多晶硅和单晶硅的基础知识
单晶硅多晶硅的生产工艺以及性质特点培训
单晶硅多晶硅的生产工艺以及性质特点培训1. 引言单晶硅和多晶硅是半导体行业中常见的材料,它们在太阳能电池、集成电路等领域得到广泛应用。
本文将为您介绍单晶硅和多晶硅的生产工艺以及它们的性质特点。
2. 单晶硅的生产工艺单晶硅是由高纯度硅材料制成的晶体,它具有较高的电子迁移率和较低的杂质浓度,适用于制造高性能的光电器件。
以下是单晶硅的主要生产工艺:2.1. Czochralski法生长单晶硅Czochralski法是目前最常用的单晶硅生长方法之一。
其基本过程如下:1.准备硅原料:将高纯度硅材料溶解在熔融的硅中,制备成硅锭。
2.调节温度和附加剂:控制硅锭的温度和加入适量的掺杂剂,以调节硅材料的电性能。
3.生长晶体:将铜制的拉杆浸入熔融硅中,形成硅锭的结晶核心,通过拉杆的旋转和上拉控制晶体的生长方向、速度和尺寸。
4.切割晶体:待晶体生长到一定程度后,将其从硅锭中切割成片,得到单晶硅片。
2.2. Float-zone法生长单晶硅Float-zone法是另一种单晶硅生长方法,它主要用于生产直径较小的单晶硅。
其生产过程相对复杂,但能够获得较高纯度的单晶硅。
3. 多晶硅的生产工艺多晶硅是由粉末状硅材料制成的,其晶体结构不规则,具有较高的电阻率和较高的杂质浓度。
以下是多晶硅的主要生产工艺:3.1. 气相淀积法制备多晶硅气相淀积法是最常用的多晶硅制备方法之一。
其基本过程如下:1.原料气体制备:将硅材料化为气态,如通过热解硅烷(SiH4)制备硅含氢气体。
2.沉积硅层:将硅含氢气体引入反应室,在衬底上沉积出一层硅薄膜。
3.重复沉积:重复沉积步骤,使硅薄膜逐渐增厚,形成多晶硅。
3.2. 其他多晶硅制备方法除了气相淀积法,还有一些其他的多晶硅制备方法,如溶液法、电化学沉积法等。
这些方法在特定的应用领域有其独特的优势和适用性。
4. 单晶硅和多晶硅的性质特点单晶硅和多晶硅在晶体结构、电子性能和应用方面存在一定的差异。
以下是它们的性质特点:4.1. 晶体结构单晶硅具有有序的晶体结构,晶界较少,晶粒较大。
多晶硅与单晶硅光谱响应-概述说明以及解释
多晶硅与单晶硅光谱响应-概述说明以及解释1.引言1.1 概述概述光伏技术作为一种可再生能源,近年来得到了广泛的关注和应用。
其中,硅材料是光伏电池最常用的材料之一。
在硅材料中,多晶硅和单晶硅是两种常见的形态。
本文将重点讨论多晶硅和单晶硅在光谱响应方面的特点和差异。
多晶硅和单晶硅作为硅材料的两种不同形态,其晶体结构和性质有着明显的差异。
多晶硅由多个晶粒组成,晶粒之间存在着晶粒间隙。
这种结构使得多晶硅在光谱响应方面具有一些特殊的性质。
与之不同,单晶硅是由一个完整的晶体构成,晶体内部没有结构缺陷,因此其光谱响应特性也与多晶硅有所不同。
多晶硅和单晶硅在光谱响应方面的差异主要体现在以下几个方面。
首先,由于多晶硅晶格中存在晶粒间隙,导致多晶硅的晶格缺陷较多,光电转换效率相对较低。
而单晶硅的晶体结构完整,因此具有较高的光电转换效率。
其次,在波长范围上,多晶硅和单晶硅的光谱响应也存在一些差异。
多晶硅的光谱响应范围较宽,能够吸收更广泛的光线。
而单晶硅的光谱响应范围较窄,只能吸收特定范围内的光线。
此外,多晶硅和单晶硅在光照条件下的稳定性和寿命也有所不同。
了解多晶硅和单晶硅在光谱响应方面的特点和差异对于进一步优化光伏电池的设计和制造具有重要意义。
本文将重点介绍多晶硅和单晶硅的光谱响应特点,比较它们在光伏应用中的优缺点,并展望其在未来的应用前景。
通过深入了解多晶硅和单晶硅的光谱响应特性,我们可以为光伏技术的发展提供有力的支持和指导。
1.2 文章结构:本文将首先介绍多晶硅和单晶硅这两种主要的太阳能电池材料,然后分别探讨它们在光谱响应方面的特点。
接着,对比多晶硅和单晶硅的光谱响应能力,分析它们在实际应用中的优劣势。
最后,展望这两种材料在未来太阳能领域的发展前景,为读者提供对多晶硅与单晶硅光谱响应的深入了解和思考。
结构部分的内容1.3 目的本文旨在比较多晶硅和单晶硅的光谱响应特性,分析它们在光伏领域的应用前景。
通过深入研究多晶硅和单晶硅的光谱响应特点,我们可以了解它们在不同波长范围内的光电转换效率差异,以及其对太阳能电池性能的影响。
工业硅多晶硅单晶硅的关系
工业硅多晶硅单晶硅的关系一、引言硅是一种非金属元素,也是地球上最常见的元素之一。
它在自然界中以二氧化硅的形式存在于石英、玻璃和许多矿物中。
硅具有良好的半导体特性,因此被广泛应用于电子行业。
工业上常用的硅有多晶硅、单晶硅等几种形式。
本文将从多晶硅、单晶硅和工业硅三个方面探讨它们之间的关系。
二、多晶硅1.定义多晶硅是指由大量小晶体组成的一种非单晶体材料,其结构比较复杂。
2.制备方法(1)气相法:通过化学气相沉积(CVD)或物理气相沉积(PVD)等方法制备。
(2)液相法:通过溶胶-凝胶法或电解还原法等方法制备。
3.特性(1)导电性能较差。
(2)机械强度较高。
(3)透光性较好,适合用于太阳能电池板等领域。
4.应用领域多晶硅主要应用于太阳能电池板、半导体器件等领域。
三、单晶硅1.定义单晶硅是指由一个完整的晶体组成的材料,其结构比较简单。
2.制备方法(1)Czochralski法:通过在熔融硅中拉出单晶棒制备。
(2)分子束外延法:通过在真空环境下利用分子束沉积制备。
3.特性(1)导电性能极好。
(2)机械强度较差,易碎。
(3)透光性较差,不适合用于太阳能电池板等领域。
4.应用领域单晶硅主要应用于半导体器件、集成电路等领域。
四、工业硅1.定义工业硅是指经过提纯处理后的硅材料,其纯度高达99.9999%以上。
2.制备方法(1)冶金法:通过还原二氧化硅制备。
(2)化学法:通过氢化或氯化还原法制备。
3.特性(1)纯度高,无杂质,导电性能优异。
(2)机械强度较差,易碎。
4.应用领域工业硅主要应用于半导体器件、集成电路等领域。
