有关电机轴电流的知识及预防措施

有关电机轴电流的知识及预防措施

有关电机轴电流的知识及预防措施

前言:

冀东水泥滦县公司于2006年1月发现原料立磨主减速机输入轴严重异音,3月份更换轴承,轴承滚柱表面呈洗衣搓板形状见图片。运行1个多月,又出现了异音,5月机械人员拆开检查后发现,轴承又是同样损坏,未找出其他原因,更换了轴承。运行不到1个月,又出现了异音,监护运行到9月份,请日本宇部专家鉴定是主电机(沈阳电机)漏电,形成轴电流传到主减速机输入轴,所致轴承反复损坏。

措施:现已更换轴承,增加接地碳刷,目前运行良好。

事故共更换5盘轴承,4盘SKF32248J3,一盘FAG23251/C3。共损失27万圆。

产生原因

轴电压和轴电流的产生:轴电压是电动机两轴承端或电机转轴与轴承间所产生的电压,电动机的轴电压一般很低,但电流回路的阻抗很小,所以电机一旦出现轴电压,将油膜击穿,将有很大的轴电流产生。轴承在轴电流作用下,滚道、滚动体表面呈现洗衣搓板状的烧痕,只能使用几个月甚至几天。其产生原因一般有以下几种:

(1) 磁不平衡产生轴电压

电动机由于扇形冲片、硅钢片叠装因素,再加上铁芯槽、通风孔等的存在,造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴的两端感应出轴电压。轴上存在剩余磁通起单极发电机作用。

(2) 逆变供电产生轴电压

电动机采用变频器供电运行时,由于电源电压含有较高次的谐波分量,在电压dv/dt脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使轴的电位发生变化,从而产生轴电压。

(3) 静电感应产生轴电压

在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的两端感应出轴电压。

(4) 外部电源的介入产生轴电压,由于运行现场接线比较多,尤其大电机。

保护、测量元件接线较多,带电线头搭接在轴上,便会产生轴电压。轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。

(5) 转子绕组发生接地,产生接地电流。

预防措施:

可用万用表测量轴电压。针对轴电流形成的原因,一般在现场采用如下防范措施:切断回路或使轴承内圈外圈等电位。

(1) 安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与转轴可靠接触,保证转轴电位为零电位,以此消除轴电流。

(2) 为防止磁不平衡等原因产生轴电流,往往在轴承座和轴承支架处加绝缘隔板,以切断轴电流的回路。

(3) 为了避免其他电动机附件导线绝缘破损造成的轴电流,要求检修运行人员细致检查并加强导线或垫片绝缘,以消除不必要的轴电流隐患。

一般通过以上处理,大多数电动机的轴电流微乎其微,已对电动机构不成实质上危害。

股份公司设备管理部

2006-12-21

变频电机轴电流的防止

收稿日期:2002-11-20 于晓东 男 1974年生;毕业于佳木斯大学工学院电气工程系电气技术专业,现从事电气技术工作. 变频电机轴电流的防止 于晓东1 李振宇2 李积继 3 1 佳木斯合成实业有限责任公司,黑龙江佳木斯(154007) 2 东芝大连有限公司,辽宁大连(116600) 摘 要 阐述采用逆变器供电的变频电机,因电源存在许多高压脉冲,高频谐波增多,以及电动机铁心磁路不平衡等,在电机绕组和转轴上产生感应电压。为减少轴电流的危害,除电机制造需满足磁路平衡外,提出加装电源滤波器,前后轴承都要绝缘处理等防止变频电动机轴电流危害的措施。 关键词 变频电动机 轴电流 防止 Prevention of Bearing C urrent in Variable Frequency Motor Y u Xiaodong ,Li Zhenyu ,and Li Jiji Abstract The paper discusses that,for the variablei frequency motor fed from the inverter,inducted voltage appears at the winding and shaft because the power supply has many high voltage pulses,the high frequency harmonic increas es,and the magnetic circuit of motor core is not balance.To decrease the harm caused by bearing current,some measures,such as mounting the power filter and insulating the front and rear bearings are presented,in addition that the magnetic circuit is required to be balance in manufacturing the motor. Key words Variable frequency motor,bearing current,prevention. 1 引言 通常在大型电机中特别是采用扇形冲片迭制铁心的电机,如果磁场不对称等易产生轴电流。近年来采用变频调速驱动装置的小电机也出现不容忽视的轴电流,导致小电机的轴承过早损坏,直接影响和降低了电动机运行的可靠寿命,引起电机用户和电机制造厂商的关注。 2 轴电流的危害 变频电机轴端安装的辅助装置如测速计、编码器等,易与两轴承或两轴承之一构成轴电流回 路(见图1轴电流数学模型图)。该轴电流对电机 轴承造成破坏,对测速计、编码器等辅助装置的安全构成威胁 。 图1 轴电流数学模型 在电机正常运转情况下,轴承内形成一层润滑油膜,能起一定的绝缘作用,即使电机运转出现较低的轴电压,也不会产生轴电流。但是当轴电 18 防爆电机 (E XPLOSION-PROOF ELEC TRIC MAC HINE) 2003 年第2期(总第115期) 2003年6月30日出版

电机与拖动基础知识重点综述

电机与拖动基础总复习 试题类型 一、填空题(每题1分,共20分) 二、判断题(每题1分,共10分) 三、单项选择题(每题2分,共20分) 四、简答题(两题,共15分) 五、计算题(三题,共35分) 电力拖动系统动力学基础 1.电力拖动系统一般由电动机、生产机械的传动机构、工作机构、 控制设备和电源组成,通常又把传动机构和工作机构称为电动机的机 械负载。 由电动机的电磁转矩T e与生产机械的负载转矩T L的关系: 1)当T e = T L时,d n/d t = 0,表示电动机以恒定转速旋转或静 止不动,电力拖动系统的这种运动状态被称为静态或稳态; 2)若T e>T L时,d n/d t>0,系统处于加速状态; 3)若T e<T L时,d n/d t<0,系统处于减速状态。 也就是一旦d n/d t≠0 ,则转速将发生变化,我们把这种运 动状态称为动态或过渡状态。 3.生产机械的负载转矩特性:

直流电机原理 1.直流电动机主要由定子、转子、电刷装置、端盖、轴承、通风冷却系统等部件组成。 定子由机座、主磁极、换向极、电刷装置等组成。转子(又称电枢)由电枢铁心、电枢绕组、换向器、转轴和风扇等组成。 2.直流电机的绕组有五种形式:单叠绕组、单波绕组、复叠绕组、复波绕组和蛙绕组(叠绕和波绕混合绕组)。 3 极距、绕组的节距(第一节距、第二节距、合成节距)的概念和关系。 4 单叠绕组把每个主磁极下的元件串联成一条支路,因此其主要特点是绕组的并联支路对数a 等于极对数n p 。 5 电枢反应:直流电机在主极建立了主磁场,当电枢绕组中通过电流时,产生电枢磁动势,也在气隙中建立起电枢磁场。这时电机的气隙中形成由主极磁场和电枢磁场共同作用的合成磁场。这种由电枢磁场引起主磁场畸变的现象称为电枢反应。 6 直流电机的励磁方式: dn dT dn dT L e

变频电机轴电压与轴电流产生机理分析

变频电机轴电压与轴电流产生机理分析(一) 1 引言 当电动机在正弦波电源驱动下运行时,通过电机轴的交变磁链产生轴电压。这些磁链是由转子和定子槽、分离铁心片之间的连接部分、磁性材料的定向属性和供电电源不平衡等因素引起磁通不平衡而产生的[1]。到90年代,以IGBT为功率器件的PWM逆变器作为电机驱动电源时,电机轴电流问题更加严重,且其产生机理与正弦波电源驱动时完全不同。文献[1]指出,具有高载波频率(例如10kHz以上)的IGBT逆变器导致电动机的轴承比低载波频率的逆变器驱动时损坏更快。Busse较为详细地分析了轴承电流的产生及轴承电流密度与轴承损坏之间的关系[2],并建立了PWM驱动下的轴承电流电路模型,但该模型未能体现出轴承电流与逆变器开关频率之间的关系。为讨论高频PWM脉冲电压驱动时电机轴电压与轴电流的产生机理,本文在建立轴电压与轴电流电路模型的基础上,分析轴电流产生的条件及形式,并针对逆变器输出电压的特性变化以及电机端有无过电压等情况,通过仿真分析得到不同情况下的轴电压与轴承电流波形。 在抑制轴承电流方面,文献[1]给出的办法用正弦波滤波器将PWM电压转换成正弦波电压,使电机工作在正弦波供电状态下,但该方法所串电感大,系统动态响应慢,同时电感上的压降和功耗增大。本文在逆变器输出端串小电感并辅以RC吸收网络,可有效抑制PWM 逆变器驱动下出现的轴电流。 2 共模电压与轴电压 一般认为,磁路不均衡、单极效应和电容电流是电机中产生轴电压的主要原因[3]。在电网供电的普通电机中,人们一般比较重视磁路不平衡的影响。但在逆变器供电的电机中轴电压主要由电压不平衡,即电源电压的零序分量产生。由于电路、元器件、连接和回路阻抗的不平衡,电源电压将不可避免地产生零点漂移,该电压将在系统中产生零序电流,轴承则是电机零序回路的一部分。 正弦波电源驱动时,通过计算可知=0。在PWM逆变器驱动下,的值取决于逆变器开关状态,且变化周期与逆变器载波频率一致。事实上,只是共模电压的一种表现形式,由于静电耦合,电机各部分间存在着大小不等的分布电容,因此构成电机的零序回路。根据传输线理论,一个分布参数电路可用等效的具有相同输入输出关系的集总参数π网络模型代替。 因此,电机分布参数电路可用集总参数电路来等效,形成轴电压的绕组--转子耦合部分电路如图2a)所示,其中Vbrg为轴电压,Ibrg为轴承电流,Va,Vb和Vc为电机输入电压。尽管Iws不流过轴承,但它与轴承电流在定子绕组上有相同的路径,势必对轴承电流有所影响。为便于分析,绕组中心点到定子的耦合部分将不予考虑。为计算方便,将图2 a)简化为图2 b)所示等效单相驱动电路模型。图中Z1为电源中点对地阻抗,Z2为旁路阻抗,表征驱动回路中的共模电抗线圈、线路电抗器和长电缆等;R0和L0为定子的零序电阻和电感;Csf、Csr和Crf分别为电机定子对地、定子对转子和转子对地电容;Rb为轴承回路电阻;Cb 和R1为轴承油膜的电容和非线性阻抗;Usg和Urg分别为定子绕组与转子中性点对地电压。 对于采用逆变器供电的电机,当轴承油膜未被击穿时,由于载波频率高,电容的容抗大大减小,与Xcb相比,Rb很小而R1很大,由于PWM驱动电压为非正弦电压,计算时先将其分解,然后分别求取,轴电压有效值为: 3 轴承模型与轴承电流的产生 由于分布电容的存在和高频脉冲输入电压的激励作用,电机轴上形成耦合共模电压。事实上,轴电压的出现不仅与上面两个因素有关,且和轴承结构有着直接关系。转子前后端均

发电机基础教材知识培训讲义

发电机基础知识 培训讲义
发电机技术处 周华翔 南京汽轮电机(集团)有限责任公司

1. 电机发展的历史 2. 发电机原理 3. 发电机结构 4. 发电机图纸和文件 5. 发电机成套范围

1. 电机发展的历史
在人类的科技发
展史中,对于电现象 和磁现象很早就有认 识了。但对于两者之 间的联系,却直到 183 年 前 才 发 现 。 这 个发现者的名字叫法 拉第,他是一位英国 物理学家。

早在1821年,法拉第发现了载流 导体在磁场中会受到力的作用的现象, 1831年又发现了电磁感应定律,并很 快就出现了原始模型电机。从此电机的 研究和应用迅速发展起来,至今已有 180多年。

z 电机发展的初期主要是直流电机
z 1869年法国电气工程师格拉姆发明了 第一台实用的直流发电机
z 1882年美国发明家爱迪生指挥建造了 第一个用于商业中心的直流照明系
z 1883年塞尔维亚裔美国人特斯拉发明 了第一台两相感应电机
z 1888年俄国电气工程师多利沃-多勃鲁 夫斯基发明了三相感应电机。

? 1912年英国派生斯公司已能生产4极 25MW汽轮发电机。
? 上世纪20年代美国和欧洲一些其他国 家已能生产类似的汽轮发电机,其中德 国西门子公司、匈牙利冈茨厂对发电机 的通风冷却有较多的创新,为后来汽轮 发电机冷却系统的发展奠定了基础。
? 上世纪30年代许多欧美国家可以生产 50~60MW的汽轮发电机。

电机基本知识要点

认识电机 一、电机的概念与分类 1.电机概念 电机是借助于电磁原理(原理)工作的能量转换(功能)设备。 只有给电机输入能量,它才会输出能量,并且在其输入和输出的能量中至少应该有一方是电能。可见“电机”一词本质上是电磁机的简称。 2.电机种类 电机分类方法很多,这里按其功能以及电能性质等综合地将其分成以下种类: 变压器:是利用电磁原理将交流电能转换成同频但电压等级不同的交流电能的设备。 发电机:是利用电磁原理将机械能转换成电能的设备。其中,将机械能转换成直流电能的发电机称为直流发电机;将机械能转换成交流电能的发电机称为交流发电机。交流发电机又可分成同步发电机(转速p f n n 601= =同步速)和异步发电机(转速1n n >同步速),实际中以同步发电机最为通用,而异步发电机则很少使用。 电动机:是利用电磁原理将电能转换成机械能的设备。它可分成直流电动机与交流电动机。交流电动机又可分成异步电动机(转速1n n <同步速)和同步电动机,实际中以异步电动机最为普及,同步电动机相对较少。 无论发电机还是电动机都与机械能有关,这就要求它们的结构中有运动部件,为降低这两类电机的制造成本,运动部件通常都作旋转运动,称为转子;相应地固定部件就称为定子;而把发电机和电动机统称为旋转电机。变压器不涉及机械能,所以它是静止电器。 要点:电机的基本作用原理是电磁原理,作用是能量转换;各类电机的具体功能。 二、电机的损耗、发热与冷却 电机是能量转换设备而非能源,所以应该用单位时间内转换的能量即功率来度量。其中,单位时间内输入电机的能量称为输入功率,用P 1表示;单位时间内电机输出的能量称为输出功率,用P 2表示。P 1与P 2的差值称为功率损耗,用ΔP 或p ∑表示,即有ΔP=21P P -,功率损耗乘以工作时间就是能量损耗,这两种损耗通常不加区分地统称为电机的损耗。P 2与P 1的比值称为电机的效率,用η表示,即有η=12/P P 。电机工作时一般总有损耗,故ΔP >0、η<1。P 1、P 2、ΔP 、η均随电机工作状态改变而变化,它们是时变函数,但实际问题往往针对特定状态提出,按它们有确定值来分析。 工作时所产生的各种损耗都转变成热能,将会导致电机的温度升高,此即发热的一方,发热量与电机工作方式有关,为一确定数值;另一方面,电机表面又会向低温的周围环境散热,散热量与温升成一比例系数(称为散热系数)。因此,在电机工作之初,散热量为零,温度升高最快;然后随着温度升高,散热量将不断增大,温度上升变慢;如果工作时间足够长,最终将达到散热量等于发热量的动态平衡,此后温度停止升高而保持在稳定值。可见,散热系数越大,温升速度就越慢,稳定温升也越低,这对绝缘有利。分析表明:在自然条件下,散热量与电机单位容量的表面积成正比,而单位容量的表面积与电机的容量成反比,因此,小容量电机自然散热能够满足

电机与拖动基础知识重点审批稿

电机与拖动基础知识重 点 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

电机与拖动基础总复习 试题类型 一、填空题(每题1分,共20分) 二、判断题(每题1分,共10分) 三、单项选择题(每题2分,共20分) 四、简答题(两题,共15分) 五、计算题(三题,共35分) 电力拖动系统动力学基础 1.电力拖动系统一般由电动机、生产机械的传动机构、工作机构、控制设备和电源组成,通常又把传动机构和工作机构称为电动机的机械负载。 2.电力拖动运动方程的实用形式为 由电动机的电磁转矩T e 与生产机械的负载转矩T L 的关系: 1)当T e = T L 时, d n /d t = 0,表示电动机以恒定转速旋转或静止不动,电力拖动系统的这种运动状态被称为静态或稳态; 2)若T e >T L 时, d n /d t >0,系统处于加速状态; 3)若T e <T L 时, d n /d t <0,系统处于减速状态。 也就是一旦 d n /d t ≠ 0 ,则转速将发生变化,我们把这种运动状态称为动态或过渡状态。 3.生产机械的负载转矩特性: t n GD T T d d 3752L e = -

直流电机原理 1.直流电动机主要由定子、转子、电刷装置、端盖、轴承、通风冷却系统等部件组成。 定子由机座、主磁极、换向极、电刷装置等组成。转子(又称电枢)由电枢铁心、电枢绕组、换向器、转轴和风扇等组成。 2.直流电机的绕组有五种形式:单叠绕组、单波绕组、复叠绕组、复波绕组和蛙绕组(叠绕和波绕混合绕组)。 3 极距、绕组的节距(第一节距、第二节距、合成节距)的概念和关系。 4 单叠绕组把每个主磁极下的元件串联成一条支路,因此其主要特点是绕组的并联支路对数a 等于极对数n p 。 5 电枢反应:直流电机在主极建立了主磁场,当电枢绕组中通过电流时,产生电枢磁动势,也在气隙中建立起电枢磁场。这时电机的气隙中形成由主极磁场和电枢磁场共同作用的合成磁场。这种由电枢磁场引起主磁场畸变的现象称为电枢反应。 6 直流电机的励磁方式: dn dT dn dT L e

电机与拖动基础知识重点

电机与拖动基础知识重点

————————————————————————————————作者:————————————————————————————————日期:

电机与拖动基础总复习 试题类型 一、填空题(每题1分,共20分) 二、判断题(每题1分,共10分) 三、单项选择题(每题2分,共20分) 四、简答题(两题,共15分) 五、计算题(三题,共35分) 电力拖动系统动力学基础 1.电力拖动系统一般由电动机、生产机械的传动机构、工作机构、控制设备和电源组成,通常又把传动机构和工作机构称为电动机的机械负载。 2.电力拖动运动方程的实用形式为 由电动机的电磁转矩T e 与生产机械的负载转矩T L 的关系: 1)当T e = T L 时, d n /d t = 0,表示电动机以恒定转速旋转或静止不动,电力拖动系统的这种运动状态被称为静态或稳态; 2)若T e >T L 时, d n /d t >0,系统处于加速状态; 3)若T e <T L 时, d n /d t <0,系统处于减速状态。 也就是一旦 d n /d t ≠ 0 ,则转速将发生变化,我们把这种运动状态称为动态或过渡状态。 3.生产机械的负载转矩特性: t n GD T T d d 3752L e = -

