第一章流体力学基础知识
第1章 流体力学基础知识

气 业 基 学 1.1.2 流体的密度、压强和温度
西 动 大 础教 院 1. 流体内部一点处的密度 北 力 学 学 在连续介质假设的前提下,可以对流体微团乃至流体内部某一几何点处的密 工 学 航 团 度下定义。
空气 业 基 天学 队 围绕流体内部某一点 P 处划取一块微小空间,设这块空间的容积为 ∆τ ,其
介质平均密度有一个相当稳
西 北
定的值,即 ρ p 。这是因为在
空 工 微元容积缩小过程中。包含
气 业 在微元单位容积内的分子数
西 动 大 目越来越稳定,单个分子的
北 力 学 个性没有显示出来。如果继续缩小微元容积,向零趋近时,单位微元容积内所
空 工 学 航天 包含的介质分子数目就不可能保持常数。在某一瞬间来看问题:如果恰好有几
大 编 dV /V 动 学 教 院 写 式中:E 为体积弹性模数;V 为一定量气体的体积。对于一定质量的气体,其体
力 航 学 积与密度成反比例关系,因此可得
学基 天 团队 dρ = − dV 学ρ V
础 院 编 因此,气体的体积弹性模数可写为
教学 写 E = ρ dp 团 dρ
(1-7)
队 在相同的压强增量作用下,这种相对密度(或体积)的变化的大小和体积弹性
队 作用,微粒的实际占有体积和气体所占空间相比较可以忽略不计。远离液态的
编 气体基本符合这些假设,通常状况下的空气也符合这些假设,可以看作为一种
完全气体。
写
任何状态下,气体的压强、密度和温度之间都存在一定的函数关系,即
p = p(ρ,T )
这个函数关系称之为气体的状态方程。完全气体的状态方程为
p = R ρT m
(1-5)
西 式中: R 为普适气体常数,其数值为 8315 m2 / (s2 ⋅ K ) ;m 为某种气体的分子量;
流体力学基础知识

目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充
流体力学基础知识

第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。
其单位是牛顿,N。
单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。
其单位是N/kg。
2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。
3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。
4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。
其单位为N/(㎡·s),以符号Pa·s表示。
运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。
国际单位制单位㎡/s。
动力黏度μ与运动黏度ν的关系:μ=ν·ρ。
5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。
毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。
6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。
(P12,还需看看书,了解什么是以上三种模型!)。
第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。
2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。
两水头中的压强P必须采用相对压强表示。
b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。
3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。
(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
第一章流体力学基本知识-精选

3.能量方程式的物理意义与几何意义 (1)物理意义
Z P/r v2/2g z+ P/r+ v2/2g
-单位重量流体的位能 -单位重量流体的压能 -单位重量流体的动能 -单位重量流体的机械能
(2)几何意义
Z P/r v2/2g z+ P/r+ v2/2g
-位置水头 -压力水头 -平均流速水头 -总水头
五、紊流的沿程水头损失 均匀流普遍计算公式1-25 紊流沿程阻力系数λ 均匀流流速公式(谢才公式)1-26 谢才系数C
六、沿程阻力系数λ的经验公式和谢才系数的确定
λ:
C:
七、局部水头损失
局部阻力系数ξ (表1-4)
例题1-7
1-5孔口、管嘴出流
薄壁圆形小孔口 淹没出流 管嘴出流;
流速
=
>
流量
=
<
(3)总水头线和侧压管水头线(图1-19)
4.能量方程式的应用举例
例1-5; 例1-6;
1-4流动阻力与水头损失
一、水头损失的两种类型 沿程水头损失 沿流程由于克服摩擦阻力做功消耗了水流的
机械能而损失的水头。
局部水头损失 发生在流体过流断面的大小或边界急剧变
化的部位,或遇到障碍,使流体增加了额 外的局部阻力而产生的水头损失。
基本特征:(1)流体静压强的方向与作用面垂直, 并指向作用面。
(2)任意一点各方向的流体静压强均相等。 二、流体静压强的分布规律
1.流体静力学基本方程式 P=P0+rh (1)静止液体内任意一点的压强等于液面压强加上 液体重度与深度的乘积之和。
(2)在静止液体内,压强随深度按直线规律变化。 (3)在静止液体内同一深度的点压强相等,构成一 个水平的等压面。
流体力学的基本知识点的阐述