五、多晶硅、单晶硅和工业硅的关系1.制备方法多晶硅和单晶硅的制备方法有所不同,而工业硅则是由多种方法制备而来。
2.纯度工业硅的纯度最高,达到99.9999%以上,而多晶硅和单晶硅的纯度相对较低。
3.导电性能单晶硅的导电性能最好,其次是工业硅,多晶硅则导电性能较差。
4.机械强度多晶硅的机械强度最高,其次是工业硅,单晶硅则机械强度较差。
单晶硅基础必学知识点
单晶硅基础必学知识点
1. 单晶硅的结晶原理:单晶硅是由纯净的硅材料经过熔融、结晶和拉
延等工艺制备而成的。
在熔融过程中,硅材料先被加热至高温状态,
使其融化成液态硅材料。
然后通过控制温度梯度和晶面的生长方向,
使硅材料首先在液面上形成小晶核,然后沿着晶面的生长方向逐渐生长,最终形成大型的单晶硅。
2. 单晶硅的结构特点:单晶硅具有高度有序的晶格结构,所有晶格点
都具有完全一致的原子排列方式。
单晶硅晶体呈现出透明、均匀的外观,并且具有高度的电子迁移率和较低的电阻率,因此可以作为半导
体材料广泛应用于集成电路、太阳能电池等领域。
3. 单晶硅的生长方法:单晶硅的生长方法主要包括悬浮区域法、坩埚
法和气相沉积法等。
其中,悬浮区域法是最常用的方法,它通过在硅
熔液中引入渐冷区和温度梯度,使硅材料先形成小晶核,然后沿着生
长方向逐渐生长,最终形成单晶硅。
4. 单晶硅的杂质控制:单晶硅作为半导体材料,需要保持高纯度才能
发挥良好的电子特性。
因此,在生长单晶硅的过程中,需要控制和去
除杂质的含量。
常用的方法包括使用高纯度原料、采用化学处理和热
处理等工艺来去除杂质。
5. 单晶硅的应用领域:单晶硅广泛应用于集成电路、太阳能电池、光
电子器件等领域。
在集成电路中,单晶硅被用作制造晶体管和电子器
件的基底材料;在太阳能电池中,单晶硅可用于制造高效率的太阳能
电池组件;在光电子器件中,单晶硅可用于制造光探测器、激光器等。
以上是单晶硅基础知识的一些重要点,希望对你有帮助!。
单晶及多晶硅简介
硅的制备
硅的分类
硅一般按照它的纯度来分类。纯度里面含有多少个九, 硅一般按照它的纯度来分类。纯度里面含有多少个九,我 们就称它为多少个N的硅 的硅。 们就称它为多少个 的硅。 MGS(metallurgical-grade silicon): <5N 半导体级硅(semiconductor grade silicon): >5N 半导体级硅 SGS(Solar Grade Silicon): 5N—8N EGS(Electronic Grade Silicon): 9N-11N及以上 及以上 硅也可以按照结晶型态分为多晶硅,单晶硅和非晶硅。 硅也可以按照结晶型态分为多晶硅 单晶硅和非晶硅。 单晶硅和非晶硅
单晶硅的生长
单晶硅的生长(一 单晶硅的生长 一) 柴氏拉晶法(CZ法, Czochralski 柴氏拉晶法 法 pulling)
1. 2. 3. 4. 5. 6. Note: 1950…I 首次用于拉Si晶 …I 首次用于拉 晶 …I 1995…I 已可拉出16“硅晶棒 …I 已可拉 …I 硅晶棒 占有~80%的市场 占有 的市场 现有低功 的IC的主要原料 的主要原料 制程成本较低 晶圆含氧 高
硅的提纯
三氯氢烷氢还原法(西门子法 三氯氢烷氢还原法 西门子法) 西门子法 第二步, 将反应器内的多晶硅细棒(直径约 直径约5mm)通电加 第二步 将反应器内的多晶硅细棒 直径约 通电加 热至1100 ℃以上 通入 以上,通入 通入SiHCl3和高纯度的氢气 发生还原 和高纯度的氢气,发生还原 热至 和高纯度的氢气 反应,生成的硅沉积在硅细棒上 不断长大至直径150-200 生成的硅沉积在硅细棒上,不断长大至直径 反应 生成的硅沉积在硅细棒上 不断长大至直径 mm, 制成半导体级多晶硅棒 制成半导体级多晶硅棒. 反应式: 反应式 SiHCl3g+ H2g Sis(半导体级 半导体级)+3HClg 半导体级
单晶硅和多晶硅的区别
单晶硅和多晶硅的区别当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。
如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。
两者的具体区别是什么呢?下面就跟着店铺一起来看看吧。
太阳能单晶硅与多晶硅的区别单晶硅单晶硅可算得上是世界上最纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。
硅有晶态和无定形两种同素异形体。
晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。
大规模集成电路的要求更高,硅的纯度必须达到九个9。
目前,人们已经能制造出纯度为十二个9 的单晶硅。
单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。
电视、电脑、冰箱、电话、手表、汽车,处处都离不开单晶硅材料,单晶硅作为科技应用普及材料之一,已经渗透到人们生活中的各个角落。
单晶硅在火星上是火星探测器中太阳能转换器的制成材料。
火星探测器在火星上的能量全部来自太阳光,探测器白天休息---利用太阳能电池板把光能转化为电能存储起来,晚上则进行科学研究活动。
也就是说,只要有了单晶硅,在太阳光照到的地方,就有了能量来源。
单晶硅在太空中是航天飞机、宇宙飞船、人造卫星必不可少的原材料。
人类在征服宇宙的征途上,所取得的每一步进步,都有着单晶硅的身影。
航天器材大部分的零部件都要以单晶硅为基础。
离开单晶硅,卫星会没有能源,没有单晶硅,航天飞机和宇航员不会和地球取得联系,单晶硅作为人类科技进步的基石,为人类征服太空作出了不可磨灭的贡献。
单晶硅在太阳能电池中得到广泛的应用。
高纯的单晶硅是重要的半导体材料,在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。
