实验4 抽样定理与信号恢复
信号的采样和恢复
信号的采样和恢复一、实验目的1、了解信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
二、实验内容1、观察抽样脉冲、抽样信号、抽样恢复信号。
2、观察抽样过程中,发生混叠和非混叠时的波形。
三、实验仪器1、信号与系统实验箱一台(主板)。
2、系统时域与频域分析模块一块。
3、20M 双踪示波器一台。
四、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号()t f s 可以看成连续信号()t f 和一组开关函数()t s 的乘积。
()t s 是一组周期性窄脉冲,见图5-1,T S 图5-1矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3……。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按()x x sin 规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。
而B f 2min =为最低抽样频率又称“奈奎斯特抽样率”。
当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的。
因此即使B f s 2=,恢复后的信号失真还是难免的。
图5-2画出了当抽样频率B f s 2≥(不混叠时)及当抽样频率B f s 2<(混叠时)两种情况下冲激抽样信号的频谱。
抽样定理与信号恢复的实验验证
实验三抽样定理的验证一、实验目的1、研究连续信号的离散化,观察抽样脉冲参数对输出波形的影响。
2、用实验的方法验证抽样定理。
二、实验原理1.对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。
2.设连续信号的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成信号中的频谱混叠现象,不可能无失真地恢复原连续信号。
三、实验内容项目一观察抽样信号波形(一)同步抽样f=1KHz,峰峰值为4V的正弦波1.抽样频率1kHZ时,Fs(t)的波形2.抽样频率2kHZ时,Fs(t)的波形3.抽样频率4kHZ时,Fs(t)的波形4.抽样频率8kHZ时,Fs(t)的波形(二)异步抽样f=1KHz,峰峰值为4V的正弦波1.抽样频率1kHZ时,Fs(t)的波形2.抽样频率2kHZ时,Fs(t)的波形3.抽样频率4kHZ时,Fs(t)的波形4.抽样频率8kHZ时,Fs(t)的波形项目二验证抽样定理与信号恢复(一)同步f=500Hz,峰峰值为4V的正弦波1.当抽样频率为1KHz时:Fs(t)的波形F’(t)波形2.当抽样频率为2KHz时:Fs(t)的波形F’(t)波形Fs(t)的波形F’(t)波形4.当抽样频率为8KHz时:Fs(t)的波形F’(t)波形(二)异步f=500Hz,峰峰值为4V的正弦波1.当抽样频率为1KHz时:Fs(t)的波形F’(t)波形Fs(t)的波形F’(t)波形3.当抽样频率为4KHz时:Fs(t)的波形F’(t)波形4.当抽样频率为8KHz时:Fs(t)的波形F’(t)波形四、实验分析1、整理数据,正确填写表格,总结离散信号频谱的特点。
离散信号是对连续信号的抽样,它的频谱是连续信号频谱的周期性平移,但是这个过程中,幅度不再是等幅的,它受到周期性矩形脉冲信号的傅里叶系数的加权。
抽样定理和信号恢复实验报告
抽样定理和信号恢复实验报告中抽样定理(Nyquist Sampling Theorem)是由半对数希尔伯特(Harry Nyquist)在1928年发布的一条定理,它提供了一种确定信号在采样范围和采样间隔的方法,可根据相关采样规则保证信号的完整性和准确性。
中抽样定理是用来描述信号抽样的必要性,即使在采样之前,某种未知事物也是有限和可采样的,否则无法恢复其原始信息。
该定理法则约定如下:1、信号必须以完整的范式采样。
信号若在采样前具有有限波道宽度,则信号必须被完整地采样,若不这样做将会丢失信号的一部分,影响整体信号的清晰度。
2、采样间隔为信号范式宽度的2倍。
中抽样定理要求,要恢复的信号必须以2倍的采样间隔范式宽度采样,这意味着要在每个信号周期内采样至少2次以上,以保证信号范型被完全恢复。
若以更短的采样间隔采样,那么信号将会出现调制失真,意味着信号会发生阵列干扰等异常信号,影响恢复准确性。
3、采样频率不能低于信号本身的频率。
在信号采样的时候,采样频率不能低于信号本身的频率,若这样则会导致在采样时信号产生抖动,因而影响信号的恢复。
中抽样定理的信号恢复实验是为了研究采样数据在恢复到信号之后,信号的完整性和可用性,也就是采样后信号是否可以被准确恢复。
实验过程如下:1)选择实验信号:首先在工作台上选择一种接近现实环境信号的实验信号,比如电磁波;2)选择合适的采样范式和采样周期:根据中抽样定理确定信号采样的范式和采样周期,确保采样时信号的完整性;3)选择合适的采样器:使用数字处理芯片对所选实验信号进行采样;4)采样后进行恢复:使用计算机程序对所采样的实验信号进行恢复,还原信号在采样之前的状态;5)检验信号重建效果:比较采样前和采样后的实验信号,观察信号恢复的精度和效果。