(压力形式)
(1-8)
1.2 流体静力学基本概念
变形得 p1/ρ+z1g=p2/ρ+z2g (能量形式)(1-9) 若将液柱的上端面取在容器内的液面上,设液面上 方的压力为pa,液柱高度为h,则式(1-8)可改写为 p2=pa+ρgh (1-10) 式(1-8)、式(1-9)及式(1-10)均称为静力学 基本方程,其物理意义在于:在静止流体中任何一点的 单位位能与单位压能之和(即单位势能)为常数。
1.2 流体静力学基本概念
图1.3 绝对压力、表压与真空度的关系
1.2 流体静力学基本概念
1.2.2 流体静力学平衡方程
1.2.2.1 静力学基本方程
假如一容器内装有密度为ρ的液体,液体可认 为是不可压缩流体,其密度不随压力变化。在静 止的液体中取一段液柱,其截面积为A,以容器 底面为基准水平面,液柱的上、下端面与基准水 平面的垂直距离分别为z1和z2,那么作用在上、下 两端面的压力分别为p1和p2。
1.1 流体主要的力学性质
1.1.2 流体的主要力学性质
1. 易流动性
流体这种在静止时不能承受切应力和抵抗剪切变形 的性质称为易流动性
2. 质量密度
单位体积流体的质量称为流体的密度,即ρ=m/V
3. 重量密度
流体单位体积内所具有的重量称为重度或容重,以γ 表示。γ=G/V
1.1 流体主要的力学性质
图1-8
1.4 流动阻力与能量损失
因是直径相同的水平管,u1=u2,Z1=Z2,故 Wf=(P1-P2)/ρ (1-22) 若管道为倾斜管,则 Wf=(P1/ρ+Z1g)-(P2/ρ+Z2g) (1-23) 由此可见,无论是水平安装还是倾斜安装, 流体的流动阻力均表现为静压能的减少,仅当水 平安装时,流动阻力恰好等于两截面的静压能之 差。
《流体力学》第一章绪论

欧拉法
以空间固定点作为研究对 象,通过研究流体质点经 过固定点的速度和加速度 来描述流体的运动。
质点导数法
通过研究流体质点在单位 时间内速度矢量的变化率 来描述流体的运动。
流体运动的分类
层流运动
流体质点沿着直线或近似的直线路径运动,各层 流体质点互不混杂,具有规则的流动结构。
湍流运动
流体质点运动轨迹杂乱无章,各流体质点之间相 互混杂,流动结构复杂多变。
流体静力学基础
总结词
流体静力学基础
详细描述
流体静力学是研究流体在静止状态下的力学性质的科学。其基础概念包括流体静压力、流体平衡的原理等,这些 原理在工程实践中有着广泛的应用。
03
流体运动的基本概念
流体运动的描述方法
01
02
03
拉格朗日法
以流体质点作为研究对象, 通过追踪流体质点的运动 轨迹来描述流体的运动。
《流体力学》第一章 绪论
目录
• 流体力学简介 • 流体的基本性质 • 流体运动的基本概念 • 流体动力学方程 • 绪论总结
01
流体力学简介
流体力学的定义
流体力学是研究流体(液体和气体) 的力学性质和运动规律的学科。
它涉及到流体在静止和运动状态下的 各种现象,以及流体与其他物体之间 的相互作用。
波动运动
流体在压力、温度、浓度等外部扰动作用下产生 波动现象,如声波、水波等。
流体运动的守恒定律
动量守恒定律
流体系统中的动量总和在封闭系统中保持不变,即流入和流出封 闭系统的动量之差等于系统内部动量的变化量。
质量守恒定律
流体系统中质量的增加或减少等于流入和流出封闭系统的质量流量 之差。
能量守恒定律
古希腊哲学家阿基米德研 究了流体静力学的基本原 理,奠定了流体静力学的 基础。
流体力学基础知识

流体力学基础知识(总15页) -本页仅作为预览文档封面,使用时请删除本页-第一章流体力学基本知识学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。
§1-1流体的主要物理性质1.本节教学内容和要求:1.1本节教学内容:流体的4个主要物理性质。
1.2教学要求:(1)掌握并理解流体的几个主要物理性质(2)应用流体的几个物理性质解决工程实践中的一些问题。
1.3教学难点和重点:难点:流体的粘滞性和粘滞力重点:牛顿运动定律的理解。
2.教学内容和知识要点:易流动性(1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。
流体也被认为是只能抵抗压力而不能抵抗拉力。
易流动性为流体区别与固体的特性2.2密度和重度(1)基本概念:密度——单位体积的质量,称为流体的密度即:Mρ=VM——流体的质量,k g;V——流体的体积,m3。
常温,一个标准大气压下Ρ水=1×103k g/m32Ρ水银=×103k g/m3基本概念:重度:单位体积的重量,称为流体的重度。
重度也称为容重。
Gγ=VG——流体的重量,N;V——流体的体积,m3。
∵G=m g∴γ=ρg常温,一个标准大气压下γ水=×103k g/m3γ水银=×103k g/m3密度和重度随外界压强和温度的变化而变化液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。
2..3粘滞性(1)粘滞性的表象基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。
当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表现。
为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。
用流速仪测出管道中某一断面的流速分布如图一所示设某一流层的速度为u,则与其相邻的流层为u+d u,d u为相邻流层的速度增值,设相邻流层的厚度为d y,则d u/d y叫速度梯度。
第1章 流体力学基本知识