单晶硅太阳能电池的特点:1.光电转换效率高,可靠性高; 2.先进的扩散技术,保证片内各处转换效率的均匀性; 3.运用先进的PECVD成膜技术,在电池表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观; 4.应用高品质的金属浆料制作背场和电极,确保良好的导电性。
单晶硅多晶硅入门知识
单晶硅中文别名:硅单晶英文名称:Silicon 分子式:Si 分子量:28.086 C A S 号:7440-21-3 硅是地球上储藏最丰富的材料之一,从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。
直到上世纪60年代开始,硅材料就取代了原有锗材料。
硅材料――因其具有耐高温和抗辐射性能较好,特别适宜制作大功率器件的特性而成为应用最多的一种半导体材料,目前的集成电路半导体器件大多数是用硅材料制造的。
现在,我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。
熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。
单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。
单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅棒的市场需求也呈快速增长的趋势。
单晶硅圆片按其直径分为6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。
直径越大的圆片,所能刻制的集成电路越多,芯片的成本也就越低。
但大尺寸晶片对材料和技术的要求也越高。
单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。
直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。
直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。
目前晶体直径可控制在Φ3~8英寸。
区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。
目前晶体直径可控制在Φ3~6英寸。
外延片主要用于集成电路领域。
由于成本和性能的原因,直拉法(CZ)单晶硅材料应用最广。
在IC工业中所用的材料主要是CZ抛光片和外延片。
存储器电路通常使用CZ抛光片,因成本较低。
逻辑电路一般使用价格较高的外延片,因其在IC制造中有更好的适用性并具有消除Latch-up的能力。
太阳能电池板单晶硅和多晶硅,软板和硬板
太阳能电池板是一种可以将太阳光能转化为电能的设备,它可以广泛应用于太阳能发电系统中。
在太阳能电池板的制作过程中,单晶硅和多晶硅是两种常用的材料,而软板和硬板则是两种常见的电池板类型。
本文将从单晶硅和多晶硅、软板和硬板两个方面进行讨论。
一、单晶硅和多晶硅1. 单晶硅单晶硅是一种高纯度的硅材料,它的晶体结构非常完美,没有晶界和晶粒内部的结构缺陷,因此具有非常优异的光电性能。
由于单晶硅的晶格结构完美,电子在晶格内的传递非常顺畅,可以更高效地转化太阳能为电能。
单晶硅太阳能电池板的转换效率通常较高,是太阳能产业中最常用的材料之一。
2. 多晶硅多晶硅是由多个小晶粒组成的材料,它的晶粒界面会使电子在晶体内传递时受到散射,影响了光电转换效率。
相比于单晶硅,多晶硅的光电性能略逊一筹,但由于其制备工艺简单,成本较低,因此在太阳能电池板的生产中也得到了广泛应用。
二、软板和硬板软板和硬板是指太阳能电池板的材质和结构类型,它们在应用场景和特性上有所不同。
1. 软板软板由柔性材料制成,适用于一些需要柔性安装的场景,比如曲面建筑物、车顶等。
软板可以根据需要进行弯曲和压缩,适应复杂的安装环境,并且重量较轻,便于携带和安装。
然而,软板的耐久性和抗风压能力相对较弱,需谨慎选择安装场景。
2. 硬板硬板通常由玻璃和铝制成,具有较强的耐候性和抗风压能力,适用于户外大型光伏电站等工业领域。
硬板的结构稳定,安装后不易变形,并且具有较长的使用寿命。
然而,硬板的重量较大,无法适应复杂的曲面安装环境。
单晶硅和多晶硅分别在太阳能电池板制作中发挥着重要作用,软板和硬板则在不同的场景中具有各自的优势。
在选择太阳能电池板材料和类型时,需根据具体的应用需求进行慎重考虑,并选择合适的产品以获得最佳的太阳能发电效果。
太阳能电池板作为目前广泛应用于太阳能发电系统中的设备,制造过程中所使用的材料和结构类型对于其性能表现有着至关重要的影响。
在前文中我们已经介绍了单晶硅和多晶硅、软板和硬板这四种材料和类型的基本情况。
单晶硅与多晶硅区别
单晶硅与多晶硅区别近日,发现国内有在上一些[wiki]多晶硅[/wiki]和单晶硅的项目。
现找了一些相关资料供大家分享:1、1、单晶硅和多晶硅的区别当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。
如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。
多晶硅与单晶硅的差异主要表现在物理性质方面。
例如在力学性质、电学性质等方面,多晶硅均不如单晶硅。
多晶硅可作为拉制单晶硅的原料。
单晶硅可算得上是世界上最纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。
大规模集成电路的要求更高,硅的纯度必须达到九个9。
目前,人们已经能制造出纯度为十二个9 的单晶硅。
单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。