中抽样定理及实验报告的结果表明,采用中抽样定理的方法有效的提高了信号的清晰度和真实感,可以进行准确的信号恢复和参数测定分析。
它可以应用于传输系统和数字信号处理,在传输、抑制、延迟等方面具有重要的意义。
抽样定理与信号恢复实验报告
抽样定理与信号恢复实验报告实验报告:抽样定理与信号恢复摘要:抽样定理是数字信号处理中的重要概念,它为我们提供了从连续时间上放缩成为离散时间表示的方法。
在本实验中,我们利用数字信号处理软件进行了一系列实验,以了解抽样定理的工作原理和不同采样频率对信号恢复的影响。
通过实验结果分析,我们得出结论:1. 抽样频率应大于信号带宽两倍;2. 较低的采样频率可能导致丢失重要信息;3. 采样频率高于极限频率会增加不必要的计算开销。
因此,了解抽样定理对我们使用数字信号处理工具处理不同类型信号的时候带来极大的帮助。
实验过程:1. 选择一个连续时间信号z(t)并计算其频率响应和最大频率;2. 在Matlab中选择一个采样频率,对信号进行采样,并计算采样信号的傅里叶系数;3. 选择一个重建滤波器,用于从离散时间信号中重建连续时间信号;4. 绘制信号的原始函数和重构函数,并通过对比和信号恢复误差评价重建质量。
实验结果:我们采样一个频率为5Hz的正弦波,即sq(t) = sin(2 pi 5 t)。
我们选择了三个采样频率,分别是10Hz、8Hz和6Hz。
在Matlab中运行解析和比较函数,我们得出了信号的重构函数和重构误差。
当采样频率为10Hz时,与原始信号相比,重构过程中出现了一点振荡。
这是因为重构滤波器的阶数没有达到最优值。
当采样频率降低到8Hz时,出现了更明显的振荡。
这是因为采样频率在8Hz以下不能捕捉到5Hz正弦波的一个完整波形。
进一步降低采样频率到6Hz,我们观察到信号完全失真,根本无法恢复原始信号。
结论:本实验证明了抽样定理在数字信号处理中的重要性。
对于任何采样频率低于极限的情况,都可能导致信号发生失真。
因此,理解抽样定理可以帮助我们更好地从连续时间中得到数字表示的方法。
信号的采样和恢复
深圳大学实验报告课程名称:信号与系统实验实验项目名称:信号的采样和恢复学院:信息工程学院专业:通信工程指导教师:张坤华报告人:学号:班级:实验时间:实验报告提交时间:教务处制一、实验目的1、了解信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
二、实验内容1、观察抽样脉冲、抽样信号、抽样恢复信号。
2、观察抽样过程中,发生混叠和非混叠时的波形。
三、实验仪器1、信号与系统实验箱一台(主板)。
2、系统时域与频域分析模块一块。
3、20M 双踪示波器一台。
四、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号()t f s 可以看成连续信号()t f 和一组开关函数()t s 的乘积。
()t s 是一组周期性窄脉冲,见图5-1,T S图 5-1矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3……。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按()x x sin 规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。
而B f 2min =为最低抽样频率又称“奈奎斯特抽样率”。
当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的。
抽样定理_实验报告
1. 了解电信号的采样方法与过程。
2. 理解信号恢复的方法。
3. 验证抽样定理的正确性。
二、实验原理抽样定理是信号处理中的一个基本原理,它指出:如果一个连续信号x(t)的频谱X(f)在频率域中满足带限条件,即X(f)在f=0到f=fm的范围内为有限值,且在f=fm之后为零,那么,只要采样频率fs大于2fm(其中fm是信号中最高频率分量的频率),则通过这些采样值就可以无失真地恢复出原信号。
三、实验设备与器材1. 信号与系统实验箱TKSS-C型。
2. 双踪示波器。
四、实验步骤1. 信号产生:使用信号与系统实验箱产生一个带限信号,其频谱在f=fm以下,在f=fm以上为零。
2. 采样:设置采样频率fs为fm的2倍以上,对产生的信号进行采样,得到采样序列。
3. 频谱分析:对采样序列进行频谱分析,观察其频谱特性。
4. 信号恢复:使用数字信号处理技术,对采样序列进行插值,恢复出原信号。
5. 波形比较:将恢复出的信号与原信号在示波器上进行比较,观察其波形差异。
五、实验结果与分析1. 采样序列的频谱分析:从实验结果可以看出,当采样频率fs大于2fm时,采样序列的频谱在f=fm以下与原信号的频谱相同,在f=fm以上为零,符合抽样定理的要求。
2. 信号恢复:通过插值恢复出的信号与原信号在示波器上显示的波形基本一致,说明在满足抽样定理的条件下,可以通过采样值无失真地恢复出原信号。
1. 通过本次实验,验证了抽样定理的正确性,加深了对信号采样与恢复方法的理解。
2. 在实际应用中,应根据信号的特点选择合适的采样频率,以确保信号采样后的质量。
3. 采样定理是信号处理中的基本原理,对于理解信号处理技术具有重要意义。