数学表达式:
二、流体的粘滞性 粘滞性 :流体内部质点间或层流间因相对运动 而产生内摩擦力(切力)以反抗相对运动的 性质。
牛顿内摩擦定律:
F-内摩擦力,N; S-摩擦流层的接触面面积,m2;
τ-流层单位面积上的内摩擦力(切应力),N/
m2;
du/dn-流速梯度,沿垂直流速方向单位长度 的流速增值;
hω1-2 =Σhf+Σhj
二、流动的两种型态--层流和紊流
二、流动的两种型态--层流和紊流
实验研究发现,圆管内流型由层流向湍流 的转变不仅与流速u有关,而且还与流体的 密度、粘度 以及流动管道的直径d有关。 将这些变量组合成一个数群du/,根据该 数群数值的大小可以判断流动类型。这个 数群称为雷诺数,用符号Re表示,即
从元流推广到总流,得:
由于过流断面上密度ρ为常数,以
u d u d
1 1 1 2 2 1 2
2
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv ρ1ω1v 1=ρ2ω2v 2
(1-11)
(1-11a)
(1-11)、 (1-11a) --质量流量的连 续性方程式。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
v
2 2 2
2g
h12
第1章流体力学基本知识-PPT精品

从元流推广到总流,得:
1u1d1 2u2d2
1
2
由于过流断面上密度ρ为常数,以
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv
ρ1ω1v 1=ρ2ω2v 2
(1-11) (1-11a)
单位时间内通过过流断面dω的液体体积为 udω =dQ
4.流量:单位时间内通过某一过流断面的流体 体积。一般流量指的是体积流量,单位是 m3/s或L/s。
5.断面平均流速:断面上各点流速的平均值。 通过过流断面的流量为
Qvud
断面平均流速为:
v
ud
Q
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
确定流体等压面的方法,有三个条件:
必须在静止状态;在同一种流体中; 而且为连续液体。
2.分析静止液体中压强分布:
静止液体中压强分布
分析铅直小圆柱体,作用于轴向的外力有: 上表面压力
分析铅直小圆柱体,作用于轴向的外力有: 下底面的静水压力
分析铅直小圆柱体,作用于轴向的外力有: 柱体重力
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。
《流体力学基础知识》课件

流体抵抗剪切力的性质,粘性大小与流体的种类和温度有关。
流动模型
根据流体的粘性和流动特性,建立各种流动模型,如层流、湍流等。
06
流体力学在工程中的应用
流体输送与管道设计
总结词
流体输送与管道设计是流体力学在工程 中的重要应用之一,主要涉及流体在管 道中的流动规律和设计原则。
VS
详细描述
在工业生产和城市供水中,需要利用流体 力学的原理进行管道设计和流体输送,以 实现高效、低能耗的流体传输。管道设计 需要考虑流体的流速、压力、粘度等参数 ,以及管道的材质、直径、长度等因素, 以确保流体输送的稳定性和可靠性。
流体力学的发展历程
要点一
总结词
流体力学的发展历程及重要事件
要点二
详细描述
流体力学的发展历程可以追溯到古代,但直到17世纪才真 正开始形成独立的学科。在17世纪到20世纪期间,许多科 学家和工程师为流体力学的发展做出了重要贡献,如伯努 利、欧拉、斯托克斯等。随着科技的发展,流体力学在理 论和实践方面都取得了巨大的进步,为人类社会的进步和 发展做出了重要贡献。
3
流体流动的连续性原理
在流场中任取一元流管,流进和流出该元流的流 量相等。
流体流动的能量传递与转换
压力能传递
流体在流动过程中,压力能可以传递给其他流体 或转化为其他形式的能量。
动能转换
流体的动能可以转换为其他形式的能量,如压能 、热能等。
热能传递
流体在流动过程中,可以与周围介质进行热能交 换,实现热量的传递。
流体流动的阻力与损失
摩擦阻力
流体在管道中流动时,由于流体的粘性和管壁的粗糙度,会产生 摩擦阻力。
局部阻力
流体在通过管道中的阀门、弯头等局部构件时,会产生局部阻力。
流体力学复习提纲

《流体力学》复习提纲第一部分:基本知识第一章 流体及其主要物理性质1. 流体的概念。
2. 连续介质假设的内容,质点的概念。
3. 液体和气体相对密度的定义。
4. 密度、重度、相度密度的相互计算。
5. 体积压缩系数和体积膨胀系数的定义,写出其数学表达式。
6. 动力粘度与运动粘度的相互计算、粘度的国际单位和物理单位及单位换算。
7. 作用在流体上的力的分类:分为质量力和表面力两大类。
8. 温度对液体和气体粘性的影响规律。
9. 什么是理想流体和实际流体。
10. 牛顿内摩擦定律的内容及其两种数学表达式。
重点习题:1-1,1-4,1-5,第二章 流体静力学1. 静压强的两个重要特性是什么?2. 欧拉平衡方程及其全微分形式3. 绝对压力、相对压力(表压力)、真空度三种压力的概念。
4. 工程大气压和标准大气压的区别。
5. 静力学基本方程C pz =+γ中每一项的几何意义和物理意义是什么?6. 绝对静止和两种典型的相对静止流体(等加速水平运动和绕轴等角速旋转运动)中的压力分布规律和等压面的形状。
7. 液式测压计的计算。
8. 掌握静止流体作用在平面和曲面上的总压力的计算方法(包括总压力的大小﹑方向和作用点)等,会进行有关计算。
重点习题:2-6,2-9,2-18,2-19第三章 流体运动学与动力学基础1. 研究流体运动的两种方法:拉格朗日法和欧拉法。
2. 欧拉法表示的质点加速度公式3. 定常流与非定常流的概念4. 流线与迹线的概念5. 流量的概念及三种流量表示方法及相互换算。
6. 欧拉运动方程7. 实际流体总流伯努利方程的三条水头线的画法和意义8. 水力坡降的概念。
9. 实际流体总流伯努利方程。
10. 节流式流量计的工作原理是什么?11. 理解测速管(或皮托管)的原理和用途。
12. 泵的扬程H 的概念及其与泵有效功率泵N 的关系?13. 连续性方程反映了什么物理基本原理?质量守恒定律14. 掌握连续方程﹑总流伯努利方程和动量方程的应用,动量方程部分应会进行弯管、渐缩管和平板等受力的计算。
流体力学基本知识