多晶硅是生产单晶硅的直接原料,是当代人工智能、自动控制、信息处理、光电转换等半导体器件的电子信息基础材料。
被称为“微电子大厦的基石”。
单晶硅是高纯的硅晶体,做半导体芯片、太阳能电池等用,比较难制作,我国浙大在这方面有很强的技术。
多晶硅就是很粗糙的东西了,各小晶体颗粒之间是混乱的排列,故有空隙。
很容易制造。
但是多晶硅虽然可以低廉地制造,但也可以用来做太阳能电池,虽然效率和寿命不一定很好,但廉价,不知道技术上是否完全过关?无论如何,没有单晶硅做的太阳能电池好,更不能去做半导体芯片(例如CPU)了2、单晶硅和多晶硅的发展趋势在太阳能利用上,单晶硅和多晶硅也发挥着巨大的作用。
虽然从目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,就必须提高太阳电池的光电转换效率,降低生产成本。
从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。
从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为;[1]可供应太阳电池的头尾料愈来愈少;[2]对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。
单晶硅和多晶硅的用途
单晶硅和多晶硅的用途单晶硅和多晶硅是目前应用最广泛的半导体材料之一,它们在电子、光电、太阳能等领域都有广泛的应用。
本文将介绍单晶硅和多晶硅的基本特性和主要用途。
一、单晶硅单晶硅是指晶体结构完整、无晶界、无杂质的硅晶体。
它具有优异的电学性能和稳定性,因此在半导体领域被广泛应用。
1.半导体器件单晶硅是制作半导体器件的主要材料之一。
半导体器件是电子工业中最重要的元件之一,包括晶体管、二极管、场效应管、光电器件等。
其中,晶体管是最基本的半导体器件,是各种电子电路的基础,而单晶硅是晶体管制造的主要材料。
2.光伏电池光伏电池是将太阳能转化为电能的一种设备。
单晶硅光伏电池的效率高,稳定性好,因此在光伏电池领域得到广泛应用。
目前,单晶硅是光伏电池中最常用的材料之一。
3.太阳能集热器太阳能集热器是利用太阳能进行热能转换的一种设备。
单晶硅太阳能集热器具有高效、稳定性好、寿命长等特点,因此被广泛应用于太阳能热水器、太阳能空调等领域。
二、多晶硅多晶硅是由多个晶粒组成的硅材料,晶粒之间存在晶界。
相比于单晶硅,多晶硅制造成本低,但电学性能略逊于单晶硅。
1.太阳能电池多晶硅太阳能电池是目前应用最广泛的太阳能电池之一。
多晶硅太阳能电池的制造成本低,具有较高的转化效率,因此在太阳能电池领域得到广泛应用。
2.光学玻璃多晶硅可以用来制造光学玻璃,具有低色散、高透明度、高耐热性等特点,因此被广泛应用于光学领域。
3.太阳能集成电路太阳能集成电路是一种将太阳能电池和电子器件集成在一起的电路。
多晶硅是太阳能集成电路中常用的材料之一,具有制造成本低、转化效率高等特点。
综上所述,单晶硅和多晶硅在电子、光电、太阳能等领域都有广泛的应用。
单晶硅具有优异的电学性能和稳定性,适用于制造半导体器件、光伏电池、太阳能集热器等设备。
而多晶硅制造成本低,适用于制造太阳能电池、光学玻璃、太阳能集成电路等设备。
太阳能光伏比较:单晶硅与多晶硅
太阳能光伏比较:单晶硅与多晶硅近年来,太阳能光伏技术得到了迅速发展,成为一种高效、清洁、可持续的发电方式。
目前,太阳能光伏电池的主要材料有单晶硅和多晶硅两种,二者各有优劣。
本文将以单晶硅与多晶硅为比较对象,分析两种太阳能光伏电池的特点、性能、应用、市场等方面,以期为读者提供一些参考,帮助大家更好地了解和选择太阳能光伏产品。
一、单晶硅电池单晶硅电池是用高纯度硅单晶体制造的,具有晶格完整、电子迁移能力高、光电转换效率高等优点,目前单晶硅电池的转换效率已经达到了20%以上。
单晶硅电池的特点主要有以下几个方面:1.高效性能:单晶硅电池的光电转换效率高,可达到20%-25%,是目前太阳能电池中效率最高的,能够产生非常可观的电力输出。
2.稳定性好:由于单晶硅电池的结晶度高,晶体有序,不存在晶界、晶界缺陷等问题,这使得单晶硅电池的稳定性更好。
3.体积小:由于单晶硅电池转换效率高,相同的输出功率下,单晶硅电池的电池片可以制造得更小巧,体积更小。
4.昂贵:因为单晶硅电池采用原始材料高纯度硅单晶体制造,制作过程中的损失较大,所以单晶硅电池的制造成本很高,价格也比较贵。
5.适用范围:单晶硅电池主要适用于大型太阳能电站、屋顶太阳能电站、船舶、汽车、农舍等需要小型电力系统的应用领域。
二、多晶硅电池多晶硅电池是用熔融硅制造的,因硅的结晶非常混乱而呈多晶状,因此转换效率比单晶硅电池稍低,但其价格远比单晶硅电池低廉,逐渐成为太阳能光伏行业的主流产品之一。
多晶硅电池的特点主要有以下几个方面:1.成本低廉:由于多晶硅电池采用原始材料熔融硅制造,制作损失较小,所以制造成本低廉,价格也相对便宜。
2.转换效率低:由于多晶硅电池晶体混乱,存在晶界缺陷,能量吸收转化率比单晶硅低,转换效率一般在17%-20%之间。
3.稳定性好:多晶硅电池的硅晶体混乱,结晶度较低,但其存在的缺陷却有助于吸收能量,而且硅片表面相对较大,因此具有更好的在暗处工作的性能。
初中化学单晶硅知识点总结
中级教育学校化学单晶硅知识点总结单晶硅是一种应用广泛的材料,常见于电子器件中,如集成电路、太阳能电池等。
它具有良好的导电、光电性能,是现代科技进步中不行或缺的重要材料。
以下是中级教育学校化学中关于单晶硅的一些基本知识点的总结。
一、单晶硅的结构和性质单晶硅由纯净的硅元素构成,其原子结构呈现出具有高度有序性的平衡结构。
单晶硅具有以下性质:1. 导电性:单晶硅是半导体材料,其导电性介于导体与非导体之间。
在室温下,单晶硅并不导电,需要通过掺杂才能改变其电导率。