七、实验心得1. 本次实验使我深刻理解了抽样定理的基本原理,以及信号采样与恢复的方法。
2. 在实验过程中,我学会了使用信号与系统实验箱产生信号,以及进行频谱分析等基本操作。
3. 通过本次实验,我认识到理论与实践相结合的重要性,为今后的学习和工作打下了基础。
信号的抽样与恢复(抽样定理)
信号的抽样与恢复(抽样定理)信号的抽样和恢复是数字信号处理中的基本操作。
它是将连续时间信号(模拟信号)转化为离散时间信号(数字信号)的过程,也是将数字信号转化为连续时间信号的过程。
抽样定理是信号的抽样和恢复中一个十分重要的定理,它的证明也是数字信号处理中的一个重要课题。
一、信号的抽样在信号处理中,可以通过对连续时间信号进行离散化处理,使其转化为离散时间信号,便于数字处理。
抽样是指在每隔一定的时间间隔内对连续时间信号进行采样,得到一系列离散的采样值。
抽样操作可以用如下公式进行表示:x(nT) = x(t)|t=nT其中,x(t)是原始连续时间信号,x(nT)是在时刻nT处采样得到的值,T为采样周期。
具体来说,采样过程可以通过模拟信号经过一个采样和保持电路,将连续时间信号转换为离散信号的形式。
这里的采样周期越小,采样得到的离散信号的数量就越多,离散信号在时间轴的表示就越密集。
抽样后得到的信号形式如下:二、抽样定理抽样定理又称为奈奎斯特定理,是数字信号处理中的基础理论之一。
它指出,如果连续时间信号x(t)的带宽为B,则在抽样周期为T时,可以恰好通过抽样重建出原始信号x(t),当且仅当:T ≤ 1/(2B)即抽样周期T应小于等于原始信号的最大频率的倒数的一半。
这个定理的物理意义是,需要对至少每个周期内的信号进行采样,才能够恢复出连续信号。
如果采样周期过大,将会丢失信号的高频成分,从而无法准确重建原始信号。
抽样定理说明了作为采样频率的一个下限值2B,因为将采样频率设置为低于此值会失去信号的唯一信息(高频成分)。
当采样频率等于2B时,可以从这些采样值恢复出信号的完整频率谱,即避免了信息损失。
三、信号的恢复当原始信号被采样后,需要对采样得到的离散信号进行恢复,以便生成一个趋近于原始信号的连续信号。
采样定理的证明告诉了我们如何确保在扫描连续信号的采样点时,可以正确地还原其原始形式。
例如,可以通过插值的方式将采样点之间的值计算出来,从而恢复出连续时间信号。
抽样定理与信号恢复实验报告
抽样定理与信号恢复实验报告抽样定理与信号恢复实验报告引言:信号恢复是数字信号处理中的一个重要问题,其目标是通过采样和重构技术来恢复原始信号。
在实际应用中,由于各种原因,我们往往无法直接获得完整的信号,而只能通过采样来获取信号的部分信息。
因此,如何有效地从有限的采样数据中恢复原始信号成为一个关键问题。
本实验旨在通过抽样定理来解决信号恢复问题,并通过实验验证其有效性。
实验原理:抽样定理是信号处理中的基本原理之一,它指出,如果一个连续时间信号的带宽有限,并且以一定的采样频率进行采样,那么通过这些采样数据可以完全恢复原始信号。
具体而言,抽样定理要求采样频率至少是信号带宽的两倍,即Nyquist采样定理。
实验步骤:1. 准备信号源:我们选择了一个正弦信号作为原始信号源,其频率为f0,幅度为A。
通过函数生成器产生该信号,并连接到示波器上。
2. 采样:根据抽样定理,我们选择了采样频率为2f0,即原始信号频率的两倍。
通过示波器的采样功能,将信号进行采样,并记录采样数据。
3. 信号恢复:根据采样数据,我们使用重构算法对信号进行恢复。
在本实验中,我们选择了最常用的插值法进行信号恢复。
通过对采样数据进行插值处理,可以得到连续时间的信号。
4. 重构信号验证:将恢复的信号与原始信号进行对比,验证重构的准确性。
通过示波器将原始信号和恢复信号进行叠加显示,观察它们的相似程度。
实验结果与分析:在本实验中,我们选择了一个频率为1kHz的正弦信号作为原始信号源,采样频率选择为2kHz。
通过示波器进行采样,并得到了采样数据。
接下来,我们使用插值法对采样数据进行信号恢复,并将恢复的信号与原始信号进行对比。
通过观察示波器显示的结果,我们可以明显看到恢复的信号与原始信号非常接近,几乎无法区分它们之间的差异。
这表明,通过抽样定理和插值法,我们成功地从有限的采样数据中恢复了原始信号。
结论:本实验通过采样定理与信号恢复技术,成功地实现了从有限采样数据中恢复原始信号的目标。
抽样定理与信号恢复实验报告
抽样定理与信号恢复实验报告一、实验目的1、掌握抽样定理的基本原理和抽样过程。
2、理解抽样频率对信号恢复的影响。
3、学会使用实验设备进行抽样和信号恢复的操作。
4、通过实验观察和数据分析,验证抽样定理的正确性。
二、实验原理1、抽样定理抽样定理指出,对于一个带宽有限的连续信号,如果抽样频率大于或等于信号最高频率的两倍,那么可以通过抽样值无失真地恢复出原始信号。
设连续信号为$f(t)$,其频谱为$F(ω)$,最高频率为$ω_m$。
以抽样间隔$T_s = 1/f_s$ 对$f(t)$进行抽样,得到抽样信号$f_s(t)$。
抽样信号的频谱$F_s(ω)$是原信号频谱$F(ω)$以抽样频率$ω_s =2πf_s$ 为周期进行周期延拓。
2、信号恢复从抽样信号恢复原始信号通常使用低通滤波器。
理想低通滤波器的频率响应为:\H(ω) =\begin{cases}1, &|ω| <ω_c \\0, &|ω| >ω_c\end{cases}\其中,$ω_c$ 为低通滤波器的截止频率,通常取$ω_c =ω_m$。
通过低通滤波器对抽样信号进行滤波,即可得到恢复后的信号。
三、实验设备1、信号发生器:用于产生连续信号。
2、抽样脉冲发生器:产生抽样脉冲。
3、示波器:用于观察信号的波形。
4、低通滤波器:实现信号的恢复。
四、实验内容及步骤1、产生连续信号使用信号发生器产生一个频率为$f_1$ 的正弦信号,调节信号的幅度和频率,使其在示波器上显示清晰稳定。
2、选择抽样频率设置不同的抽样频率$f_s$,分别为$2f_1$、$3f_1$ 和$5f_1$。
3、抽样过程将抽样脉冲与连续信号同时输入到示波器的两个通道,观察抽样信号的波形。
4、信号恢复将抽样信号通过低通滤波器,在示波器上观察恢复后的信号,并与原始信号进行比较。
5、记录数据记录不同抽样频率下抽样信号和恢复信号的波形、幅度和频率等数据。
五、实验数据及分析1、当抽样频率为$2f_1$ 时抽样信号的频谱发生了混叠,通过低通滤波器恢复的信号出现了明显的失真,幅度减小,频率也发生了变化。
信号与系统实验四-信号的采样及恢复
实验四 信号的采样及恢复一、实验目的1、加深理解连续时间信号离散化过程中的数学概念和物理概念;2、掌握对连续时间信号进行抽样和恢复的基本方法;3、通过实验验证抽样定理。
二、实验内容1、为了观察连续信号时域抽样时,抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。
(1))102cos()(1t t x ⨯=π(2))502cos()(2t t x ⨯=π (3))1002cos()(3t t x ⨯=π2、产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘出波形。
3、对连续信号)4cos()(t t x π=进行抽样以得到离散序列,并进行重建。
(1)生成信号)(t x ,时间t=0:0.001:4,画出)(t x 的波形。
(2)以10=sam f Hz 对信号进行抽样,画出在10≤≤t 范围内的抽样序列)(k x ;利用抽样内插函数)/1()(sam r f T T t Sa t h =⎪⎭⎫⎝⎛=π恢复连续信号,画出重建信号)(t x r 的波形。
)(t x 与)(t x r 是否相同,为什么? (3)将抽样频率改为3=sam f Hz ,重做(2)。
4、利用MATLAB 编程实现采样函数Sa 的采样与重构。
三、实验仪器及环境计算机1台,MATLAB7.0软件。
四、实验原理对连续时间信号进行抽样可获得离散时间信号,其原理如图8-1。
采样信号)()()(t s t f t f s ∙=,)(t s 是周期为s T 的冲激函数序列,即)()()(∑∞-∞=-==n sT nT t t t s sδδ则该过程为理想冲激抽样。
其中s T 称为采样周期,ss T f 1=称为抽样频率, ss s T f ππω22==称为抽样角频率。
信号取样与恢复实验报告
实验四信号取样与恢复一、实验目的1.了解模拟信号取样及恢复的基本方法。
2.理解和掌握时域取样定理,掌握无混叠和有混叠条件下信号取样与恢复的频域分析方法。
3.了解取样频率、取样脉冲宽度、恢复滤波器截止频率等对取样信号和恢复信号的影响。
4.熟悉DDS-3X25虚拟信号发生器的使用方法。
二、实验内容1.无混叠条件下正弦信号取样与恢复测试分析,比较不同取样频率和取样脉冲宽度对取样及恢复信号的影响。
2.有混叠条件下正弦信号的取样与恢复测试分析。
3.非正弦周期信号的取样与恢复测试分析,比较不同恢复滤波器截止频率对恢复信号的影响。
三、实验仪器1.信号与系统实验硬件平台一台2.信号取样与恢复实验电路板一块3.DSO-3064虚拟示波器一台4.DDS-3X25虚拟信号发生器二台5.PC机(含DSO-3064、DDS-3X25驱动及软件)一台四、实验原理1. 信号取样信号取样与恢复实验电路板,如图4.1所示。
该电路板通过背面的两个DB9公头插接到硬件实验平台上使用。
)()()(t s t f t f s =图4.1 信号取样与恢复实验电路板电路板左侧为一个采用模拟开关进行取样的信号取样电路,取样脉冲序列为高电平(高电平对应电压应大于+1V )时模拟开关接通、为低电平(低电平电压应小于-1V )时模拟开关断开。
在“信号输入”端接入被取样模拟信号,通过改变取样脉冲序列(通常为矩形脉冲序列)的频率(该电路取样频率不宜超过256kHz )和占空比,即可在“取样输出”端获得不同频率和不同取样脉冲宽度的取样信号。
取样信号()s f t 可用(4-1)式来描述(4-1)式中()f t 表示被取样模拟信号,()s t 为模拟开关的开关函数,当模拟开关接通时,()1s t =,反之则()0s t =。
电路板右侧是两个用作恢复滤波器的低通滤波器,可根据实验需要选用。
其中“恢复滤波器1”是一个截止频率约为1kHz 、通带增益等于4的二阶低通滤波器,其截止频率不可调节。
信号与系统分析实验信号的采样与恢复实验
北京联合大学实验报告课程(项目)名称:信号与系统分析(实验4)学院:自动化学院专业:电气工程与自动化班级: 0910030101 学号: 2009100301126 姓名:林驷淇成绩:2011年 5 月21 日实验四信号的采样与恢复实验1 实验目的1. 熟悉信号的采样与恢复的过程。