第一章流体力学基本知识解析第一节流体及其空气的物理性质流动性是流体的基本物理属性。
流动性是指流体在剪切力作用下发生连续变形、平衡破坏、产生流动,或者说流体在静止时不能承受任何剪切力。
易流动性还表现在流体不能承受拉力。
(一) 流体的流动性通风除尘与气力输送涉及的流体主要是空气。
流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。
但在流体力学中,一般不考虑流体的微观结构而把它看成是连续的。
这是因为流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分子集团,称每个分子集团为质点,而质点在流体的内部一个紧靠一个,它们之间没有间隙,成为连续体。
实际上质点包含着大量分子,例如在体积为10-15cm3的水滴中包含着3×107个水分子,在体积为1mm3的空气中有2.7×1016个各种气体的分子。
质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的个别性,按连续质点的概念所得出的结论与试验结果是很符合的。
然而,也不是在所有情况下都可以把流体看成是连续的。
高空中空气分子间的平均距离达几十厘米,这时空气就不能再看成是连续体了。
而我们在通风除尘与气力输送中所接触到的流体均可视为连续体。
所谓连续性的假设,首先意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。
有了这个假设就可以用连续函数来进行流体及运动的研究,并使问题大为简化。
(二)惯性(密度)流体的第一个特性是具有质量。
流体单位体积所具有流体彻底质量称为密度,用符号ρ表示。
在均质流体内引用平均密度的概念,用符号ρ表示:Vm =ρ式中: m ——流体的质量[Kg];V ——流体的体积[m 3]; ρ——流体密度Kg/m 3。
但对于非均质流体,则必需用点密度来描述。
所谓点密度是指当ΔV →0值的极限(dV dm V m V 0 lim ),即:dV dm V m lim V =∆∆=→∆0ρ公式中,ΔV →0理解为体积缩小为一点,此点的体积可以忽略不计,同时,又必须明确,这点和分子尺寸相比必然是相当大的,它必定包括多个分子,而不至丧失流体的连续性。
大学物理流体力学基础知识点梳理

大学物理流体力学基础知识点梳理一、流体的基本概念流体是指能够流动的物质,包括液体和气体。
与固体相比,流体具有易变形、易流动的特点。
流体的主要物理性质包括密度、压强和黏性。
密度是指单位体积流体的质量,用ρ表示。
对于均质流体,密度等于质量除以体积;对于非均质流体,密度是空间位置的函数。
压强是指流体单位面积上所受的压力,通常用 p 表示。
在静止流体中,压强的大小只与深度和流体的密度有关,遵循着著名的帕斯卡定律。
黏性是流体内部抵抗相对运动的一种性质。
黏性的存在使得流体在流动时会产生内摩擦力,阻碍流体的流动。
二、流体静力学流体静力学主要研究静止流体的力学规律。
(一)静止流体中的压强分布在静止的均质流体中,压强随深度呈线性增加,其关系式为 p =p₀+ρgh,其中 p₀为液面处的压强,h 为深度,g 为重力加速度。
(二)浮力定律当物体浸没在流体中时,会受到向上的浮力。
浮力的大小等于物体排开流体的重量,即 F 浮=ρgV 排,这就是阿基米德原理。
三、流体动力学(一)连续性方程连续性方程是描述流体在流动过程中质量守恒的定律。
对于不可压缩流体,在稳定流动时,通过管道各截面的质量流量相等,即ρv₁A₁=ρv₂A₂,其中 v 表示流速,A 表示横截面积。
(二)伯努利方程伯努利方程反映了流体在流动过程中能量守恒的关系。
其表达式为p +1/2ρv² +ρgh =常量。
即在同一流线上,压强、动能和势能之和保持不变。
伯努利方程有着广泛的应用。
例如,在喷雾器中,通过减小管径增加流速,从而降低压强,使得液体被吸上来并雾化;在飞机机翼的设计中,利用上下表面流速的差异产生压强差,从而提供升力。
四、黏性流体的流动(一)层流与湍流当流体流速较小时,流体呈现出有规则的层状流动,称为层流;当流速超过一定值时,流体的流动变得紊乱无序,称为湍流。
(二)黏性流体的流动阻力黏性流体在管道中流动时会受到阻力。
阻力的大小与流体的黏度、流速、管道的长度和直径等因素有关。
流体力学-知识点

