高中物理带电粒子在复合场中的运动解题技巧及经典题型及练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、带电粒子在复合场中的运动专项训练
1.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量
为+q 的粒子由小孔下方
2
d
处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。不计粒子的重力。
(1)求极板间电场强度的大小;
(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、
4mv
qD
,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.
【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)
【答案】(1)2
mv qd
(2)4mv qD 或43mv qD (3)5.5πD
【解析】 【分析】 【详解】
(1)粒子在电场中,根据动能定理2
122
d Eq mv ⋅=,解得2mv E qd =
(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为
/2
E R 由2
1
1
v qvB m r =,解得4mv B qD = 则当外切时,半径为
e R
由2
12
v qvB m r =,解得43mv B qD =
(2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为00
10016819
U U U ≤≤;Ⅱ
区域的磁感应强度为20
12qU mv =,则粒子运动的半径为2
v qvB m r
=;
设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:
1112R T v π=
;03
4
r L =
据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两
个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=o
;2180θ=o ;
60α=o
粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间
分别为t 1、t 2,可得:r U ∝;1056
U L U L
=
设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD
2.压力波测量仪可将待测压力波转换成电压信号,其原理如图1所示,压力波p (t )进入弹性盒后,通过与铰链O 相连的“”型轻杆L ,驱动杆端头A 处的微型霍尔片在磁场中沿x 轴方向做微小振动,其位移x 与压力p 成正比(,0x p αα=>).霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d ,单位体积内自由电子数为n 的N 型半导体制成,磁场方向垂直于x 轴向上,磁感应强度大小为0(1)0B B x ββ=->,.无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿12C C 方向的电流I ,则在侧面上D 1、D 2两点间产生
霍尔电压U 0.
(1)指出D 1、D 2两点那点电势高;
(2)推导出U 0与I 、B 0之间的关系式(提示:电流I 与自由电子定向移动速率v 之间关系为I=nevbd ,其中e 为电子电荷量);
(3)弹性盒中输入压力波p (t ),霍尔片中通以相同的电流,测得霍尔电压U H 随时间t 变化图像如图3,忽略霍尔片在磁场中运动场所的电动势和阻尼,求压力波的振幅和频率.(结果用U 0、U 1、t 0、α、及β)
【来源】浙江新高考2018年4月选考科目物理试题 【答案】(1) D 1点电势高 (2) 0
01IB U ne d = (3) 101(1)U A U αβ=- ,0
12f t = 【解析】
【分析】由左手定则可判定电子偏向D 2边,所以D 1边电势高;当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I 与自由电子定向移动速率v 之间关系为I=nevbd 求出U 0与I 、B 0之间的关系式;图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U 0与I 、B 0之间的关系式求出压力波的振幅.
解:(1)电流方向为C 1C 2,则电子运动方向为C2C1,由左手定则可判定电子偏向D 2边,所以D 1边电势高;
(2)当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力
0U qvB q
b
= ① 由电流I nevbd = 得:I
v nebd
=
② 将②带入①得0
0IB U ned
=
(3)图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t 0 所以,频率为: 0
12f t =
当杆运动至最远点时,电压最小,即取U 1,此时0(1)B B x β=-
取x 正向最远处为振幅A ,有:0
1(1?)IB U A ned
β=
- 所以:0
00
11(1)1IB U ned IB A U A ned ββ==--
解得:01
U U A U β-=
根据压力与唯一关系x p α=可得x
p α
=
因此压力最大振幅为:01
m U U p U αβ-=
3.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02
π
θ<<
).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P
相应的速率.(已知重力加速度为g )
【来源】带电粒子在磁场中的运动 【答案】min 2cos m g B q R θ
=cos gR
v θθ=
【解析】 【分析】 【详解】
据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力
f =qvB ①
式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律
cos 0N mg θ-= ②
2
sin sin v f N m
R θθ
-= ③ 由①②③式得
22
sin sin 0cos qBR qR v v m θθθ
-+=④