掺杂过程中,可使用五价和三价元素将硅元素替换成磷或硼等元素,形成N型或P型硅。
2. 光电性:单晶硅对光线具有很好的响应性能。
在受到光照时,单晶硅中的光子能够激发硅原子中的电子,形成导电电子与空穴。
3. 热稳定性:与许多其他材料相比,单晶硅具有较高的熔点和稳定性,能够承受高温环境。
二、单晶硅的制备方法1. 氧化物法:将高纯度的二氧化硅与纯净的石英结晶体通过高温还原反应,得到单晶硅。
2. 氯化物法:将高纯度的氯化硅与纯净的氢气在高温下反应,得到氯化硅。
然后通过气相沉积或溶液法将氯化硅还原为纯净的单晶硅。
三、单晶硅的应用1. 电子器件:单晶硅是制造集成电路的重要材料。
不同掺杂方式的单晶硅可以实现不同的功能,如放大器、开关、传感器等。
2. 光伏发电:单晶硅可用于制造太阳能电池。
太阳能电池的工作原理是通过光照激发硅中的电子,形成电流。
单晶硅太阳能电池因其高转换效率而广泛应用。
3. 半导体器件:单晶硅是制造半导体材料的重要原料。
在半导体领域中,单晶硅可以用来制造二极管、晶体管、发光二极管等器件。
四、单晶硅的环境保卫由于单晶硅的广泛应用,其生产和废弃物处理也面临环境保卫的问题。
在单晶硅的生产过程中需要使用大量的能源,而且生产废弃物含有有害物质。
为了缩减对环境的影响,需要进行合理的能源利用和废弃物处理措施。
同时,也需要对单晶硅的再利用和回收进行探究,以提高资源利用效率。
三元材料_多晶和单晶_单晶硅_多晶硅_解释说明
三元材料多晶和单晶单晶硅多晶硅解释说明1. 引言1.1 概述在现代科技发展中,新能源、电子器件和光学设备等领域的需求不断增加,对高性能材料的需求也日益迫切。
三元材料作为一类具有特殊结构和优异性能的材料,在这些领域中扮演着重要角色。
本文将重点介绍三元材料中的两种主要类型——多晶和单晶,并分析其区别、物理性质比较以及应用方面的差异。
1.2 文章结构本文共分为六个部分,首先是引言,接下来概述三元材料的定义和特点,以及其应用领域和制备方法;然后详细介绍多晶和单晶这两种主要类型,包括它们的定义和区别,物理性质比较以及应用比较;随后分别深入探讨单晶硅和多晶硅这两种具体材料,在结构与性质特点、制备方法及应用场景方面进行详细说明;最后总结其中的优缺点对比,并勾勒出未来研究的前景。
1.3 目的本文旨在提供关于三元材料中多晶与单晶的比较和分析,并探讨单晶硅和多晶硅这两种主要材料的特性、制备方法及应用场景。
通过本文的阐述,读者可以更加全面地了解三元材料中多晶和单晶的差异以及各自的特点,从而对其在不同领域中的应用有更清晰的认识。
2. 三元材料3.1 定义和特点三元材料是指由三种不同元素组成的化合物或混合物。
这些元素可以是金属、非金属或半导体等。
三元材料具有多样性和复杂性,在材料科学和工程中具有重要的应用价值。
三元材料的特点之一是它们的组成可调性,即可以通过改变其中一个或多个元素的比例来调节其性质和特征。
这使得三元材料在不同领域中具有广泛的应用潜力,例如能源储存与转换、化学催化、光电子器件和生物医学等领域。
此外,由于存在不同元素之间的相互作用,三元材料通常展现出独特的结构和性质。
这些相互作用能够引导其在纳米尺度下形成复杂的晶体结构,并赋予其优异的机械、电子和光学性能。
3.2 应用领域三元材料在各个应用领域中都发挥着重要作用。
以下是一些主要应用领域的例子:- 能源储存与转换:三元催化剂在燃料电池和电解水产氢领域有广泛应用。
多晶硅还是单晶硅的太阳能电池更好?
多晶硅还是单晶硅的太阳能电池更好?如果你对太阳能电池有些了解,就会知道太阳能电池的重要组成部分是硅片。
但是,用哪一种硅片制造太阳能电池更好呢?是多晶硅还是单晶硅?下面,我们将为大家详细介绍多晶硅和单晶硅的区别,并探讨用哪一种硅片制造太阳能电池更好。
1. 多晶硅和单晶硅的区别多晶硅与单晶硅都是硅的晶体结构,不同之处在于它们的原子排列方式。
具体来说,单晶硅的原子排列是有序的,而多晶硅的原子排列则是随机的。
这个区别意味着,单晶硅更具备高度的纯度和完整性,而多晶硅则相对差一些。
但是,多晶硅更容易制造和加工,因此相比单晶硅更便宜。
2. 多晶硅和单晶硅的性能对比多晶硅太阳能电池和单晶硅太阳能电池有着不同的性能表现。
具体来说,单晶硅太阳能电池的效率更高,拥有更强的光电转换性能,因此更适合在光照条件较弱的地区使用。
多晶硅太阳能电池则更耐高温和辐射,表现更好。
因此,多晶硅太阳能电池更适合在高温和强辐射条件下使用。
此外,多晶硅太阳能电池还具有更高的鲁棒性和更长的使用寿命,这一点也要优于单晶硅太阳能电池。
3. 结论基于上述性能对比,我们可以得出一个结论:多晶硅太阳能电池适合在高温、强辐射条件下使用,表现更好,而单晶硅太阳能电池在光照条件较弱的地区使用更佳,效率更高。
当然,对于不同的应用场景,我们应该使用不同的硅片制造太阳能电池。
这样可以充分利用硅片本身的优势,使得太阳能电池的性能最大化。
需要注意的是,太阳能电池的制造过程十分复杂,除了硅片的品质,还有很多其他的因素也会影响太阳能电池的性能。
因此,在太阳能电池的制造和应用过程中,我们还需要考虑很多其他因素,做到合理搭配和优化,才能获得最佳的性能表现。
综上所述,多晶硅和单晶硅都有着自己的优势和劣势,因此我们应该根据具体的应用场景来选择硅片制造太阳能电池。
只有在匹配合适的条件才能发挥太阳能电池的最大性能。
单晶硅和多晶硅的用途
单晶硅和多晶硅的用途单晶硅和多晶硅是两种常见的硅材料,它们在现代科技领域中有着广泛的应用。
本文将从单晶硅和多晶硅的基本概念、制备方法以及应用领域等方面进行阐述。
一、单晶硅和多晶硅的基本概念单晶硅是指晶体结构完整、无晶界、无杂质的硅材料,具有高纯度、高晶格完整性和高光电转换效率等特点。
多晶硅则是由多个晶粒组成的材料,晶界和杂质含量较高,但其制备成本相对较低。
二、单晶硅和多晶硅的制备方法单晶硅的制备方法主要有Czochralski法和浮区法两种。