第一章 流体的基本概念质量力:f X i Yj Z k =++表面力:0lim =limA A P T p AAτ∆→∆→∆∆=∆∆/w w g s γργγρρ== =/体积压缩系数:111dV d V dpdp Kρβρ=-==温度膨胀系数: 11dV d V dTdTραρ==-pRT ρ= =du du T Adydyμμτμνρ= =第二章 流体静力学欧拉平衡微分方程:()dp Xdx Ydy Zdz ρ=++0p p h γ=+ vv a v p p p p p h γ'=-=-=12sin A p l Kl A γα⎛⎫=+= ⎪⎝⎭匀加速水平直线运动中液体的平衡:0arctan s a a ap p x z ax gz C z x g g g γα⎛⎫⎛⎫=+--+==- ⎪ ⎪⎝⎭⎝⎭=匀角速度旋转运动容器中液体的平衡:2222220222s r r rp p z z C z g g g ωωωγ⎛⎫=+--== ⎪⎝⎭静止液体作用于平面壁上的总压力:1.解析法:C c c D C C J P h A p A y y y Aγ===+2.图解法:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点即是压力中心D 。
第三章 流体运动学基础欧拉法:速度为()()(),,,,,,,,,x x y y z z u u x y z t u u x y z t u u x y z t ⎧=⎪=⎨⎪=⎩加速度为x x x x x xx y z y y y y y y x y z z z z z zz x y zdu u u u u a u u u dt t x y zdu u u u u a u u u dt t x y z du u u u u a u u u dt t x y z ∂∂∂∂⎧==+++⎪∂∂∂∂⎪∂∂∂∂⎪==+++⎨∂∂∂∂⎪⎪∂∂∂∂==+++⎪∂∂∂∂⎩()u a u u t ∂=+⨯∇∂0utu t⎧∂≠⎪⎪∂⎨∂⎪=⎪∂⎩非恒定流: 恒定流: ()()u u u u ⎧⨯∇≠⎪⎨⨯∇=⎪⎩非均匀流: 均匀流: 流线微分方程:xyzdx dy dz u u u ==迹线微分方程:xyzdx dy dz dt u u u ===流体微团运动分解:1.亥姆霍兹(Helmhotz )速度分解定理 2.微团运动分解 (1)平移运动(2)线变形运动 线变形速度:x xy y z z u xu y u z θθθ∂⎧=⎪∂⎪∂⎪=⎨∂⎪⎪∂=⎪∂⎩(3)角变形运动 角变形速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=+⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=+⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=+⎪∂∂⎪⎝⎭⎩ (4)旋转运动 旋转角速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=-⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=-⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=-⎪∂∂⎪⎝⎭⎩3.有旋运动与无旋运动定义涡量:2xyzij k u xy z u u u ω∂∂∂Ω==∇⨯=∂∂∂有旋流:0Ω≠ 无旋流:0Ω= 即y z x z y xu u y z u u z x u u xy ∂⎧∂=⎪∂∂⎪⎪∂∂=⎨∂∂⎪∂⎪∂=⎪∂∂⎩ 或 000x y z ωωω⎧=⎪=⎨⎪=⎩平面无旋运动:1.速度势函数(简称势函数)(),,x y z ϕ (1)存在条件:不可压缩无旋流。
1.1流体力学基础知识

hf = kω
m
对于层流m=1,对于湍流m=1.75~2.0.很 对于层流m=1,对于湍流m=1.75~2.0.很 显然,湍流状态的损失要大的多,因此在 成本允许的情况下,输送管道要尽量粗一 些,保证以层流的形态进行输送.
(三),影响流动阻力损失大小的 ),影响流动阻力损失大小的 因素
流体的沿程阻力损失跟管道长度成正比; 流体的沿程阻力损失跟管道长度成正比; 管道长度成正比 跟平均流动速度的平方成正比, 跟平均流动速度的平方成正比,跟管径大 小成反比. 小成反比. 流体的局部阻力损失跟平均流动速度的平 流体的局部阻力损失跟平均流动速度的平 方成正比. 方成正比. 显然,流体的流动阻力损失还跟流体本身 显然, 的粘滞性和管道跟局部构件的粗糙程度有 关系. 关系.
2.局部阻力和局部损失 2.局部阻力和局部损失 管道中的弯头,三通,阀件和过流截 面有变化(例如管径突然增大或者缩小) 时的连接件等统称为管道局部构件.流体 流经管道局部构件时,由于构件边壁的阻 碍或扰动作用及流体自身的惯性,将发生 撞击,旋涡等现象,流速的大小和方向会 有急剧的改变,形成较大的流动阻力,称 为局部阻力.局部阻力造成的能量损失比 较集中.为克服局部阻力而消耗的单位重 量流体的机械能,称为局部损失 量流体的机械能,称为局部损失,用hj表示. 局部损失,用h 整个管道的能量损失应该分段计算沿 程损失和局部损失,再进行叠加.
六,泵与风机
有关离心式水泵的结构和工作原理的内容在 高中物理中已经有讲授,这里不在赘述.需 要注意的是离心式泵与风机是中心进入边沿 要注意的是离心式泵与风机是中心进入边沿 流出,离心式水泵开机前要将机壳中注满水. 流出,离心式水泵开机前要将机壳中注满水. 水泵和风机在工程中是一种能量转换装置, 它消耗原动机的能量,提高流体的全压力 它消耗原动机的能量,提高流体的全压力. 全压力. 泵与风机的主要性能参数:流量, 泵与风机的主要性能参数:流量,扬程和压 流量 功率,效率,转速请同学们自行了解. 头,功率,效率,转速请同学们自行了解.
流体力学基础知识

二、稳定流的连续方程
即质量守恒方程:
Q1 Q 2
1 v1 2 v 2 Q
v1 v2
常数
2
1
三、稳定
1
v
1
2
1
2g
2
2
v
2
2
2
2g
hw
适用条件:不可压缩稳定流,过流断面应 为均匀流或渐变流,无惯性力作用,流量 不变等。
V
其中ρ——㎏/m3;M——㎏;V——m3。
M lim 对非均质流体, V 0 V
其中ΔM——微小体积ΔV的流体质量; ΔV——包含该点在内的流体体积。 3.容重 (1)定义:单位体积的重量。 G (2)公式:
=
V
其中 ——N/m3,G——N,V——m3
4.ρ与γ的关系:
第四节
水流阻力和水头损失
一、水头损失的形式 1.产生水头损失的原因:流体流动时,由于 克服了流动阻力,一部分机械能不可逆转 地转化为热能散失而产生的损失。 2.沿程损失hf:受固体边界阻滞而产生。 3.局部损失hj:由于受到局部阻碍的影响, 流态急剧变化,形成涡旋而产生损失。 4.水头损失hw:
hw h f h j
一水箱,任取一截面,上部分作用其上 的力为ΔP,面积为ΔA,则ΔA上的平 均流体静压强
p
当ΔA缩小→a点时,比值趋于某一极 限值,称为a点的流体静压强:
p lim 0
•若P为常数,则
P p
流体静压力、静压强都是压力的一种量度, 其区别在于:前者是作用在某一面积上的 总压力,后者是作用在某一面积上的平均 压力或某一点的压力。
第一章 流体力学基础ppt课件(共105张PPT)

原
力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为
理
ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:
子
课
件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述
安
交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用
安
交
大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1
课
R
件
A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用
安
交 大
•
2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•
理
电•
子•
课
件
又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回
安
交 大
•
1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液
第一节 流体力学基础知识

