信号与系统 抽样定理实验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统
实验报告
实验六抽样定理
实验六抽样定理
一、实验内容:(60分)
1、阅读并输入实验原理中介绍的例题程序,观察输出的数据与图形,结合基本原理理解每一条语句的含义。
2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。
(1)分别显示原连续信号波形与F s=f m、F s=2f m、F s=3f m三种情况下抽样信号的波形;
程序如下:
dt=0、1;
f0=0、2;
T0=1/f0;
fm=5*f0;
Tm=1/fm;
t=-10:dt:10;
f=sinc(t);
subplot(4,1,1);
plot(t,f);
axis([min(t),max(t),1、1*min(f),1、1*max(f)]);
title('ÔÁ¬ÐøÐźźͳéÑùÐźÅ');
for i=1:3;
fs=i*fm;Ts=1/fs;
n=-10:Ts:10;
f=sinc(n);
subplot(4,1,i+1);stem(n,f,'filled');
axis([min(n),max(n),1、1*min(f),1、1*max(f)]); end
运行结果如下:
(2)求解原连续信号与抽样信号的幅度谱;
程序: dt=0、1;fm=1;
t=-8:dt:8;N=length(t);
f=sinc(t);
wm=2*pi*fm;k=0:N-1;w1=k*wm/N;
F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1、1*min(abs(F1)),1、1*max(abs(F1))]);
for i=1:3;
if i<=2 c=0;else c=1;end
fs=(i+c)*fm;Ts=1/fs;
n=-6:Ts:6;
N=length(n);
f=sinc(n);
wm=2*pi*fs;
k=0:N-1;
w=k*wm/N;
F=f*exp(-1i*n'*w)*Ts;
subplot(4,1,i+1);plot(w/(2*pi),abs(F));
axis([0,max(4*fm),0、5*min(abs(F)),1、1*max(abs(F))]); end
波形如下:
(3)用时域卷积的方法(内插公式)重建信号。
程序、波形如下:
dt=0、01;f0=0、2;T0=1/f0;
fm=5*f0;Tm=1/fm;
t=-3*T0:dt:3*T0;
x=sinc(t);
subplot(4,1,1);plot(t,x);
axis([min(t),max(t),1、1*min(x),1、1*max(x)]);
title('原连续信号与抽样信号');
for i=1:3;
fs=i*fm;Ts=1/fs; n=0:(3*T0)/Ts; t1=-3*T0:Ts:3*T0; x1=sinc(n/fs);
T_N=ones(length(n),1)*t1-n'*Ts*ones(1,length(t1)); xa=x1*sinc(fs*pi*T_N);
subplot(4,1,i+1);plot(t1,xa);
axis([min(t1),max(t1),1、1*min(xa),1、1*max(xa)]); end
为:j ω
-j ωn
-j ω-j2ω-j3ω-j4ωn=-X(e )=
x(n)e
=2+4e +6e +4e +2e ∞
∞
∑
分别取频域抽样点数N 为3、5与10,用IFFT 计算并求出其时间序列x(n),绘图显示个时间序列。由此讨论由频域抽样不失真地恢复原时域信号的条件。
程序:
Ts=1;N0=[3,5,10];
for r=1:3;
N=N0(r);
D=2*pi/(Ts*N);
kn=floor(-(N-1)/2:-1/2);
kp=floor(0:(N-1)/2);
w=[kp,kn]*D;
X=2+4*exp(-j*w)+6*exp(-j*2*w)+4*exp(-j*3*w)+2*exp(-j*4*w);
n=0:N-1;
x=ifft(X,N)
subplot(1,3,r);stem(n*Ts,abs(x),'filled');
box
end
显示数据:
x =6、0000 6、0000 6、0000
x =2、0000 4、0000 6、0000 4、0000 2、0000
x =
Columns 1 through 6
2、0000 - 0、0000i 4、0000 + 0、0000i 6、0000 - 0、0000i 4、0000 + 0、0000i 2、0000 - 0、0000i 0 + 0、0000i
Columns 7 through 10
-0、0000 - 0、0000i 0 + 0、0000i 0 - 0、0000i 0 + 0、0000i
波形如下: