流体力学基本概念和基础知识..知识分享

合集下载

(完整版)流体力学重点概念总结

(完整版)流体力学重点概念总结

第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。

它的大小与作用面积成比例。

剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。

重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。

单位:kg/m3 。

重度:指单位体积流体的重量。

单位: N/m3 。

流体的密度、重度均随压力和温度而变化。

流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。

静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。

流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。

流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。

任何一种流体都具有粘滞性。

牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。

τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。

动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。

2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。

静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。

第4章 流体基本知识

第4章 流体基本知识
粘性作用表现不出来-------流体静力学为无黏性流体的力学 模型。
注:不是流体没有粘性
一、流体的静压强定义:
流体的压强(pressure) :在流体内部或固体壁面所存在的单位 面积上 的法向作用力 流体静压强(static pressure):流体处于静止状态时的压强。
p
lim
A0
P A
4、稳定流和非稳定流
定常流动(steady flow) :流动物理参数不随时间而变化
如:p f ( x, y, z), u f ( x, y, z, )
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f ( x, y, z, t ), u f ( x, y, z, t )
式中μ——黏度或黏滞系数(viscosity or absolute viscosity)。
黏度的单位是:N.s/m2或Pa.s 黏度μ的物理意义:表征单位速度梯度作用下的切应力, 反映了流体黏性的动力性质,所以μ又被称为动力黏度。 与动力黏度μ对应的是运动黏度υ(kinematic viscosity),二 者的关系是
V 0
V 0
V
V
G V
三、流体的压缩性与膨胀性 1、压缩性: 定义:在一定的温度下,流体的体积随压强升高而缩 小的性质 表示方法:体积压缩系数β (The coefficient of compressibility)
1 dV V dp
(1/Pa)
2、膨胀性: 定义: 在一定的压强下,流体的体积随温度的升 高而增大的性质 表示方法:温度膨胀系数α(the coefficient of expansibility)
特别注意:流体静压强的分 布规律只适用于静止、同种、 连续的流体。

流体力学基本概念和基础知识..

流体力学基本概念和基础知识..

流体力学基本概念和基础知识(部分)1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体?流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质dydu A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。

水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。

(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。

2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。

连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化)3.什么是理想流体?不考虑黏性作用的流体,称为无黏性流体(或理想流体)4.什么是实际流体? 考虑黏性流体作用的实际流体5.什么是不可压缩流体?流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。

6.为什么流体静压强的方向必垂直作用面的内法线?流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向7.为什么水平面必是等压面?由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。

8.什么是等压面?满足等压面的三个条件是什么?在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。

满足等压面的三个条件是同种液体连续液体静止液体。

9.什么是阿基米德原理?无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。

10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况?重力大于浮力,物体下沉至底。

重力等于浮力,物体在任一水深维持平衡。

重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。

11.等角速旋转运动液体的特征有那些?(1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。

(完整版)流体力学知识点总结汇总

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3 流体力学的研究方法:理论、数值、实验。

4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。

B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

流体力学基本知识

流体力学基本知识
流体在长直管(或明渠)中流动,所受的摩 擦阻力称为沿程阻力。为了克服沿程阻力而消耗 的单位重量流体的机械能量,称为沿程水头损失
hf。
(二)局部阻力和局部水头损失 流体的边界在局部地区发生急剧变化时,迫
使主流脱离边壁而形成漩涡,流体质点间产生剧 烈地碰撞,所形成的阻力称局部阻力。为了克服 局部阻力而消耗的重力密度流体的机械能量称为
5.断面平均流速:流体流动时,断面各点流速一般 不易确定,当工程中又无必要确定时,可采用断
面平均流速(v)简化流动。断面平均流速为断
面上各点流速的平均值。
精品课件
二、恒定流的连续性方程
压缩流体容重不变,即体积流 量相等。流进A1断面的流量等于流 出A2断面的流量;
精品课件
三、恒定总流能量方程
(一)恒定总流实际液体的能量方程
〈1〉温度升高,液体的粘度减小(因为T上 升,液体的内聚力变小,分子间吸引力减 小;)
〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
精品课件
压缩性:流体压强增大体积缩小的性质。 不可压缩流体:压缩性可以忽略不计的流体。 可压缩流体:压缩性不可以不计的流体。
精品课件
一、流体静压强及其特性
表面压强为: p=△p/△ω (1-6)
点压强为:
lim ( Pa)
p=dp/dω
点压强就是静压强
精品课件
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。 (2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
精品课件
二、流体静压强的分布规律