B点绝对压强pB
绝对压强
0
0
• 绝对压强:是以完全真空为零点计算的压强,用P'表示。 • 相对压强:是以大气压强Pa为零点计算的压强,用P表示。
绝对压强与相对压强的关系: P = P’ - Pa
• 真空度:是指某点的绝对压强不足于一个大气压强的部 分,用Pk表示。即: Pk = Pa - P' = -P
2、恒定流与非恒定流 (1)恒定流 :流体运动时,流体中任一位置的压 强、流速等运动要素不随时间变化的流动。 (2)非恒定流 :流体运动时,流体中任一位置的 运动要素如压强、流速等随时间变化的流动。
注意:自然界中都是非恒定流,工程中取为恒定流。
3、流线与迹线 (1)流线:同一时刻连续流体质点的流动方向线。 (2)迹线:同一质点在连续时间内的流动轨迹线。
第一章 基本知识
第一节 流体力学基础知识
物质的三种形态:固体、液体和气体 流体力学 ----- 研究流体平衡和运动的 力
学规律及其应用的科学。
第一节 流体的主要物理性质
一. 流体的密度和容重 (一)密度 1 . 密度:对于均质流体,单位体积的质量。
M
V
kg/m3
2 . 容重:对于均质流体,单位体积的重量。
G
N/m3
V
3.密度与容重的关系
G Mg g
VV
4.密度和容重与压力、温度的关系
压力升高
流体的密度和容重增加;
温度升高
流体的密度和容重减小。
(二)流体的粘滞性
1. 流体粘滞性的概念
流体内部质点间或流层间因相对运动而产生内摩
擦力(粘滞力)以反抗流体相对运动的性质。
三、恒定流的连续性方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章流体力学基本知识学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。
§1-1 流体的主要物理性质1.本节教学内容和要求:1.1本节教学内容:流体的4个主要物理性质。
1.2教学要求:(1)掌握并理解流体的几个主要物理性质(2)应用流体的几个物理性质解决工程实践中的一些问题。
1.3教学难点和重点:难点:流体的粘滞性和粘滞力重点:牛顿运动定律的理解。
2.教学内容和知识要点:2.1 易流动性(1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。
流体也被认为是只能抵抗压力而不能抵抗拉力。
易流动性为流体区别与固体的特性2.2密度和重度(1)基本概念:密度——单位体积的质量,称为流体的密度即:Mρ =VM——流体的质量,kg ;V——流体的体积,m3。
常温,一个标准大气压下Ρ水=1×103kg/ m3Ρ水银=13.6×103kg/ m3基本概念:重度:单位体积的重量,称为流体的重度。
重度也称为容重。
Gγ =VG——流体的重量,N ;V——流体的体积,m3。
∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。
2..3 粘滞性(1)粘滞性的表象基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。
当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表现。
为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。
用流速仪测出管道中某一断面的流速分布如图一所示设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。
由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。
平板实验(2)牛顿内摩擦定律基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律:当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体阻抗剪切变形速度的特性。
μ——是比例系数,称为动力粘度,μ越大,流体越粘,流动性越差。
单位为Pa..s ν ——运动粘度,m2/s; ν=μ/ρ液体的粘度随温度升高而减小——分子间的引力即内聚力是形成粘性的主要因素;气体的粘度是随温度的升高而增大——分子间的热运动而引起的动量交换是形成粘滞性的主要因素。
需要强调的是:牛顿内摩擦定律只适用于牛顿流体和层流运动,牛顿流体是指在温度不变的情况下切应力τ与流速梯度成正比,这时粘滞系数μ为常数。
对于静止液体,液体质点之间没有相对运动,因而也就不存在粘滞性。
(3.)理想流体基本概念:所谓理想流体是指无粘滞性,即μ=0。
例一平板在油面上作水平运动,已知平板的运动速度为40cm./s,有层厚度为5mm,油的动力粘度μ=0.1Pa..s,求作用于平板单位面积上的粘性阻力2.4 压缩型和膨胀性(1)液体的压缩性和膨胀性基本概念:压缩性是流体受压,分子间距离缩小,体积缩小的性质。
液体的压缩性通常用压缩系数来表示膨胀性当作用于流体上的温度升高,体积膨胀,温度降低体积收缩称为流体的膨胀性。
液体的膨胀性通常用膨胀系数来表示液体的压缩性和膨胀性都比较小。
如水压强增加一个大气压,体积压缩率约为1/20000,在常温下,温度升高1℃,体积膨胀率约为1.5/100000(2)气体的压缩性和膨胀性气体的压缩型和膨胀性比较显著,在常温下符合理想气体状态方程,即P/ρ =R T.。
§1-2 流体静压强及其分布规律1.本节教学内容和要求:1.1本节教学内容:(1)静水压强的两个特性及有关基本概念。
(2)重力作用下静水压强基本公式和物理意义。
(3)静水压强的表示和计算。
1.2 教学要求:(1)正确理解静水压强的两个重要的特性和等压面的性质。
(2)掌握静水压强基本公式和物理意义,会用基本公式进行静水压强计算。
(3)掌握静水压强的单位和三种表示方法:绝对压强、相对压强和真空度;理解位置水头、压强水头和测管水头的物理意义和几何意义。
(4)掌握静水压强的测量方法和计算。
