起动。

按下按钮SB,接触器KM开主触点接通,电动机定子接入三相电源起动运转。

松开按钮SB,接触器KM线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。

2).直接起动控制(1)起动过程。

按下起动按钮SB1,接触Array器KM线圈通电,与SB1并联的KM的辅助常开触点闭合,以保证松开按钮SB1后KM线圈持续通电,串联在电动机回路中的KM的主触点持续闭合,电动机连续运转,从而实现连续运转控制。

(2)停止过程。

按下停止按钮SB2,Array接触器KM线圈断电,与SB1并联的KM的辅助常开触点断开,以保证松开按钮SB2后KM线圈持续失电,串联在电动机回路中的KM的主触点持续断开,电动机停转。

与SB1并联的KM的辅助常开触点的这种作用称为自锁。

图示控制电路还可实现短路保护、过载保护和零压保护。

a)起短路保护的是串接在主电路中的熔断器FU。

一旦电路发生短路故障,熔体立即熔断,电动机立即停转。

b)起过载保护的是热继电器FR。

当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM线圈断电,串联在电动机回路中的KM的主触点断开,电动机停转。

同时KM辅助触点也断开,解除自锁。

故障排除后若要重新起动,需按下FR的复位按钮,使FR的常闭触点复位(闭合)即可。

c)起零压(或欠压)保护的是接触器KM本身。

当电源暂时断电或电压严重下降时,接触器KM线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

2.正反转控制 1).简单的正反转控制(1)正向起动过程。

按下起动按钮SB 1,接触器KM 1线圈通电,与SB 1并联的KM 1的辅助常开触点闭合,以保证KM 1线圈持续通电,串联在电动机回路中的KM 1的主触点持续闭合,电动机连续正向运转。

串励直流电动机的基本控制电路

串励直流电动机的基本控制电路

KM2
KM1Байду номын сангаас
KM1 KM2
KT
KT KM3
QF L+ L-
串励直流电机正反转控制线路
KM1 KM2 SB3
KM1 KM1 KM2
反转控制:
SB1
按下SB2,电 KM1 KM2
KM1 KM2
SB2 KM2
动机串联电阻
M
R反转起动,
KM3
KM2
KM1
KT线圈失电 R
KM1 KM2
KT
KT KM3
QF L+ L-
串励直流电机正反转控制线路
KM1 KM2 SB3
KM1 KM1 KM2
KM1 KM2
KT动断触头
延时闭合,
SB1 KM1 KM2
SB2 KM2
KM3得电,
M
起动过程结束
KM2
KM1
KM3
R
KM1 KM2
KT
KT KM3
三、制动控制线路
1. 能耗制动控制电路
串励直流电动机的能耗制动分为自励式和他励式两种。 (1)自励式能耗制动 自励式能耗制动是指当电动机断开电源 后,将励磁绕组反接并与电枢绕组和制动电阻串联构成闭合 回路,使惯性运转的电枢处于自励发电状态,产生与原方向 相反的电流和电磁转矩,迫使电动机迅速停转。
SQ1 KM2
R3
R
KM1
SQ2 KM1 KM2
串励直流电动机(作伺服电动机)他励式能耗制动控制电路
QF
L+ L-
SB1
SB2
KM1
合上电源开关
QF
KM1
R1
KM2 M
KM2 R2