工程流体力学知识点总结

工程流体力学知识点总结

工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。

它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。

2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。

它是流体物理学的基本内容,是工程流体力学的基础理论。

它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。

3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。

它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。

4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。

流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。

它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。

5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。

它是工程流体力学中的重要内容,也是工程设计的重要基础。

二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。

它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。

流体力学的基本知识点的阐述

流体力学的基本知识点的阐述

(压力形式)
(1-8)
1.2 流体静力学基本概念
变形得 p1/ρ+z1g=p2/ρ+z2g (能量形式)(1-9) 若将液柱的上端面取在容器内的液面上,设液面上 方的压力为pa,液柱高度为h,则式(1-8)可改写为 p2=pa+ρgh (1-10) 式(1-8)、式(1-9)及式(1-10)均称为静力学 基本方程,其物理意义在于:在静止流体中任何一点的 单位位能与单位压能之和(即单位势能)为常数。
1.2 流体静力学基本概念
图1.3 绝对压力、表压与真空度的关系
1.2 流体静力学基本概念
1.2.2 流体静力学平衡方程
1.2.2.1 静力学基本方程
假如一容器内装有密度为ρ的液体,液体可认 为是不可压缩流体,其密度不随压力变化。在静 止的液体中取一段液柱,其截面积为A,以容器 底面为基准水平面,液柱的上、下端面与基准水 平面的垂直距离分别为z1和z2,那么作用在上、下 两端面的压力分别为p1和p2。
1.1 流体主要的力学性质
1.1.2 流体的主要力学性质
1. 易流动性
流体这种在静止时不能承受切应力和抵抗剪切变形 的性质称为易流动性
2. 质量密度
单位体积流体的质量称为流体的密度,即ρ=m/V
3. 重量密度
流体单位体积内所具有的重量称为重度或容重,以γ 表示。γ=G/V
1.1 流体主要的力学性质
图1-8
1.4 流动阻力与能量损失
因是直径相同的水平管,u1=u2,Z1=Z2,故 Wf=(P1-P2)/ρ (1-22) 若管道为倾斜管,则 Wf=(P1/ρ+Z1g)-(P2/ρ+Z2g) (1-23) 由此可见,无论是水平安装还是倾斜安装, 流体的流动阻力均表现为静压能的减少,仅当水 平安装时,流动阻力恰好等于两截面的静压能之 差。

第一章 流体力学的基础知识

第一章 流体力学的基础知识

u P u Z1 Z2 2g 2g P
假设从1—1断面到2—2断面流动过程中损失为h, 则实际流体流动的伯努利方程为
2 u12 P u2 Z1 Z2 h 2g 2g
2 1
2 2
P
第一章 流体力学的基础知识
1.3 流体动力学基础
【例 1.2 】如图 1-7所示,要 用水泵将水池中的水抽到用 水设备,已知该设备的用水 量为 60m3/h ,其出水管高
单体面积上流体的静压力称为流体的静压强。
若流体的密度为ρ,则液柱高度h与压力p的关系 为:
p=ρgh
第一章 流体力学的基础知识
1.2 流体静力学基本概念
1.2.1 绝对压强、表压强和大气压强
以绝对真空为基准测得的压力称为绝对压力,它是流 体的真实压力;以大气压为基准测得的压力称为表压 或真空度、相对压力,它是在把大气压强视为零压强 的基础上得出来的。
第一章 流体力学的基础知识
1.3 流体动力学基础
(3) 射流
流体经由孔口或管嘴喷射到某一空间,由于运动的 流体脱离了原来的限制它的固体边界,在充满流体的空 间继续流动的这种流体运动称为射流,如喷泉、消火栓 等喷射的水柱。
第一章 流体力学的基础知识
1.3 流体动力学基础
4. 流体流动的因素
(1) 过流断面
2. 质量密度
单位体积流体的质量称为流体的密度,即ρ=m/V
3. 重量密度
流体单位体积内所具有的重量称为重度或容重,以γ 表示。γ=G/V
第一章 流体力学的基础知识
1.1 流体主要的力学性质
质量密度与重量密度的关系为:
γ=G/V=mg/V=ρg
4. 粘性
表明流体流动时产生内摩擦力阻碍流体质点或流层 间相对运动的特性称为粘性,内摩擦力称为粘滞力。 粘性是流动性的反面,流体的粘性越大,其流动性

流体力学基础学习知识知识

流体力学基础学习知识知识

流体⼒学基础学习知识知识第⼀章流体⼒学基本知识学习本章的⽬的和意义:流体⼒学基础知识是讲授建筑给排⽔的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排⽔课程中的相关内容。

§1-1 流体的主要物理性质1.本节教学内容和要求:1.1本节教学内容:流体的4个主要物理性质。

1.2教学要求:(1)掌握并理解流体的⼏个主要物理性质(2)应⽤流体的⼏个物理性质解决⼯程实践中的⼀些问题。

1.3教学难点和重点:难点:流体的粘滞性和粘滞⼒重点:⽜顿运动定律的理解。

2.教学内容和知识要点:2.1 易流动性(1)基本概念:易流动性——流体在静⽌时不能承受切⼒抵抗剪切变形的性质称易流动性。

流体也被认为是只能抵抗压⼒⽽不能抵抗拉⼒。

易流动性为流体区别与固体的特性2.2密度和重度(1)基本概念:密度——单位体积的质量,称为流体的密度即:Mρ=VM——流体的质量,kg ;V——流体的体积,m3。

常温,⼀个标准⼤⽓压下Ρ⽔=1×103kg/ m3Ρ⽔银=13.6×103kg/ m3基本概念:重度:单位体积的重量,称为流体的重度。

重度也称为容重。

Gγ=VG——流体的重量,N ;V——流体的体积,m3。

∵G=mg ∴γ=ρg 常温,⼀个标准⼤⽓压下γ⽔=9.8×103kg/ m3γ⽔银=133.28×103kg/ m3密度和重度随外界压强和温度的变化⽽变化液体的密度随压强和温度变化很⼩,可视为常数,⽽⽓体的密度随温度压强变化较⼤。

2..3 粘滞性(1)粘滞性的表象基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。

当某⼀流层对相邻流层发⽣位移⽽引起体积变形时,在流体中产⽣的切⼒就是这⼀性质的表现。

为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。

⽤流速仪测出管道中某⼀断⾯的流速分布如图⼀所⽰设某⼀流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。

第1章 流体力学基本知识

第1章 流体力学基本知识

数学表达式:
二、流体的粘滞性 粘滞性 :流体内部质点间或层流间因相对运动 而产生内摩擦力(切力)以反抗相对运动的 性质。
牛顿内摩擦定律:
F-内摩擦力,N; S-摩擦流层的接触面面积,m2;
τ-流层单位面积上的内摩擦力(切应力),N/
m2;
du/dn-流速梯度,沿垂直流速方向单位长度 的流速增值;

hω1-2 =Σhf+Σhj
二、流动的两种型态--层流和紊流
二、流动的两种型态--层流和紊流

实验研究发现,圆管内流型由层流向湍流 的转变不仅与流速u有关,而且还与流体的 密度、粘度 以及流动管道的直径d有关。 将这些变量组合成一个数群du/,根据该 数群数值的大小可以判断流动类型。这个 数群称为雷诺数,用符号Re表示,即

从元流推广到总流,得:

由于过流断面上密度ρ为常数,以
u d u d
1 1 1 2 2 1 2
2

带入上式,得:


ρ1Q1 =ρ2 Q2 Q=ωv ρ1ω1v 1=ρ2ω2v 2
(1-11)
(1-11a)

(1-11)、 (1-11a) --质量流量的连 续性方程式。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介