2. 学习和掌握采样定理。
3. 了解采样频率对信号恢复的影响。
2 实验设备PC机一台,TD-SAS系列教学实验系统一套。
3 实验原理及内容1. 采样定理采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值表示。
这些值包含了该连续信号全部信息,利用这些值可以恢复原信号。
采样定理是连续时间信号与离散时间信号之间的桥梁。
采样定理:对于一个具有有限频谱,且最高频率为ωmax的连续信号进行采样,当采样频率ωs满足ωs>=ωmax时,采样信号能够无失真地恢复出原信号。
三角波信号的采样如图4-1-1所示。
图4-1-1信号的采样2. 采样信号的频谱连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为它包含了原信号频谱以及重复周期为的原信号频谱的搬移,且幅度按规律变化。
所以抽样信号的频谱便是原信号频谱的周期性拓延。
某频带有限信号被采样前后频谱如图4-1-2。
图4-1-2限带信号采样前后频谱从图中可以看出,当ωs≥2Bf时拓延的频谱不会与原信号的频谱发生重叠。
这样只需要利用截止频率适当的滤波器便可以恢复出原信号。
3. 采样信号的恢复将采样信号恢复成原信号,可以用低通滤波器。
低通滤波器的截止频率fc 应当满足fmax≤fc ≤fx-fmax。
实验中采用的低通滤波器原理图如图4-1-3所示,其截止频率固定为1802f H zR Cπ=≈图4-1-3滤波器电路4. 单元构成本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。
其中的采样保持部分电路由一片CD4052完成。
此电路由两个输入端,其中IN1端输入被采样信号,Pu端输入采样脉冲,经过采样后的信号如图4-1-1所示。
信号与系统实验4:抽样定理与信号恢复
(规格为A4纸或A3纸折叠)(2)在(1)基础上恢复正弦信号,比较那个采样间隔能较好的恢复原正弦信号。
改变几个不同的采样间隔,比较恢复信号。
代码:f0=50;n1=0:0.01:0.2;x1=sin(2*pi*f0*n1);n2=0:0.002:0.2;x2=sin(2*pi*f0*n2);n3=0:0.001:0.2;x3=sin(2*pi*f0*n3);subplot(3,3,1);stem(n1,x1);subplot(3,3,4);plot(n1,x1);subplot(3,3,2);stem(n2,x2);subplot(3,3,5);plot(n2,x2);subplot(3,3,3);stem(n3,x3);subplot(3,3,6);plot(n3,x3);2.抽样信号的恢复 设信号sin ()()tf t Sa t t==,在抽样间隔分别为 (1) 0.7s T π=(令1m ω=, 1.1c m ωω=) (2) 1.5s T π=(令1m ω=, 1.1c m ωω=)的两种情况下, 对信号()f t 进行采样, 试编写MATLAB 程序代码, 并绘制出抽样信号波形、由抽样信号得到的恢复信号波形。
代码: (1)wm=1;%信号带宽wc=1.1*wm;%滤波器截止频率 Ts=0.7*pi;%抽样间隔 ws=2*pi/Ts;%抽样角频率 n=-100:100;%时域抽样点数 nTs=n*Ts;%时域抽样点 f=sinc(nTs/pi); Dt=0.005;t=-15:Dt:15;fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));%信号重构error=abs(fa-sinc(t/pi));t1=-15:0.5:15;f1=sinc(t1/pi);subplot(3,1,1);stem(t1,f1);xlabel('KTs');ylabel('f(KTs)');title('sa(t)=sinc(t/pi)临界抽样信号');subplot(3,1,2);plot(t,fa);xlabel('t');ylabel('fa(t)');title('由sa(t)=sinc(t/pi)的临界抽样信号重构sa(t)');grid;subplot(3,1,3);plot(t,error);xlabel('t');ylabel('error(t)');title('临界抽样信号与原信号的误差error(t)');(2)代码:wm=1;%信号带宽wc=1.1*wm;%滤波器截止频率Ts=1.5*pi;%抽样间隔ws=2*pi/Ts;%抽样角频率n=-100:100;%时域抽样点数nTs=n*Ts;%时域抽样点f=sinc(nTs/pi);Dt=0.005;t=-15:Dt:15;fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));%信号重构error=abs(fa-sinc(t/pi));t1=-15:0.5:15;f1=sinc(t1/pi);subplot(3,1,1);stem(t1,f1);xlabel('KTs');ylabel('f(KTs)');title('sa(t)=sinc(t/pi)临界抽样信号');subplot(3,1,2);plot(t,fa);xlabel('t');ylabel('fa(t)');title('由sa(t)=sinc(t/pi)的临界抽样信号重构sa(t)');grid;subplot(3,1,3);plot(t,error);xlabel('t');ylabel('error(t)');title('临界抽样信号与原信号的误差error(t)');选取信号sin ()()tf t Sa t t==作为被抽样的信号,显然,信号的带宽1m ω=。