直流电机原理 1.直流电动机主要由定子、转子、电刷装置、端盖、轴承、通风冷却系统等部件组成。 定子由机座、主磁极、换向极、电刷装置等组成。转子(又称电枢)由电枢铁心、电枢绕组、换向器、转轴和风扇等组成。 2.直流电机的绕组有五种形式:单叠绕组、单波绕组、复叠绕组、复波绕组和蛙绕组(叠绕和波绕混合绕组)。 3 极距、绕组的节距(第一节距、第二节距、合成节距)的概念和关系。 4 单叠绕组把每个主磁极下的元件串联成一条支路,因此其主要特点是绕组的并联支路对数a 等于极对数n p 。 5 电枢反应:直流电机在主极建立了主磁场,当电枢绕组中通过电流时,产生电枢磁动势,也在气隙中建立起电枢磁场。这时电机的气隙中形成由主极磁场和电枢磁场共同作用的合成磁场。这种由电枢磁场引起主磁场畸变的现象称为电枢反应。 6 直流电机的励磁方式: dn dT dn dT L e

电机基本知识

电机基本知识 电机是电动机和发电机的统称,通常分为直流电机和交流电机两大类,交流电机分为异步电机与同步电机两类。这里介绍一下同步电机、异步电动机、电机产品型号编制方法、工作制(S 类)、防护型式:IPXX 、电机安装结构型IMXX 、绝缘等级、异步电动机额定数据、异步电机主要技术指标、电机选型要点。1 、同步电机转子转速与旋转磁场的转速相同的一种交流电机,它具有可逆性。可作发电机运行,也可作电动机运行,还可作补偿机运行。2 、异步电动机异步电动机是一种基于电与磁相互依存又相互作用而达到能量转换目的的机械。它的定子、转子在电路上是彼此独立的,但又是通过电磁感应而相互联系的,其转子转速永远低于旋转磁场的转速,即存在有转差率,故称为异步电动机。工作原理:电机定子通入三相交流电时即可产生旋转磁场,假设旋转磁场为顺时针转动,静止的笼形转子切割磁力线产生感应电流,通电导体在磁场中受力,且此转矩与磁场旋转方向一致,所以转子便顺着旋转磁场方向转动起来。3 、电机产品型号编制方法产品型号由产品代号、规格代号、特殊环境代号和补充代号等四个部分组成,示例:我公司低压电机(1140V 及以下)主要产品代号有:Y 、YDDC 、Y A 、YB2 、YXn 、Y AXn 、YBXn 、YW 、YBF 、YBK2 、YBS 、YBJ 、YBI 、YBSP 、YZ 、YZR 等;高压电机(3000V 及以上)主要产品代号有:Y 、YKK 、YKS 、Y2 、Y A 、YB 、YB2 、YAKK 、Y AKS 、YBF 、YR 、YRKK 、YRKS 、TAW 、YFKS 、QFW 等。常用特殊环境代号有:W (户外型)、WF1 (户外防中等腐蚀型)、WF2 (户外防强腐蚀型)、F1 (户内防中等腐蚀型)、F2 (户内防强腐蚀型)、TH (湿热带型)、WTH (户外湿热带型)、TA (干热带型)、T (干、湿热合型)、H (船或海用)、G (高原用)。4 、工作制(S 类)S1— 连续工作制S2— 短时工作制S3-- 断续周期工作制S4— 包括起动的断续工作制S5— 包括电制动的断续工作制S6— 连续周期工作制S7— 包括电制动的连续周期工作制S8— 包括变速负载的连续周期工作制S9— 负载和转速非周期变化工作制5 、防护型式:IPXX 第一位数字表示:防止人体触及或接近壳内带电部分及壳内转动部件,以及防止固体防异物进入电机。第二位数字表示:防止由于电机进水而引起的有害影响。第一位数字、第二位数字含义见下表;第一位表征数字含义: 无防护电机 1 防止> φ50mm 固体进入壳内 2 防止> φ12mm 固体进入壳内 3 防止> φ 2.5mm 固体进入壳内 4 防止> φ1mm 固体进入壳内 5 防尘电机第二位数字表示:防止由于电机进水而引起的有害影响。含义见下表;第二位表征数字含义: 无防护电机 1 垂直滴水无有害影响

电机轴电流的分析

电机轴电流的分析 电 机 轴 电 流 的 分 析轴电流的存在对电动机轴承的使用寿命具有极大的破坏性, 根据现场实际运 行情况,分析其产生的原因,采取装设转轴接地碳刷、加强非轴伸端轴承座与支 架的绝缘等有效措施,从而从根本上解决轴电流危害的问题。 1 轴电流的危害 在电动机运行过程中,如果在两轴承端或电机转轴与轴承间有轴电流的存 在,那么对于电机轴承的使用寿命将会大大缩短。轻微的可运行上千小时,严重 的甚至只能运行几小时,给现场安全生产带来极大的影响。同时由于轴承损坏及 更换带来的直接和间接经济损失也不可小计。 2 轴电压和轴电流的产生 (1) 磁不平衡产生轴电压 电动机由于扇形冲片、 硅钢片等叠装因素, 再加上铁芯槽、 通风孔等的存在, 造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴 的两端感应出轴电压。 (2) 逆变供电产生轴电压 电动机采用逆变供电运行时,由于电源电压含有较高次的谐波分量,在电压 脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使转轴的电位发生变化,从而产生轴电压。 (3) 静电感应产生轴电压 在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的 两端感应出轴电压。 (4) 外部电源的介入产生轴电压由于运行现场接线比较繁杂,尤其大电机保护、 测量元件接线较多,哪一根带电线头搭接在转轴上,便会产生轴电压。 (5) 其他原因 如静电荷的积累、测温元件绝缘破损等因素都有可能导致轴电压的产生。 轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。 3 轴电流对轴承的破坏 正常情况下,转轴与轴承间有润滑油膜的存在,起到绝缘的作用。对于较低 的轴电压,这层润滑油膜仍能保护其绝缘性能,不会产生轴电流。但是当轴电压 增加到一定数值时,尤其在电动机启动时,轴承内的润滑油膜还未稳定形成,轴 电压将击穿油膜而放电,构成回路,轴电流将从轴承和转轴的金属接触点通过, 由于该金属接触点很小,所以这些点的电流密度大,在瞬间产生高温,使轴承局 部烧熔,被烧熔的轴承合金在碾压力的作用下飞溅,于是在轴承内表面上烧出小 凹坑。一般由于转轴硬度及机械强度比轴承烧熔合金的高,通常表现出来的症状 是轴承内表面被压出条状电弧伤痕。 4 轴电流的防范 针对轴电流形成的根本原因,一般在现场采用如下防范措施: (1) 在轴端安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与 转轴可靠接触,保证转轴电位为零电位,以此消除轴电

电机基本知识及故障诊断

电机基本知识及故障诊断 南阳防爆集团有限公司 赵泰忠 二00四年五月

电机基本知识及故障诊断 一、电机基本知识 电机是电动机和发电机的统称,通常分为直流电机和交流电机两大类,交流电机分为异步电机与同步电机两类。 1、同步电机 转子转速与旋转磁场的转速相同的一种交流电机,它具有可逆性。可作发电机运行,也可作电动机运行,还可作补偿机运行。 2、异步电动机 异步电动机是一种基于电与磁相互依存又相互作用而达到能量转换目的的机械。它的定子、转子在电路上是彼此独立的,但又是通过电磁感应而相互联系的,其转子转速永远低于旋转磁场的转速,即存在有转差率,故称为异步电动机。 工作原理:电机定子通入三相交流电时即可产生旋转磁场,假设旋转磁场为顺时针转动,静止的笼形转子切割磁力线产生感应电流,通电导体在磁场中受力,且此转矩与磁场旋转方向一致,所以转子便顺着旋转磁场方向转动起来。 3、电机产品型号编制方法 产品型号由产品代号、规格代号、特殊环境代号和补充代号等四个部分组成,示例: YB2 - 200L-2 WF1 特殊环境代号(户外防中等腐蚀) 规格代号(中心高-铁心长度-极数/大 型电机用功率-极数/铁心外径表示) 产品代号(隔爆型三相异步电动机)

我公司低压电机(1140V及以下)主要产品代号有:Y、YDDC、YA、YB2、YXn、YAXn、YBXn、YW、YBF、 YBK2、YBS、YBJ、YBI、YBSP、YZ、YZR等;高压电机(3000V及以上)主要产品代号有:Y、YKK、YKS、Y2、YA、YB、YB2、YAKK、YAKS、YBF、YR、YRKK、YRKS、TAW、YFKS、QFW等。 常用特殊环境代号有:W(户外型)、WF1(户外防中等腐蚀型)、WF2(户外防强腐蚀型)、F1(户内防中等腐蚀型)、F2(户内防强腐蚀型)、TH(湿热带型)、WTH(户外湿热带型)、TA(干热带型)、T(干、湿热合型)、H(船或海用)、G(高原用)。 4、工作制(S类) S1—连续工作制 S2—短时工作制 S3--断续周期工作制 S4—包括起动的断续工作制 S5—包括电制动的断续工作制 S6—连续周期工作制 S7—包括电制动的连续周期工作制 S8—包括变速负载的连续周期工作制 S9—负载和转速非周期变化工作制 5、防护型式:IPXX 第一位数字表示:防止人体触及或接近壳内带电部分及壳内转动部件,以及防止固体防异物进入电机。第二位数字表示:防止由于电机进水而引起的有害影响。第一位数字、第二位数字含义见下表;

变频电机轴电压与轴电流的产生机理分析

变频电机轴电压与轴电流的产生机理分析 1.当电动机在正弦波电源驱动下运行时,通过电机轴的交变磁链 产生轴电压。这些磁链是由转子和定子槽、分离铁心片之间的连接部分、磁性材料的定向属性和供电电源不平衡等因素引起磁通不平衡而产生的[1]。到90年代,以igbt为功率器件的pwm逆变器作为电机驱动电源时,电机轴电流问题更加严重,且其产生机理与正弦波电源驱动时完全不同。文献[1]指出,具有高载波频率(例如10khz以上)的igbt逆变器导致电动机的轴承比低载波频率的逆变器驱动时损坏更快。busse较为详细地分析了轴承电流的产生及轴承电流密度与轴承损坏之间的关系[2],并建立了pwm驱动下的轴承电流电路模型,但该模型未能体现出轴承电流与逆变器开关频率之间的关系。为讨论高频pwm脉冲电压驱动时电机轴电压与轴电流的产生机理,本文在建立轴电压与轴电流电路模型的基础上,分析轴电流产生的条件及形式,并针对逆变器输出电压的特性变化以及电机端有无过电压等情况,通过仿真分析得到不同情况下的轴电压与轴承电流波形。在抑制轴承电流方面,文献[1]给出的办法用正弦波滤波器将pwm电压转换成正弦波电压,使电机工作在正弦波供电状态下,但该方法所串电感大,系统动态响应慢,同时电感上的压降和功耗增大。本文在逆变器输出端串小电感并辅以rc吸收网络,可有效抑制pwm逆变器驱动下出现的轴电流。