1.3 教学难点和重点:难点:静水压强的两个特性及有关基本概念。
重力作用下静水压强基本公式和物理意义。
静水压强的表示和计算。
重点:重力作用下静水压强基本公式和物理意义。
2.教学内容和知识要点:2.1 流体静压强及其特性(1)基本概念:取静止流体中的隔离体,设作用于隔离体上某一微小面积△w 上的总压力为△P,则△w面上的平均压强为:p = △P/△w(N/m2)当所取的面积无限缩小为一点,则平均压强的极限值为这个极限值称为该点的静压强。
(2)流体静压强的单位是帕(牛/米2),以Pa表示。
1Pa=1 N/m2,105 Pa称为1巴(bar).(3)流体静力学的两个特征:a..流体静压强必定沿着作用面的内法线方向。
b.任一点的流体静压强只有一个值,它不因作用面的方位改变而改变。
2.2 流体静压强的分布规律在静止流体中去上表面与流体自由表面相重合的微小柱体,其底面积为△w,高为h,其自由表面的压强p0,则该微小柱体沿垂直方向的受力分别为自由面的压力,重力,下底面的静水压力。
侧面的静水压力与轴垂直,在轴向投影为零。
此铅直小圆柱体处于静止状态,故其轴向力平衡为:化简后的:——静止液体中任一点的压强;——表面压强;——液体的容重;——所研究的点在自由表面下的深度。
此方程式为静水压强的基本方程式,又称静水力学基本方程式。
该方程式的含义:a.静水压强与水深成正比的直线分布规律;b.作用于液面上的表面压强是等值地传递到静止液体的每一点上;c.方程适用于静止气体压强的计算,p=p0.;d.压强只与深度有关,而与受压面的大小,形状无关应用静水压强方程式分析问题时,要抓住等压面这个概念。
等压面——流体中压强相等的点组成的面叫等压面。
推论:静止连续的同种液体的水平面是等压面;静止的互不混杂的两种液体的交界面是等压面。
2.3压强的计量单位与表示方法(1) 压强的计量单位:a 从压强的定义出发——单位面积上的力,N/m2b 大气压强的倍数1个标准大气压(0度,纬度为45度的海平面上的压强,用atm表示)1atm=760mm汞柱对底部产生的压强1atm=1.013*105Pa1个工程大气压(海拔200m的正常大气压,用at表示)1at=736nn汞柱对底部产生的压强。
1at=9.8*104Pac 用液柱的高度表示——常用水柱高度或汞柱高度表示(2) 压强的表示方法;a.绝对压强——以完全真空作为压强的起点叫绝对压强。
(p’)b.相对压强——以当地大气压强pa作为压强起点记的压强叫响度压强p. p=p’ –pa以后所指的压强均为相对压强,除非给出特殊说明。
绝对压强永远为正,而相对压强可正可负。
c.真空压强——指流体中某点的绝对压强小于大气压强的部分,而不是指绝对压强本身(也就是该点点相对压强的绝对值)(pv)Pv=pa-p’§1-3 流体运动的基本知识1、本节教学内容和要求:1.1本节教学内容:(1) 液体运动的基本概念,包括流线和迹线,元流和总流,过水断面、流量和断面平均流速,恒定流和非恒定流,均匀流和非均匀流,渐变流和急变流。
(2)恒定总流连续性方程。
(3)恒定总流的能量方程。
1.2 教学要求:(1)理解液体运动的基本概念,包括流线和迹线,元流和总流,过水断面、流量和断面平均流速,恒定流和非恒定流,均匀流和非均匀流,渐变流和急变流。
(2)掌握并会应用恒定总流连续性方程。
(3)掌握并会应用恒定总流的能量方程解决一些工程实践中的问题。
1.3 教学难点和重点:难点:恒定总流的能量方程。
重点:恒定总流连续性方程,恒定总流的能量方程。
2.教学内容和知识要点:2.1 流体运动的基本概念:a. 压力流和无压流压力流:流体在压差作用下流动,流体整个周围都和固体笔相接触,没有自由表面。
无压流:液体在重力作用下流动时,液体的部分周界与固体壁面相接处,不分界面与大气相接触,形成自由表面。
b. 恒定流域非恒定流恒定流:流场中液体质点通过空间点时所有的运动要素都不随时间而变化的流动称为恒定流;非恒定流:反之,只要有一个运动要素随时间而变化,就是非恒定流。
非恒定流的流速、压强等运动要素是时间的函数,由于描述液体运动的变量增加,使得水流运动分析更加复杂和困难。
虽然自然界的水流绝大部分是非恒定流,但在一定条件下,常将非恒定流简化为恒定流进行讨论。
本课程主要讨论恒定流运动。
c. 迹线与流线迹线:迹线是液体质点运动的轨迹,它是某一个质点不同时刻在空间位置的连线,迹线必定与时间有关。
流线:流线是某一瞬间在流场中画出的一条曲线,这个时刻位于曲线上各点的质点的流速方向与该曲线相切。
对于恒定流,流线的形状不随时间而变化,这时流线与迹线互相重合;对于非恒定流,流线形状随时间而改变,这时流线与迹线一般不重合。
流线有两个重要的性质,即流线不能相交,也不能转折,否则交点(或转折)处的质点就有两个流速方向,这与流线的定义相矛盾。
也可以说某瞬时通过流场中的任一点只能画一条流线。
流线的形状和疏密反映了某瞬时流场内液体的流速大小和方向,流线密的地方表示流速大,流线疏处表示流速小。
d. 均匀流与非均匀流均匀流:流线是相互平行的直线的流动称为均匀流。
这里要满足两个条件,即流线既要相互平行,又必须是直线,非均匀流:其中有一个条件不能满足,这个流动就是非均匀流。
均匀流的概念也可以表述为液体的流速大小和方向沿空间流程不变。
流动的恒定、非恒定是相对时间而言,均匀、非均匀是相对空间而言;恒定流可是均匀流,也可以是非均匀流,非恒定流也是如此,但是明渠非恒定均匀流是不可能存在的,请注意区分。
均匀流具有下列特征:1)过水断面为平面,且形状和大小沿程不变;2)同一条流线上各点的流速相同,因此各过水断面上平均流速v相等;3)同一过水断面上各点的测压管水头为常数。
e. 元流、总流、过水断面、流量与断面平均流速元流:元流是横断面积无限小的流束,它的表面是由流线组成的流管。
总流:由无数个元流组成的宏观水流称为总流。
过水断面:与元流或总流的所有流线正交的横断面称为过水断面。
过水断面的形状可以是平面(当流线是平行的直线时)或曲面(流线为其它形状)。
流量:单位时间内流过某一过水断面的液体体积称为流量,流量用Q表示,单位为(m3/s)。