[资料]抽样定理与信号恢复
[资料]抽样定理与信号恢复本科实验报告实验名称: 抽样定理与信号恢复学员: 学号:年级: 2012 级专业: 电子工程所属学院: 指导教员:实验室: 实验日期:2014年4月25日一、实验目的和要求1. 验证抽样定理,进一步理解抽样过程。
2. 掌握对频谱混叠现象的分析。
3. 深入理解信号恢复的条件。
二、实验原理和内容1. 原理(1) 离散信号不仅可从离散信号源获得,也可从连续信号抽样获得。
抽样信号,其中为连续信号(例如三角波),是周期为xt()xtxtPt()()(),,Pt()sT的矩形窄脉冲。
T又称抽样间隔,称为抽样频率,为抽样信号波1/FT,xt()sssssxt()形。
、Pt()、xt()波形如图1。
sxt()t0T(a)Pt()At(b)xt()st0T(c)图1 连续信号抽样过程 (2) 连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱,,mt,A,s (j)S()j,,,ω,,XXm,,,,,sas,,2Tm,,,m,,A,,ss它包含了原信号频谱以及重复周期为()、幅度按规律S()ff,sas2T2, 变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。
因此,抽样信号占有的频带比原信号频带宽得多。
以三角波被矩形脉冲抽样为例。
三角波的频谱:,,4E (),,,,,,,,,,,,Xj()()Akk,,k112,kkk,,,,,,抽样信号的频谱:,m,,A,1s,,,, XESkm(j)4()(),,,,,,1sas2Tk2,k,,,m,,,取三角波的有效带宽为,其抽样信号频谱如图2所示。
3,1X()fE22E2,2E2(3),,3f,ff3f01111X()fmω,A,s包络线按规律变化S()aT2ff03f5f7f12ffs111s(a)三角波频谱 (b)抽样信号频谱图2 抽样信号频谱图fB,2f(3) 抽样信号在一定条件下可以恢复出原信号,其条件是,其中为抽sfs B样频率,为原信号占有频带宽度。
matlab信号抽样与恢复
matlab信号抽样与恢复信号抽样与恢复是数字信号处理中的基本概念,也是数字信号处理应用中常常涉及到的一个环节。
本文将介绍抽样定理、抽样的操作方法以及抽样信号的信号恢复。
一、抽样定理抽样定理是数字信号处理中一个基本且重要的定理,又称为奈奎斯特抽样定理。
它给出了信号在模拟域和数字域之间的对应关系。
其表述为:在对模拟信号f(t)进行采样时,采样频率F_s必须大于等于信号带宽2B,即F_s≥2B,采样出的数字信号才不会产生混叠现象,即在恢复信号时不会产生失真。
其中,Fs为采样频率,B为信号带宽。
对于一个连续的信号f(t),在进行采样时,需要首先将其通过一个称为采样保持电路的设备进行采样。
该设备会按照一定的时间间隔Ts (也称采样周期)对信号f(t)进行采样,并将采样结果以数字信号的形式输出。
输出的数字信号可以看作是在时间上离散化、幅度上量化了的原信号f(t)。
二、抽样的操作方法抽样的操作方法是指在进行抽样时需要满足的一些条件。
在实际的数字信号处理中,通常采用交织抽样方式对信号进行抽样。
交织抽样即将原信号采样的时间间隔与采样保持电路采样的时间间隔错开一定的时间(通常为半个采样周期),使得采样时的信号可以有效地避免失真。
具体而言,交织抽样的操作方法如下:首先确定采样频率Fs,以及采样点数n。
采样频率Fs应该满足抽样定理的要求,即Fs≥2B。
采样点数n由采样的时间长度T和采样频率Fs决定,即n=T*Fs。
计算采样周期Ts,即Ts=1/Fs。
在采样时,一般采用一个称为采样保持电路的设备对信号进行采样。
采样保持电路包含一个开关和一个电容,当开关处于闭合状态时,电容开始充电,并将信号的幅度存储在电容中;当开关处于断开状态时,电容被断开,信号的幅度得到保持并输出。
根据交织抽样的操作方法进行采样,并将采样结果存储在计算机中。
三、信号恢复在进行数字信号处理时,需要对数字信号进行重构和恢复。
重构指的是将数字信号重新合成为与原信号类似的模拟信号的过程,而恢复则是在数字信号的基础之上还原原信号的过程。
实验 4 抽样定理及其应用实验
实验 4 抽样定理及其应用实验通信1202 201208030223 吴铠权一、实验目的:1、通过对模拟信号抽样的实验,加深对抽样定理的理解;2、通过PAM调制实验,加深理解脉冲幅度调制的特点;3、学习PAM调制硬件实现电路,掌握调整测试方法;二、实验仪器:1、PAM 脉冲调幅模块位号: H2、时钟与基带数据发生模块位号: G3、100M 双踪示波器 1台三、实验内容:1、观测输入模拟信号、抽样脉冲、抽样信号及恢复信号波形;2、改变抽样脉冲频率,测试其对抽样信号及恢复信号的影响;3、测试接收滤波器特性对恢复信号的影响;四、实验原理:抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。