其中,Czochralski法是目前最常用的制备单晶硅的方法。
它通过在高温下将硅料溶解在熔融的熔剂中,然后缓慢旋转晶体棒,使硅原子逐渐结晶形成单晶硅材料。
而浮区法则是利用电磁感应产生的磁场使硅材料溶解并形成液体区域,然后通过控制温度梯度和磁场等参数来控制晶体的生长方向和速度,从而制备出单晶硅材料。
多晶硅的制备方法主要有气相沉积法、溅射法、电化学沉积法等。
其中,气相沉积法是最常用的制备多晶硅的方法之一。
它通过在高温下将硅气体分解成原子并在衬底表面沉积晶体,从而制备出多晶硅材料。
三、单晶硅和多晶硅的应用领域1. 半导体领域单晶硅是半导体领域中最常用的材料之一,它可以用于制作集成电路、太阳能电池等器件。
单晶硅的高纯度和晶格完整性可以提高器件的性能和可靠性,而且它的光电转换效率也很高,是制作太阳能电池的理想材料。
多晶硅也可以用于制作太阳能电池等器件。
虽然它的晶界和杂质含量较高,但其制备成本相对较低,可以大规模生产,因此在太阳能电池领域中也有着广泛的应用。
2. 光学领域单晶硅的光学性能优良,可以用于制作高精度光学元件、激光器等器件。
它的高纯度和晶格完整性可以提高器件的光学性能和稳定性,因此在光学领域中有着广泛的应用。
多晶硅也可以用于制作光学元件,如光学滤波器、反射镜等。
虽然它的晶界和杂质含量较高,但其制备成本相对较低,可以大规模生产,因此在光学领域中也有着一定的应用。
多晶硅电池组件和单晶硅电池组件的光电转换效率
多晶硅电池组件和单晶硅电池组件的光电转换效率多晶硅电池组件和单晶硅电池组件的光电转换效率一、引言在当今社会,太阳能电池作为一种清洁、可再生能源,受到了广泛的关注和应用。
然而,人们对于太阳能电池的种类和性能常常存在一定的疑惑,特别是多晶硅电池组件和单晶硅电池组件在光电转换效率方面的差异。
本文将从多个角度对这两种太阳能电池进行全面评估,以便读者更深入地理解它们的特点和性能。
二、多晶硅电池组件和单晶硅电池组件的基本介绍1. 多晶硅电池组件多晶硅电池组件采用的是由多晶硅晶粒组成的硅片,因其生产工艺简单、成本低廉而受到广泛应用。
然而,其结晶度较低,表面存在较多晶界和缺陷,影响了光电转换效率。
2. 单晶硅电池组件单晶硅电池组件采用的是由单晶硅晶粒组成的硅片,因其结晶度高、晶界和缺陷少,具有较高的光电转换效率。
然而,其生产工艺复杂、成本较高,限制了其在市场上的应用。
三、光电转换效率的评估1. 光电转换效率的定义光电转换效率是衡量太阳能电池性能的重要指标,它指的是太阳能电池将太阳辐射能转化为电能的比例。
2. 多晶硅电池组件和单晶硅电池组件的光电转换效率比较据统计数据显示,单晶硅电池组件的光电转换效率一般在20%以上,而多晶硅电池组件的光电转换效率一般在15%左右。
可以看出单晶硅电池组件在光电转换效率方面明显优于多晶硅电池组件。
四、影响光电转换效率的因素1. 晶体结构多晶硅电池组件由多晶硅晶粒组成,晶界和缺陷较多,影响了光电转换效率。
而单晶硅电池组件由单晶硅晶粒组成,具有较高的结晶度,故光电转换效率较高。
2. 生产工艺多晶硅电池组件的生产工艺简单,成本低廉,但由于晶界和缺陷较多,光电转换效率较低。
而单晶硅电池组件的生产工艺较为复杂,成本较高,但其光电转换效率较高。
3. 温度和光照强度温度和光照强度对太阳能电池的光电转换效率也有一定的影响。
一般情况下,温度越高,光电转换效率越低;光照强度越大,光电转换效率越高。
五、个人观点和理解多晶硅电池组件和单晶硅电池组件在光电转换效率方面的差异主要来源于晶体结构和生产工艺的不同。
单晶硅多晶硅非晶硅
单晶硅多晶硅非晶硅单晶硅、多晶硅和非晶硅是常见的硅材料,它们在电子行业和太阳能领域中得到广泛应用。
本文将分别介绍这三种硅材料的特点和应用。
单晶硅是一种具有高纯度和完全结晶的硅材料。
它的晶体结构非常有序,没有晶界和杂质存在。
由于这种结构的特殊性,单晶硅具有优异的电子特性,包括高电子迁移率和低电阻率。
这使得单晶硅成为制造高性能集成电路的理想材料。
在集成电路制造过程中,单晶硅通常被用作衬底材料,通过控制晶体生长方向和掺杂技术,可以制备出各种不同的器件结构。
此外,单晶硅还被广泛应用于光伏领域,用于制造高效的太阳能电池。
多晶硅是由许多小晶体组成的硅材料。
与单晶硅相比,多晶硅的晶体结构不太有序,其中存在许多晶界和杂质。
这些晶界和杂质对电子迁移和电阻产生一定的影响,使得多晶硅的电子特性略逊于单晶硅。
然而,多晶硅具有较低的制备成本和较高的材料利用率,因此在一些应用中具有一定的优势。
多晶硅广泛应用于太阳能电池制造中,通过将多晶硅材料切割成薄片,并进行光伏电池的制造流程,可以制备出高效的太阳能电池。
非晶硅是一种无定形的硅材料,它的晶体结构没有明显的长程有序性。
非晶硅的制备方法包括物理气相沉积和化学气相沉积等。
非晶硅具有较高的氢含量和较低的晶体质量,导致其电子迁移率和电阻率较低。
然而,非晶硅具有优异的光学特性,包括宽光谱吸收和较短的载流子扩散长度。
这使得非晶硅在光伏领域中具有重要的应用,被广泛用于制备薄膜太阳能电池和柔性太阳能电池。
总结起来,单晶硅、多晶硅和非晶硅是三种常见的硅材料。
单晶硅具有优异的电子特性,适用于高性能集成电路和高效太阳能电池的制造。
多晶硅具有较低的制备成本和较高的材料利用率,广泛应用于太阳能电池制造。
非晶硅具有特殊的光学特性,被用于制备薄膜太阳能电池和柔性太阳能电池。
这三种硅材料各有特点,在电子行业和太阳能领域中发挥着重要的作用。
单晶硅、多晶硅、线切割工艺、激光切割工艺与方法。
单晶硅、多晶硅、线切割工艺、激光切割工艺与方法。
单晶硅和多晶硅是太阳能电池的主要材料,它们具有不同的晶体结构和制备工艺。
- 单晶硅:单晶硅是由纯度极高的硅材料制备的,晶体结构完整,无晶界和杂质,因此具有较高的电导率和太阳能转换效率。
制备单晶硅的方法主要是Czochralski法,即将硅原料熔化后