2.共模电压与轴电压一般认为,磁路不均衡、单极效应和电容电流是电机中产生轴电压的主要原因[3]。在电网供电的普通电机中,人们一般比较重视磁路不平衡的影响。但在逆变器供电的电机中轴电压主要由电压不平衡,即电源电压的零序分量产生。由于电路、元器件、连接和回路阻抗的不平衡,电源电压将不可避免地产生零点漂移,该电压将在系统中产生零序电流,轴承则是电机零序回路的一部分。正弦波电源驱动时,通过计算可知=0。在pwm逆变器驱动下,的值取决于逆变器开关状态,且变化周期与逆变器载波频率一致。事实上,只是共模电压的一种表现形式,由于静电耦合,电机各部分间存在着大小不等的分布电容,因此构成电机的零序回路。根据传输线理论,一个分布参数电路可用等效的具有相同输入输出关系的集总参数π 网络模型代替。因此,电机分布参数电路可用集总参数电路来等效,形成轴电压的绕组--转子耦合部分电路如图2a)所示,其中vbrg为轴电压,ibrg为轴承电流,va,vb和vc为电机输入电压。尽管iws 不流过轴承,但它与轴承电流在定子绕组上有相同的路径,势必对轴承电流有所影响。为便于分析,绕组中心点到定子的耦合部分将不予考虑。为计算方便,将图2a)简化为图2b)所示等效单相驱动电路模型。图中z1为电源中点对地阻抗,z2为旁路阻抗,表征驱动回路中的共模电抗线圈、线路电抗器和长电缆等;r0和l0为定子的零序电阻和电感;csf、csr和crf分别为电机定子对地、定子对转子和转子对地电容;rb为轴承回路电阻;cb和r1为轴承油膜的电容和非线性阻抗;usg和urg分别为定子绕组与转子中性点对地电压。对于采

电机与拖动习题及解答

第1章 电磁学基础知识 1.1 简答题 1. 用电磁感应定律求感应电动势时,公式dt di L e ?-=、dt d e ψ-=、dt d N e Φ?-=,以及Blv e =中,哪个公式是最普遍的形式?其它公式必须在什么条件下适用? 答:式dt d e ψ-=是感应电动势的普遍形式。其负号表示感应电动势的正方向与磁链的正方向符合右手螺旋关系,如果两者不符合右手螺旋关系,则应取正号。 2. 如果感应电动势的正方向与磁通的正方向之间不符合右手螺旋关系,则电磁感应定律应改写成dt d e ψ=或dt d N e Φ?=,试说明其原因。 3. 有两个线圈匝数相同,一个绕在闭合铁芯上,另一个是空芯的,两个线圈通入频率相同的交变电流,如果它们的自感电动势相等,试问哪个线圈的电流大?为什么? 答:空芯的线圈电流大。因为两者频率相等,产生同样的e ,意味着产生同样的φ,根据N ?I=φ?Rm ,由于铁芯的磁导率大得多,即磁阻小得多,故空芯情况下的(N ?I )空芯>>(N ?I )铁芯,所以I 空芯>>I 铁芯。 4. 若磁路上有几个磁动势同时作用,磁路计算时能否使用叠加原理?为什么? 5. 在一个恒定的磁场中,铁芯中是否存在磁滞损耗和涡流损耗?为什么?

6. 在交变磁场中,铁芯中的磁滞损耗和涡流损耗是怎样产生的?它们与哪些因素有关? 7. 什么是铁磁材料的基本磁化曲线?基本磁化曲线与起始磁化曲线有何不同? 8. 铁磁材料是如何分类的?各有什么特点? 1.2 分析题 1. 变压器原理图如图所示,试回答: (1)当线圈N1施加正弦电压U1时,为什么在线圈N1及N2中都会感应出电动势? (2)当电流I s增加时,标出这时N1及N2中感应电动势的实际方向。 答: (1)当线圈N1流过电流i1时,会在铁芯内建立磁通Ф,i1与Ф正方向符合右手螺旋关系,由于磁通Ф同时交链线圈N1和N2,所以当i1交变时,N1与N2

电机转矩功率转速电压电流之间的关系及计算公式完整版

电机转矩功率转速电压电流之间的关系及计算 公式 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电机转矩、功率、转速之间的关系及计算公式 电动机输出转矩: 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。 转矩与功率及转速的关系:转矩(T)=9550*功率(P)/转速(n) 即:T=9550P/n—公式【1】 由此可推导出: 转矩=9550*功率/转速《===》功率=转速*转矩/9550,即P=Tn/9550——公式 【2】 方程式中: P—功率的单位(kW); n—转速的单位(r/min); T—转矩的单位(N.m); 9550是计算系数。 电机扭矩计算公式 T=9550P/n 是如何计算的呢? 分析: 功率=力*速度即 P=F*V---————公式【3】 转矩(T)=扭力(F)*作用半径(R) 推出F=T/R---——公式【4】 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30---——公式【5】 将公式【4】、【5】代入公式【3】得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位N.m, n分=单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n30000/3.1415926*P=T*n9549.297*P=T*n 这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。 电动机转矩、转速、电压、电流之间的关系 由于电功率P=电压U*电流I,即 P=UI————公式【6】 由于公式【2】中的功率P的单位为kw,而电压U的单位是V,电流I的单位是A,而UI 乘积的单位是V.A,即w,所以将公式【6】代入到公式【2】中时,UI需要除以1000以统一单位。 则: P=Tn/9550=UI/1000————公式【7】 ==》Tn/9.55=UI————公式【8】 ==》T=9.55UI/n————公式【9】 ==》U=Tn/9.55I————公式【10】 ==》I=9.55U/Tn————公式【11】 方程式【7】、【8】、【9】、【10】、【11】中: P—功率的单位(kW);

电动机轴电流的防范措施详细版

文件编号:GD/FS-6143 (解决方案范本系列) 电动机轴电流的防范措施 详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

电动机轴电流的防范措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 一、轴电压、轴电流的产生 在电动机运行过程中,如果在电机两轴承端或转轴与轴承间存在轴电流时,将会大大缩短电机轴承的使用寿命,严重时只能运行几小时。 1.磁不平衡产生轴电压 交流异步电动机在正弦交变的电压下运行时,其转子处在正弦交变的磁场中。由于电动机定转子扇形冲片、硅钢片等叠装因素,再加上铁芯槽、通风孔等的存在,在磁路中造成不平衡的磁阻。当电动机的定子铁芯圆周方向上的磁阻发生不平衡时,便产生与轴相交链的交变磁通,从而产生交变电势。当电动机转动即磁极旋转,通过各磁极的磁通发生了变化,在轴

的两端感应出轴电压,产生了与轴相交链的磁通。随着磁极的旋转,与轴相交链的磁通交替变化,这种电压是延轴向而产生的,如果与轴两侧的轴承形成闭合回路,就产生了轴电流。一般情况下这种轴电压大约为1-2V。 2.逆变供电产生轴电压 电动机采用逆变供电运行时,供电电压含有高次谐波分量,使定子绕组线圈端部、接线部分、转轴之间产生电磁感应从而产生轴电压。 异步电动机的定子绕组是嵌人定子铁芯槽内的,定子绕组的匝间以及定子绕组和电动机机座之间均存在分布电容,当通用变频器在高载频下运行时,逆变器的共模电压产生急剧变化,会通过电动机绕组的分布电容由电动机的外壳到接地端之间形成漏电流。该漏电流有可能形成放射性和传导性两类电磁干扰。而

电机及拖动基础知识要点复习

电机复习提纲 第一章: 一、概念:主磁通,漏磁通,磁滞损耗,涡流损耗 磁路的基本定律: 安培环路定律: 磁路的欧姆定律作用在磁路上的磁动势 F 等于磁路内的磁 通量 Φ乘以磁阻R m 磁路与电路的类比:与电路中的欧姆定律在形式上十分相似。E=IR 磁路的基尔霍夫定律 (1)磁路的基尔霍夫电流定律 穿出或进入任何一闭合面的总磁通恒等于零 (2)磁路的基尔霍夫电压定律 沿任何闭合磁路的总磁动势恒等于各段磁路磁位差的代数 和。 第二节 常用铁磁材料及其特性 一、铁磁材料 1、软磁材料:磁滞回线较窄。剩磁和矫顽力都小的材料。软磁材料磁导率较高,可用来制造电机、变压器的铁心。 2、硬磁材料:磁滞回线较宽。剩磁和矫顽力都大的铁磁材料称为硬磁材料,可用来制成永久磁铁。 二、铁心损耗 1、磁滞损耗——材料被交流磁场反复磁化,磁畴相互摩擦而消耗 Ni HL

的能量。 2、涡流损耗——铁心内部由于涡流在铁心电阻上产生的热能损耗。 3、铁心损耗——磁滞损耗和涡流损耗之和。 第二章: 一、尽管电枢在转动,但处于同一磁极下的线圈边中电流方向应始终 不变,即进行所谓的“换向”。 二、一台直流电机 作为电动机运行——在直流电机的两电刷端上加上直流电压,电枢旋转,拖动生产机械旋转,输出机械能; 作为发动机运行——用原动机拖动直流电机的电枢,电刷端引出直流电动势,作为直流电源,输出电能。 三、直流电机的主要结构(定子、转子) 定子的主要作用是产生磁场 转子又称为“电枢”,作用是产生电磁转矩和感应电动势 要实现机电能量转换,电路和磁路之间必须在相对运动,所以旋转电机必须具备静止的和转动的两大部分,且静止和转动部分之间要有一定的间隙(称为:气隙) 四、直流电机的铭牌数据 直流电机的额定值有: 1、额定功率P N(kW) 2、额定电压U N(V)

电机额定功率-额定电压 -额定电流的关系

电机额定功率额定电压额定电流是什么关系? 一,电机额定功率和实际功率的区别 是指在此数据下电机为最佳工作状态。 额定电压是固定的,允许偏差10%。 电机的实际功率和实际电流是随着所拖动负载的大小而不同; 拖动的负载大,则实际功率和实际电流大; 拖动的负载小,则实际功率和实际电流小。 实际功率和实际电流大于额定功率和额定电流,电机会过热烧毁; 实际功率和实际电流小于额定功率和额定电流,则造成材料浪费。 它们的关系是: 额定功率=额定电流IN*额定电压UN*根3*功率因数 实际功率=实际电流IN*实际电压UN*根3*功率因数 二,280KW水泵电机额定电流和启动电流的计算公式和相应规范出处

(1)280KW电机的电流与极数、功率因素有关一般公式是:电流=((280KW/380V)/1.73)/0.8.5=501A (2)启动电流如果直接启动是额定电流的7倍。 (3)减压启动是根据频敏变阻器的抽头。选用 BP4-300WK频敏变阻器启器动启动电流电额定值的2.4倍。 三,比如一台37KW的绕线电机额定电流如何计算? 电流=额定功率/√3*电压*功率因数 1、P = √3×U×I×COSφ; 2、I = P/√3×U×COSφ; 3、I = 37000/√3×380×0.82; 四.电机功率计算口诀 计算口诀 三相二百二电机,千瓦三点五安培。 三相三百八电机,一个千瓦两安培。 三相六百六电机,千瓦一点二安培。 三相三千伏电机,四个千瓦一安培。 三相六千伏电机,八个千瓦一安培。

注:以上都是针对三相不同电压级别,大概口算的口诀,具体参考电机铭牌比如:三相22OV电机,功率:11kw,额定电流:11*3.5=38.5A三相380V电机,功率:11kw,额定电流:11*2=22A三相660V电机,功率:110kw,额定电流:110*1.2=132A 五.电机的电流怎么算? 答:⑴当电机为单相电机时由P=UIcosθ得: I=P/Ucosθ,其中P为电机的额定功率,U为额定电压,cosθ为功率因数;⑵当电机为三相电机时由 P=√3×UIcosθ得:I=P/(√3×Ucosθ),其中P为电机的额定功率,U为额定电压,cosθ为功率因数。 功率因数 在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感或电容性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用

关于电机44个基本知识点

关于电机44个基本知识点 1 . 单相变压器空载时的电流与主磁通不同相位,存在一个相位角度差aFe,因为存在铁耗电流。空载电流是尖顶波形,因为其中有较大的三次谐波。 2 . 直流电机电枢绕组中流动的也是交流电流。但其励磁绕组中流的是直流电流。直流电动机的励磁方式有他励、并励、串励、复励等。 3 . 直流电机的反电势表达式为E =CE F n;而电磁转矩表达式则为Tem =CTFI。 4 . 直流电机的并联支路数总是成对的。而交流绕组的并联支路数则不一定。 5 . 在直流电机中,单叠绕组的元件是以一个叠在另外一个之上的方式,串联而成的。无论是单波绕组、还是单叠绕组,换向片将所有元件串联在一起、构成了一个单一的闭合回路。 6 . 异步电机又称感应电机,因为异步电机的转子电流是通过电磁感应而产生的。 7 . 异步电动机降压起动时,起动转矩减小,起动转矩和绕组的起动电流的平方成正比地减小。 8 . 一次侧电压的幅值、频率不变时,变压器的铁心的饱和程度是基本不变的,励磁电抗也基本不变。 9 . 同步发电机的短路特性是一条直线,三相对称短路时磁路是不饱和的;三相对称稳态短路时,短路电路为纯去磁的直轴分量。 10 . 同步电机励磁绕组中的电流是直流电流,励磁方式主要有励磁发电机励磁、静止整流器励磁、旋转整流器励磁等。 11 . 三相合成磁动势中没有偶次谐波;对称三相绕组通对称三相电流,其合成磁动势中没有3的倍数磁谐波。 12 . 三相变压器一般都希望有某一侧是三角形连接或者有某一侧中点接地。因为三相变压器的绕组联结都希望有三次谐波电流的通路。 13 . 对称三相绕组通对称三相电流时,其合成磁动势中的5次谐波是反转的;7次谐波是正转的。