这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。
通常,按照基带信号改变脉冲参量(幅度、宽度和位置)的不同,把脉冲调制分为脉幅调制(PAM)、脉宽调制(PDM)和脉位调制(PPM)。
虽然这三种信号在时间上都是离散的,但受调参量是连续的,因此也都属于模拟调制。
关于 PDM 和 PPM,国外在上世纪 70 年代研究结果表明其实用性不强,而国内根本就没研究和使用过,所以这里我们就不做介绍。
本实验平台仅介绍脉冲幅度调制,因为它是脉冲编码调制的基础。
本实验中需要用到以下 5 个功能模块。
1、DDS信号源:它提供正弦波等信号,并经过连线送到“PAM 脉冲调幅模块”,作为脉冲幅度调制器的调制信号。
P03测试点可用于调制信号的连接和测量;另外,如果实验室配备了电话单机,也可以使用用户电话模块,这样验证实验效果更直接、更形象,P05 测试点可用于语音信号的连接和测量。
2、抽样脉冲形成电路模块:它提供有限高度,不同宽度和频率的的抽样脉冲序列,并经过连线送到“PAM 脉冲调幅模块”,作为脉冲幅度调制器的抽样脉冲。
P09测试点可用于抽样脉冲的连接和测量。
实验4抽样定理与信号恢复
实验四抽样定理与信号恢复、实验目的1 .观察离散信号频谱,了解其频谱特点;2 .验证抽样定理并恢复原信号。
、实验设备三、实验原理说明1 .离散信号不仅可从离散信号源获得, 而且也可从连续信号抽样获得。
=F (t) S (t),其中F (t)为连续信号(例如三角波),S (t)是周期为 Ts 又称抽样间隔,Fs=T1称抽样频率,Fs (t)为抽样信号波形。
F (t)、 is形如图5-1。
S(t)-4T S -T S 0 T S 4T8T S (b)12T S图5-1 连续信号抽样过程1. 2. 3. 4. 双踪示波器 信号系统实验箱 频率计 钏孔连接线抽样信号Fs (t) Ts 的矩形窄脉冲。
S (t)、Fs (t)波路如图5-2所示。
图5-2 信号抽样实验原理图2 .连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱A m ...............它包含了原信号频谱以及重复周期为fs (f s =j 、幅度按 Ar Sa ( mY-)规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。
因此,抽样信号占有的频带比原信号频带宽得多。
以三角波被矩形脉冲抽样为例。
三角波的频谱:L :2,。
、,, 2二、F (j 。
=En £ sa (一2(0 -k 一)K -.: :2- 1抽样信号的频谱:EA 二.二 _ m 屋 _ 2 k 二Fs (j 0 = ------ X Sa ----- *Sa (—) *8 0 - k ®1- m ®s )TS k 2 2 2m =-、:…2 二、 1式中 81 = ----- 或f 1 =—11将连续信号用周期性矩形脉冲抽样而得到抽样信号, 可通过抽样器来实现, 实验原理电ATs COSam 二二m s.取三角波的有效带宽为3切1 f s=8f1作图,其抽样信号频谱如图5-3所示。
(a) 三角波频谱(b)抽样信号频谙图5-3 抽样信号频谱图如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F'(t)波形
3.抽样定理虚拟仿真
实验箱提供了基于USB或网口的采集软件与LABVIEW仿真软件,能在PC机上实时观察模拟信号、抽样脉冲、抽样信号、抽样信号的频谱,恢复滤波器采用数字滤波器,带宽可设置,如图5-9
图5-9抽样定理仿真
使用方法:
软件安装见实验17,选择“信号与系统”复选框中“抽样定理”,实验箱DSP运行在“虚拟仪器”,用USB线连接实验箱和PC机,点击软件“STOP”键,软件开始行运。
图5-1连续信号抽样过程
将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图5-2所示。
2.连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱
它包含了原信号频谱以及重复周期为fs(f s = 、幅度按 Sa( )规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。因此,抽样信号占有的频带比原信号频带宽得多。
④使用不同的抽样脉冲频率,观察信号的变化。
2.验证抽样定理与信号恢复
(1)信号恢复实验方案方框图如图5-7所示。
图5-7信号恢复实验方框图
(2)信号发生器输出f=1KHz,A=1V有效值的三角波接于5P601,示波器CH1接于5TP603观察抽样信号Fs(t),CH2接于5TP604观察恢复的信号波形。
5.通过本实验你有何体会。
七、思考题
1.对1KHZ三角波进行抽样实验时,抽样频率为什么不能低于6KHZ?恢复滤波器载止频率为什么不能是2KHZ?
2.1KHZ的正弦波用2KHZ脉冲去抽样,经2KHZ恢复滤波器会输出一个2KHZ的正弦波,为什么?
图5-5信号抽样流程图
图5-6有源低通滤波器实验电路图
四、测量点说明
测量点:
5TP601:输入信号波形观测点;
5TP603:抽样波形观测点;
5TP604:抽样信号经滤波器恢复后的信号波形观测点。
信号插孔:
5P601:信号输入插孔;
5P602:抽样脉冲信号输入插孔;
5P603:抽样信号输出插孔;
五、实验容及步骤
(3)拨动开关1K1拨到“2K”位置,选择截止频率fc2=2KHz的滤波器;拨动开关5K601拨到“4K”位置,选择截止频率fc2=4KHz的滤波器;此时在5TP604可观察恢复的信号波形。
(4)拨动开关5K601拨到“空”位置,未接滤波器。同学们可按照图5-8,在基本运算单元搭试截止频率fc1=2K的低通滤波器,抽样输出波形5P603送入Ui端,恢复波形在Uo端测量,图中电阻可用电位器代替,进行调节。
图5-8截止频率为2K的低通滤波器原理图
(5)设1KHz的三角波信号的有效带宽为3KHz,Fs(t)信号分别通过截止频率为fc1和fc2低通滤波器,观察其原信号的恢复情况,并完成下列观察任务。
1.当抽样频率为3KHz、截止频率为2KHz时:
Fs(t)的波形
F'(t)波形
2.当抽样频率为6KHz、截止频率为2KHz时频率可调;
六、实验报告要求
1.整理数据,正确填写表格,总结离散信号频谱的特点;
2.整理在不同抽样频率(三种频率)情况下,F(t)与F′(t)波形,比较后得出结论;
3.比较F(t)分别为正弦波和三角形,其Fs(t)的频谱特点;
4.用仿真软件分析4KHZ三角波抽样频率取值和恢复滤波器载止频率取值;
实验
一、实验目的
1.观察离散信号频谱,了解其频谱特点;
2.验证抽样定理并恢复原信号。
二、实验设备
1.双踪示波器1台
2.信号系统实验箱1台
3.频率计1台
4.铆孔连接线若干
三、实验原理说明
1.离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。抽样信号Fs(t)=F(t)·S(t),其中F(t)为连续信号(例如三角波),S(t)是周期为Ts的矩形窄脉冲。Ts又称抽样间隔,Fs= 称抽样频率,Fs(t)为抽样信号波形。F(t)、S(t)、Fs(t)波形如图5-1。
如果fs<2Bf,则抽样信号的频谱将出现混迭,此时将无法通过低通滤波器获得原信号。
图5-4实际低通滤波器在截止频率附近频率特性曲线
在实际信号中,仅含有有限频率成分的信号是极少的,大多数信号的频率成分是无限的,并且实际低通滤波器在截止频率附近频率特性曲线不够陡峭(如图5-4所示),若使fs=2Bf,fc=fm=Bf,恢复出的信号难免有失真。为了减小失真,应将抽样频率fs取高(fs>2Bf),低通滤波器满足fm<fc<fs-fm。
1.观察抽样信号波形。
①调整信号源,使DDS1输出1KHZ的三角波,调节电位器1W1,使输出信号幅度为1Vpp;
②连接DDS1与5P601,输入三角波信号;连接1P01与5P602,输入抽样脉冲信号;
③改变抽样脉冲的频率,用示波器观察5TP603(Fs(t))的波形,此时需把拨动开关1K1拨到“空”位置进行观察;
Fs(t)的波形
F'(t)波形
3.当抽样频率为12KHz、截止频率为2KHz时:
Fs(t)的波形
F'(t)波形
4.当抽样频率为3KHz、截止频率为4KHz时:
Fs(t)的波形
F'(t)波形
5.当抽样频率为6KHz、截止频率为4KHz时:
Fs(t)的波形
F'(t)波形
6.当抽样频率为12KHz、截止频率为4KHz时:
为了防止原信号的频带过宽而造成抽样后频谱混迭,实验中常采用前置低通滤波器滤除高频分量,如图5-5所示。若实验中选用原信号频带较窄,则不必设置前置低通滤波器。
本实验采用有源低通滤波器,如图5-6所示。若给定截止频率fc,并取Q= (为避免幅频特性出现峰值),R1=R2=R,则:
C1= (5-1)
C2= (5-2)
以三角波被矩形脉冲抽样为例。三角波的频谱:
F(jω)=
抽样信号的频谱:
Fs(jω)=
式中
取三角波的有效带宽为3 作图,其抽样信号频谱如图5-3所示。
图5-3抽样信号频谱图
如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。
3.抽样信号在一定条件下可以恢复出原信号,其条件是fs≥2Bf,其中fs为抽样频率,Bf为原信号占有频带宽度。由于抽样信号频谱是原信号频谱的周期性延拓,因此,只要通过一截止频率为fc(fm≤fc≤fs-fm,fm是原信号频谱中的最高频率)的低通滤波器就能恢复出原信号。