直流电动机常见控制线路

直流电动机常见控制线路
1.改变电枢绕组中的电流方向 这种方法常用于并励和他励直流电动机中。因为并励和他励直流电动机励磁绕组的电流量大,若 要使励磁电流改变方向,一方面,在将励磁绕组从电源上断开时,会产生较大的自感电动势,很容易 把励磁绕组的绝缘击穿;另一方面,在改变励磁电流方向是,由于中间有一段时间励磁电流为零,容 易出现“飞车”现象,使电动机的转速超过允许的速度,为此,通常还需要接触器在改变励磁电流方向 的同时切断电枢回路电流。由于以上这些原因,所以一般情况下,并励和他励直流电动机多采用改变 中枢绕组中电流的方向来改变电动机的旋转方向。
按下启动按钮SB1,接触器KM1线圈通电吸合并自锁,电动机在串 入全部启动电阻情况下降压起动。同时,由于接触器KM1的常闭触点断 开,使时间继电器KT1和KT2线圈断电。经一段延时候,其中KT1的常 闭延时闭合触点首先闭合,接触器KM2线圈通电,其常开触点闭合,将 启动电阻R1短接,电动机继续加速。然后,KT2常闭延时闭合触点延时 闭合,接触器KM3通电吸合,将电阻R2短接,电动机启动完毕,投入正 常运行。
设备控制技术
直流电动机常见控制线路
直流电动机按励磁方式分为他励、并励、串励和复励四种。并励及 他励直流电动机的性能及控制线路相近,他们多用在机床等设备中。在 牵引设备中,则以串励支流电动机应用较多。
直流电动机的控制包括直流电动机的起动、正反转、调速及制动的 控制。
1-1直流电动机的起动控制线路
直流电动机在起动最初的一瞬间,因为电动机的转速等于零,则反 电动势为零,所以电源电压全部施加在电枢绕组的电阻及线路电阻上。 通常这些电阻都是极小的,所以这时流过电枢电流很大,启动电流可达 额定电流的10~20倍。这样大的起动电流将导致电动机转向器和电枢绕 组的损坏,同时大电流产生转矩和加速度对机械传动部件也将产生强烈 的冲击。因此,如外加的是恒定电压,则必须在电枢回路中篡改如附加 电阻来起动,以限制起动电流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.图形符号
➢符号要素:
具有确定意义的简单图形,必须同其它图形组合构成一个 设备或概念的完整符号。 如接触器常开主触点符号,由接触器触点功能符号和常开 触点符号组合而成。
➢一般符号: 表示一类产品和此类产品特征的一种简单的符号,如电动 机可用一个圆圈表示。
➢限定符号: 提供附加信息的一种加在其它符号上的符号。
✓为阅图方便,图中自左向右或自上而下表示操作顺序, 并尽可能减少线条和避免线条交叉。
✓将图分成若干图区,上方为该区电路的用途和作用,下 方为图区号。在继电器、接触器线圈下方列有触点表以 说明线圈和触点的从属关系。
二、绘制、识读电气控制系统图的原 2.则电气原理图
➢主电路接点表示:
✓三相交流电源采用L1、L2、L3标记 ✓主电路按U、V、W顺序标记 ✓分级电源在U、V、W前加数字1、2、3来标记 ✓分支电路在U、V、W后加数字1、2、3来标记 ✓控制电路用不多于3位的阿拉伯数字编号
➢电气原理图示例:
二、绘制、识读电气控制系统图的原 2.则电气安装图
表示电气控制系统中各电器元件的实际位置和接线情况。
➢电器安装图:
320
详细绘制出电器 元件安装位置。
FU1
FU2
KM
FU3
TC
FR
FU4
线槽 360
端子板
50 50 50 50
CW6132型车床电器位 置图
➢电气互连图: 表明了电器设备外部元件的相对位置及它们之间的电气连接, 是实际安装接线的依据
第一节 电气控制系统图的基本知
识 一、图形符号和文字符号 通常用于图样或其它文件,用以表示一
个设备或概念的图形、标记或字符。
符号要素
图形符号 文字符号
一般符号 限定符号 基本文字符号 辅助文字符号
用于电气技术领域中技术文件的编制, 表示电气设备、装置和元件的名称、功 能、状态和特征。
补助文字符号
一、图形符号和文字符号
一、图形符号和文字符号
2.文字符号 单字母符号:
➢基本文字符号: 双字母符号:
➢辅助文字符号: 表示电气设备、装置和元器件以及电路的功能、状态和特 征。 如“RD”表示红色,“L”表示限制等。
➢补充文字符号: 当规定的基本文字符号和辅助文字符号不够使用时,可按 国家标准中文字符号组成规律和下述原则予以补充。
一、图形符号和文字符号
2.文字符号 ➢基本文字符号:
单字母符号: 双字母符号
按拉丁字母顺序将各种电气设备、装 置和元器件划分成为23大类,每一类 用一个专用单字母符号表示,如“C” 表示电容器类,“R”表示电阻器类等。
一、图形符号和文字符号
2.文字符号
单字母符号:
➢基本文字符号:
双字母符号:
由一个表示种类的单字母符号与另一 个字母组成,且以单字母符号在前, 另一字母在后的次序列出,如“F”表 示保护器件类,“FU”则表示为熔断 器。
✓基本文字符号不得超过两位字母,辅助文字符号一般不超 过三位字母。文字符号采用拉丁字母大写正体字,且拉 丁字母中“I”和“O”不允许单独作为文字符号使用。
二、绘制、识读电气控制系统图的原
则电气控制系统图的结构
主电路
电气原理图
控制电路
电气控制系统图
电气安装图 框图
照明和显示电路 电器安装图 电气互连图
出环节的主要作用,如速度调可以只绘出其中一个环
节的完整电路,其余的可用虚线框表示,并标明该环节的文字 号或环节的名称。
➢原则:
✓外购的成套电气装置,其详细电路与参数绘在电气原理 图上。
✓电气原理图的全部电机、电器元件的型号、文字符号、 用途、数量、额定技术数据,均应填写在元件明细表内。
原则: ✓外部单元同一电器的各部件画在一起,其布置尽可能
符合电器实际情况。 ✓各电器元件的图形符号、文字符号和回路标记均以电
第二章 基本控制环节
第一节 电气控制系统图的基本知识 第二节 三相异步电动机全压启动控制 第三节 三相异步电动机降压启动控制 第四节 三相绕线式异步电动机启动控制 第五节 双速异步电动机变速控制 第六节 三相异步电动机电气制动控制 第七节 直流电动机控制 本章小结
第一节 电气控制系统图的基本知
电气控制线路:
点动控制线路 正转控制线路 正反转控制线路 位置控制线路 顺序控制线路 多地控制线路 降压启动控制线路 调速控制线路 制动控制线路
第一节 电气控制系统图的基本知 识
相关国家标准:
✓GB4728—85《电气图常用图形符号》 ✓GB5226—85《机床电气设备通用技术条件》 ✓GB7159—87《电气技术中的文字符号制定通则》 ✓GB6988—86《电气制图》 ✓GB5094—85《电气技术中的项目代号 》
一、图形符号和文字符号
2.文字符号
补充文字符号原则:
✓在不违背国家标准文字符号编制原则的条件下,可采用国 家标准中规定的电气文字符号。
✓在优先采用基本和辅助文字符号的前提下,可补充国家标 准中未列出的双字母文字符号和辅助文字符号。
✓使用文字符号时,应按电气名词术语国家标准或专业技术 标准中规定的英文术语缩写而成。
控制电路用垂直线绘制在图面的右侧,
➢原则:
✓同一电器的各元件采用同一文字符号表明。 ✓所有电路元件的图形符号,均按电器未接通电源和没有受
外力作用时的状态绘制。 ✓循环运动的机械设备,在电气原理图上绘出工作循环图。 ✓转换开关、行程开关等绘出动作程序及动作位置示意图表。 ✓由若干元件组成具有特定功能的环节,用虚线框括起来,并标注
二、绘制、识读电气控制系统图的原 1.则电气原理图
用图形符号和项目代号表示电路各个电器元件连接关系和工作原理 的图
➢原则:
✓主电路、控制电路和信号电路应分开绘出。 ✓表示出各个电源电路的电压值、极性或频率及相数。 ✓主电路的电源电路一般绘制成水平线,受电的动力装置(电动机)及其保 护电器支路用垂直线绘制在图的左侧,
识 由各种有触点的接触器、继电器、按钮、行程开关等
按不同连接方式组合而成的。
第一节 电气控制系统图的基本知

电气控制线路:
电气控制线路的作用:
实现对电力拖动系统的启动、正反转、制动、 调速和保护,满足生产工艺要求,实现生产 过程自动化。
第一节 电气控制系统图的基本知 识
电气控制线路:
电气控制线路的作用: 电动机常见的基本控制线路:
相关文档
最新文档