变频电机轴电压与轴电流产生机理及其抑制

变频电机轴电压与轴电流产生机理及其抑制 1 引言当电动机在正弦波电源驱动下运行时,通过电机轴的交变磁链产生轴电压。这些磁链是由转子和定子槽、分离铁心片之间的连接部分、磁性材料的定向属性和供电电源不平衡等因素引起磁通不平衡而产生的[1]。到90年代,以IGBT为功率器件的PWM逆变器作为电机驱动电源时,电机轴电流问题更加严重,且其产生机理与正弦波电源驱动时完全不同。文献[1]指出,具有高载波频率(例如10kHz以上)的IGBT逆变器导致电动机的轴承比低载波频率的逆变器驱动时损坏更快。Busse较为详细地分析了轴承电流的产生及轴承电流密度与轴承损坏之间的关系[2],并建立了PWM驱动下的轴承电流电路模型,但该模型未能体现出轴承电流与逆变器开关频率之间的关系。为讨论高频PWM脉冲电压驱动时电机轴电压与轴电流的产生机理,本文在建立轴电压与轴电流电路模型的基础上,分析轴电流产生的条件及形式,并针对逆变器输出电压的特性变化以及电机端有无过电压等情况,通过仿真分析得到不同情况下的轴电压与轴承电流波形。在抑制轴承电流方面,文献[1]给出的办法用正弦波滤波器将PWM电压转换成正弦波电压,使电机工作在正弦波供电状态下,但该方法所串电感大,系统动态响应慢,同时电感上的压降和功耗增大。本文在逆变器输出端串小电感并辅以RC吸收网络,可有效抑制PWM逆变器驱动下出现的轴电流。 2 共模电压与轴电压一般认为,磁路不均衡、单极效应和电容电流是电机中产生轴电压的主要原因[3]。在电网供电的普通电机中,人们一般比较重视磁路不平衡的影响。但在逆变器供电的电机中轴电压主要由电压不平衡,即电源电压的零序分量产生。由于电路、元器件、连接和回路阻抗的不平衡,电源电压将不可避免地产生零点漂移,该电压将在系统中产生零序电流,轴承则是电机零序回路的一部分。正弦波电源驱动时,通过计算可知 =0。在PWM逆变器驱动下,的值取决于逆变器开关状态,且变化周期与逆变器载波频率一致。事实上,只是共模电压的一种表现形式,由于静电耦合,电机各部分间存在着大小不等的分布电容,因此构成电机的零序回路。根据传输线理论,一个分布参数电路可用等效的具有相同输入输出关系的集总参数π网络模型代替。因此,电机分布参数电路可用集总参数电路来等效,形成轴电压的绕组--转子耦合部分电路如图2a)所示,其中Vbrg为轴电压,Ibrg为轴承电流,Va,Vb和Vc为电机输入电压。尽管Iws不流过轴承,但它与轴承电流在定子绕组上有相同的路径,势必对轴承电流有所影响。为便于分析,绕组中心点到定子的耦合部分将不予考虑。为计算方便,将图2 a)简化为图2 b)所示等效单相驱动电路模型。图中Z1为电源中点对地阻抗,Z2为旁路阻抗,表征驱动回路中的共模电抗线圈、线路电抗器和长电缆等;R0和L0为定子的零序电阻和电感;Csf、Csr和Crf分别为电机定子对地、定子对转子和转子对地电容;Rb为轴承回路电阻;Cb和R1为轴承油膜的电容和非线性阻抗;Usg和Urg分别为定子绕组与转子中性点对地电压。对于采用逆变器供电的电机,当轴承油膜未被击穿时,由于载波频率高,电容的容抗大大减小,与Xcb相比,Rb很小而R1很大,由于PWM驱动电压为非正弦电压,计算时先将其分解,然后分别求取,轴电压有效值为:。 3 轴承模型与轴承电流的产生由于分布电容的存在和高频脉冲输入电压的激励作用,电机轴上形成耦合共模电压。事实上,轴电压的出现不仅与上面两个因素有关,且和轴承结构有着直接关系。转子前后端均由一个轴承支撑,其结构如图3所示。以其中一个轴承为例,轴承的滚道由内滚道与外滚道组成,当电机转动时,轴承中的滚珠被润滑油层包围,由于润滑油的绝缘作用,轴承滚道与滚珠之间形成电容,如图3b) 所示。这两个电容在转子 -—定子回路中以串联形式存在(为便于分析,不考虑滚珠的阻抗),可以等效成一个电容Cbi,i代表轴承中的第i个滚珠。对于整个轴承而言,各个滚珠与滚道之间的电容以并联形式存在。所以整个轴承内可以等效成一个电容Cb。据对轴承的分析,轴承可用一个带有内部电感和电阻的开关来等效。当滚珠未与滚道接触时,开关断开,转子电压建立;当转子电压超过油膜门槛电压时,油膜击穿开关导通,转子电压迅速内放电,在轴承内形成较大放电电流。 Va、Vb和Vc为电机三相输入电压,L'、R'和C'为输入电压耦合到转子轴的等效集中参数,Cg为Crf和Cb并联后的等效电容。当轴承滚珠和滚道接触或者轴承内油层被击穿时,Cb不存在,此时Cg仅代表转子轴对机壳的耦合电容。电容Cb是一个多个变量的函数:Cb(Q,v,T,η,λ,Λ,εr)[2]。其中Q代表功率,v代表油膜运动速度,T代表温度,η代表润滑剂粘性,λ代表润滑剂添加剂,Λ代表油层厚度,εr代表润滑剂介电常数。轴承电容Cb与定子到转子耦合电容Csr ,比定子到机壳耦

相关文档
最新文档