通过单晶硅种子慢慢拉出单晶硅棒,然后将棒状单晶硅切割成薄片。
- 多晶硅:多晶硅是由高纯度的硅材料通过熔融法制备的,晶
体结构不完整,有晶界和杂质存在,因此电导率和太阳能转换效率较单晶硅低。
多晶硅制备的方法主要是摩擦致密化法或区熔法,即将硅材料熔化后快速冷却形成多晶硅块,然后切割成薄片。
线切割工艺是一种常用于硅片切割的方法。
该方法通过金刚线在硅片表面划割,然后通过机械力或其他手段断开硅片,实现切割目的。
线切割工艺简单易行,但切割速度较慢,有些硅片容易产生裂纹。
激光切割工艺是一种利用激光束对硅片进行切割的方法。
激光切割工艺具有高精度、高效率的特点,适用于各种材料的切割。
激光切割工艺可以通过调节激光功率、频率和扫描速度等参数,控制切割过程中的熔化和蒸发,避免材料过热和产生裂纹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多晶硅和单晶硅的基础知识单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。
如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。
多晶硅与单晶硅的差异主要表现在物理性质方面。
例如在力学性质、电学性质等方面,多晶硅均不如单晶硅。
多晶硅可作为拉制单晶硅的原料。
单晶硅可算得上是世界上最纯净的物质了,一般的半导体器件要求硅的纯度六个9以上。
大规模集成电路的要求更高,硅的纯度必须达到九个9。
目前,人们已经能制造出纯度为十二个9的单晶硅。
单晶硅是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。
多晶硅的生产工艺主要由高纯石英(经高温焦碳还原)→工业硅(酸洗)→硅粉(加HCL)→SiHCL3(经过粗馏精馏)→高纯SiHCL3(和H2反应CVD工艺)→高纯多晶硅国内的多晶硅单价主要看纯度,纯度在9个9的很少,价格应该在2500以上了!详细价格不定,单晶硅生产工艺主要有两种,一种是直拉法,一种是区熔法。
工艺的介绍也可以在网上找得到。
单晶硅片的单价是论片算,不会按吨算的,这里还要区分是太阳能级还是IC级,这里我只知道关于6寸太阳能级硅片,每片价格在53元左右单晶硅的制造方法和设备1、一种单晶硅压力传感器制造方法及其结构2、单晶硅生产装置3、制造单晶硅的设备4、单晶硅直径测定法及其设备5、单晶硅直径控制法及其设备【单晶硅】英文名:Monocrystalline silicon分子式:Si硅的单晶体。
具有基本完整的点阵结构的晶体。
不同的方向具有不同的性质,是一种良好的半导材料。
纯度要求达到99.9999%,甚至达到99.9999999%以上。
用于制造半导体器件、太阳能电池等。
用高纯度的多晶硅在单晶炉内拉制而成。
熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。
单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。
超纯的单晶硅是本征半导体。
在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。
单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。
单晶硅主要用于制作半导体元件。
用途:是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分,处于新材料发展的前沿。
其主要用途是用作半导体材料和利用太阳能光伏发电、供热等。
由于太阳能具有清洁、环保、方便等诸多优势,近三十年来,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一。
单晶硅建设项目具有巨大的市场和广阔的发展空间。
在地壳中含量达25.8%的硅元素,为单晶硅的生产提供了取之不尽的源泉。
近年来,各种晶体材料,特别是以单晶硅为代表的高科技附加值材料及其相关高技术产业的发展,成为当代信息技术产业的支柱,并使信息产业成为全球经济发展中增长最快的先导产业。
单晶硅作为一种极具潜能,亟待开发利用的高科技资源,正引起越来越多的关注和重视。
【多晶硅】性质:灰色金属光泽。
密度2.32~2.34。
熔点1410℃。
沸点2355℃。
溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。
硬度介于锗和石英之间,室温下质脆,切割时易碎裂。
加热至800℃以上即有延性,1300℃时显出明显变形。
常温下不活泼,高温下与氧、氮、硫等反应。
高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。
具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。
电子工业中广泛用于制造半导体收音机、录音机、电冰箱、彩电、录像机、电子计算机等的基础材料。
由干燥硅粉与干燥氯化氢气体在一定条件下氯化,再经冷凝、精馏、还原而得。
多晶硅是单质硅的一种形态。
熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。
多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。
例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。
在化学活性方面,两者的差异极小。
多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。
一、国际多晶硅产业概况当前,晶体硅材料(包括多晶硅和单晶硅)是最主要的光伏材料,其市场占有率在90%以上,而且在今后相当长的一段时期也依然是太阳能电池的主流材料。