本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。


v
2 2 2
2g
h12

(整理)流体力学基本知识

(整理)流体力学基本知识

第一章流体力学基本知识解析第一节流体及其空气的物理性质流动性是流体的基本物理属性。

流动性是指流体在剪切力作用下发生连续变形、平衡破坏、产生流动,或者说流体在静止时不能承受任何剪切力。

易流动性还表现在流体不能承受拉力。

(一) 流体的流动性通风除尘与气力输送涉及的流体主要是空气。

流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。

但在流体力学中,一般不考虑流体的微观结构而把它看成是连续的。

这是因为流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分子集团,称每个分子集团为质点,而质点在流体的内部一个紧靠一个,它们之间没有间隙,成为连续体。

实际上质点包含着大量分子,例如在体积为10-15cm3的水滴中包含着3×107个水分子,在体积为1mm3的空气中有2.7×1016个各种气体的分子。

质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的个别性,按连续质点的概念所得出的结论与试验结果是很符合的。

然而,也不是在所有情况下都可以把流体看成是连续的。

高空中空气分子间的平均距离达几十厘米,这时空气就不能再看成是连续体了。

而我们在通风除尘与气力输送中所接触到的流体均可视为连续体。

所谓连续性的假设,首先意味着流体在宏观上质点精品文档精品文档是连续的,其次还意味着质点的运动过程也是连续的。

有了这个假设就可以用连续函数来进行流体及运动的研究,并使问题大为简化。

(二)惯性(密度)流体的第一个特性是具有质量。

流体单位体积所具有流体彻底质量称为密度,用符号ρ表示。

在均质流体内引用平均密度的概念,用符号ρ表示:Vm =ρ 式中: m ——流体的质量[Kg];V ——流体的体积[m 3];ρ——流体密度Kg/m 3。

但对于非均质流体,则必需用点密度来描述。

所谓点密度是指当ΔV →0值的极限(dV dm V m V 0 lim ),即: dV dm V m lim V =∆∆=→∆0ρ精品文档 公式中,ΔV →0理解为体积缩小为一点,此点的体积可以忽略不计,同时,又必须明确,这点和分子尺寸相比必然是相当大的,它必定包括多个分子,而不至丧失流体的连续性。

流体力学的基本概念与原理

流体力学的基本概念与原理

流体力学的基本概念与原理引言:流体力学是研究流体运动规律的学科,涉及广泛且应用领域广泛。

本文将介绍流体力学的基本概念与原理,包括流体、流体静力学、流体动力学以及相关应用等方面的内容。

一、流体的基本特性流体是指能够流动的物质,主要包括液态流体和气态流体。

相较于固体,流体具有以下基本特性:1. 流动性:流体能够在物体表面滑动或流动。

2. 不可压缩性:理想流体在正常条件下几乎不可压缩,而实际流体也只在极高压力下才会发生明显的压缩。

3. 连续性:流体不存在间断,可以填充空间。

4. 流体内部分子间力的相对较小:流体分子间的相互作用力相对较弱,以致于在外力作用下,流体分子会相对较快地改变位置。

二、流体静力学流体静力学研究的是处于静止状态的流体,主要涉及以下概念与原理:1. 压强:压强是流体对单位面积上的压力。

根据帕斯卡原理,流体中的压强在各个方向上都是相等的。

2. 大气压:大气压是指大气对物体单位面积上的压力,通常用标准大气压作为基准。

3. 浮力:根据阿基米德原理,浸在液体中的物体会受到一个向上的浮力,其大小等于物体排斥液体的重量。

4. 斯托克斯定律:斯托克斯定律描述了粘性流体中小球的受力情况,根据该定律,小球的阻力与小球半径、流体黏度以及小球速度有关。

三、流体动力学流体动力学研究的是流体在运动过程中的行为,主要涉及以下概念与原理:1. 流速与流量:流速是单位时间内通过某个截面的流体体积,流量是单位时间内通过某个截面的流体质量或体积。