多晶硅材料的生产技术长期以来掌握在美、日、德等3个国家7个公司的10家工厂手中,形成技术封锁、市场垄断的状况。
多晶硅的需求主要来自于半导体和太阳能电池。
按纯度要求不同,分为电子级和太阳能级。
其中,用于电子级多晶硅占55%左右,太阳能级多晶硅占45%,随着光伏产业的迅猛发展,太阳能电池对多晶硅需求量的增长速度高于半导体多晶硅的发展,预计到2008年太阳能多晶硅的需求量将超过电子级多晶硅。
1994年全世界太阳能电池的总产量只有69MW,而2004年就接近1200MW,在短短的10年里就增长了17倍。
专家预测太阳能光伏产业在二十一世纪前半期将超过核电成为最重要的基础能源之一。
据悉,美国能源部计划到2010年累计安装容量4600MW,日本计划2010年达到5000MW,欧盟计划达到6900MW,预计2010年世界累计安装量至少18000MW。
从上述的推测分析,至2010年太阳能电池用多晶硅至少在30000吨以上,表2给出了世界太阳能多晶硅工序的预测。
据国外资料分析报道,世界多晶硅的产量2005年为28750吨,其中半导体级为20250吨,太阳能级为8500吨,半导体级需求量约为19000吨,略有过剩;太阳能级的需求量为15000吨,供不应求,从2006年开始太阳能级和半导体级多晶硅需求的均有缺口,其中太阳能级产能缺口更大。
据日本稀有金属杂质2005年11月24日报道,世界半导体与太阳能多晶硅需求紧张,主要是由于以欧洲为中心的太阳能市场迅速扩大,预计2006年,2007年多晶硅供应不平衡的局面将为愈演愈烈,多晶硅价格方面半导体级与太阳能级原有的差别将逐步减小甚至消除,2005年世界太阳能电池产量约1GW,如果以1MW用多晶硅12吨计算,共需多晶硅是1.2万吨,2005-2010年世界太阳能电池平均年增长率在25%,到2010年全世界半导体用于太阳能电池用多晶硅的年总的需求量将超过6.3万吨。
世界多晶硅主要生产企业有日本的Tokuyama、三菱、住友公司、美国的Hemlock、Asimi、SGS、MEMC公司,德国的Wacker公司等,其年产能绝大部分在1000吨以上,其中Tokuyama、Hemlock、Wacker三个公司生产规模最大,年生产能力均在3000-5000吨。
国际多晶硅主要技术特征有以下两点:(1)多种生产工艺路线并存,产业化技术封锁、垄断局面不会改变。
由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、用途、产品检测方法、过程安全等方面也存在差异,各有技术特点和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺有:改良西门子法、硅烷法和流化床法。
其中改良西门子工艺生产的多晶硅的产能约占世界总产能的80%,短期内产业化技术垄断封锁的局面不会改变。
(2)新一代低成本多晶硅工艺技术研究空前活跃。
除了传统工艺(电子级和太阳能级兼容)及技术升级外,还涌现出了几种专门生产太阳能级多晶硅的新工艺技术,主要有:改良西门子法的低价格工艺;冶金法从金属硅中提取高纯度硅;高纯度SiO2直接制取;熔融析出法(VLD:Vaper to liquid deposition);还原或热分解工艺;无氯工艺技术,Al-Si溶体低温制备太阳能级硅;熔盐电解法等。
二、国内多晶硅产业概况我国集成电路的增长,硅片生产和太阳能电池产业的发展,大大带动多晶硅材料的增长。
太阳能电池用多晶硅按每生产1MW多晶硅太阳能电池需要11-12吨多晶硅计算,我国2004年多晶、单晶太阳能电池产量为48.45MW,多晶硅用量为678吨左右,而实际产能已达70MW左右,多晶硅缺口达250吨以上。
到2005年底国内太阳能电池产能达到300MW,实际能形成的产量约为110MW,需要多晶硅1400吨左右,预测到2010年太阳能电池产量达300MW,需要多晶硅保守估计约4200吨,因此太阳能电池的生产将大大带动多晶硅需求的增加,见表3。
2005年中国太阳能电池用单晶硅企业开工率在20%-30%,半导体用单晶硅企业开工率在80%-90%,都不能满负荷生产,主要原因是多晶硅供给量不足所造成的。
预计多晶硅生产企业扩产后的产量,仍然满足不了快速增长的需要。
2005年全球太阳能电池用多晶硅供应量约为10448吨,而2005年太阳能用硅材料需求量约为22881吨,如果太阳能电池用多晶硅需求量按占总需求量的65%计,则太阳能电池用多晶硅需求量约为14873吨,这样全球太阳能电池用多晶硅的市场缺口达4424吨。
2005年半导体用多晶硅短缺6000吨,加上太阳能用多晶硅缺口4424吨,合计10424吨,供给严重不足,导致全球多晶硅价格上涨。
目前多晶硅市场的持续升温,导致各生产厂商纷纷列出了扩产计划,根据来自国际光伏组织的统计,至2008年全球多晶硅的产能将达49550吨,至2010年将达58800吨。
预计到2010年全球多晶硅需求量将达85000吨,缺口26200吨。
从长远来看,考虑到未来石化能源的短缺和各国对太阳能产业的大力支持,需求将持续增长。
根据欧洲光伏工业联合会的2010年各国光伏产业发展计划预计,届时全球光伏产量将达到15GW(1GW=1000MW),设想其中60%使用多晶硅为原材料,如果技术进步每MW消耗10吨多晶硅,保守估计全球至少需要太阳能多晶硅5万吨以上。
我国多晶硅工业起步于五、六十年代中期,生产厂多达20余家,生由于生产技术难度大,生产规模小,工艺技术落后,环境污染严重,耗能大,成本高,绝大部分企业亏损而相继停产和转产,到1996年仅剩下四家,即峨眉半导体材料厂(所),洛阳单晶硅厂、天原化工厂和棱光实业公司,合计当年产量为102.2吨,产能与生产技术都与国外有较大的差距。
1995年后,棱光实业公司和重庆天原化工厂相继停产。