2. 流体动能:流体动能是流体由于运动而具有的能量,与流体的质量和速度有关。

3. 费诺特定律:费诺特定律是描述粘性流体内摩擦力与流速梯度之间关系的定律,根据该定律,粘性流体内部存在着滑动摩擦和黏滞摩擦。

4. 贝努利定律:贝努利定律描述了在不可压缩、稳定流动的流体中,沿着流线速度增大的地方,压强会减小;反之,速度减小的地方,压强会增大。

四、流体力学的应用流体力学的研究内容和应用广泛,常见的应用领域包括但不限于:1. 水力学:研究水的流动、水耗等问题,广泛应用于水利工程、水电站等领域。

流体力学基本知识-流体运动的基本知识

流体力学基本知识-流体运动的基本知识

v2 2g
v2 2g
3.过流断面:流体运动时,与元流或总流全部流线 正交的横断面。以dw或w示之,单位:m2或cm2。
注意:均匀流的过流断面为平面;
非均匀流的过流断面一般为曲面,其中渐变 流的过流断面可视为平面。
4.流量 (1)体积流量:流体运动时,单位时间内通过过流 断面的流体体积。以Q表示,单位:m3/s,L/s。 (2)重量流量:流体运动时,单位时间内通过过流 断面的流体流量。以Q表示,单位:N/s。 (3)质量流量:流体运动时,单位时间内通过过流 断面的流体质量。以Q表示,单位:kg/s。
3.流体流动型态的判别
雷诺数
vd
Re 2000
-------层流
雷诺数
Re
vd
2000
-------紊流
注意:建筑设备工程中,绝大多数的流体运动都处
于紊流型态。
三、沿程水头损失 采用半经验公式:
hf
l v2
d 2g
为沿程阻力系数,它是反映边界粗糙情 况和
流态对水头损失影响的一个系数。
第三节 流体运动的基本知识 一、流体运动的基本概念
(一)压力流与无压流
1.压力流:流体在压差作用下流动时,流体整个周 围和固体壁相接触,没有自由表面,如供热管道。
供热管道
2.无压流:液体在重力作用下流动时,液体的部分 周界与固体壁相接触,部分周界与气体相接触,形 成自由表面,如天然河流等。
天然河流
(二)恒定流与非恒定流
1.恒定流 :流体运动时,流体中任一位置的压强、 流速等运动要素不随时间变化的流动。
2.非恒定流 :流体运动时,流体中任一位置的运动 要素如压强、流速等随时间变化的流动。
注意:自然界中都是非恒定流,工程中取为 恒定流。

流体力学基础知识

流体力学基础知识


升的高度,称为压强水头,也称为流体的静压能、
静压头等;
返回 上页 下页
流体力学基础知识
Z
P

——测压管水头;
Z
P
的测压管水头均相等。

C —— 同一容器内的静止液体中,所有各点
返回 上页 下页
流体力学基础知识
4.流体压强的表示方法:
( 1 )用应力单位表示。从压强定义出发,用单位面 积上的力表示,即牛顿 /米 2( N/m2),国际单位制为 帕斯卡(Pa)。 ( 2 )用液柱高度表示。常用水柱高度和汞柱高度表 示。其单位是:mH2O、mmH2O或mmHg。
返回 上页 下页
流体力学基础知识
当流体所受质量力只有重力时,由G=mg可得 单位质量力为:
f X 0、f Y 0、f Z - g
2、表面力 表面力是指作用在流体表面上的力,其大小与 受力表面的面积成正比。 流体处于静止状态时,不存在黏性力引起的内 摩擦力(切向力为零),表面力只有法向压力。对于 理想流体,无论是静止或处于运动状态,都不存在 内摩擦力,表面力只有法向压力。
返回 上页 下页
流体力学基础知识
4.均匀流和非均匀流 均匀流是流体运动时流线是平行直线的流动。 如等截面长直管中的流动。 非均匀流是流体运动时流线不是平行直线的流 动。如流体在收缩管、扩大管或弯管中流动等。 非均匀流又可分为渐变流和急变流。渐变流是 流体运动中流线接近于平行线的流动;急变流是流 体运动中流线不能视为平行直线的流动 。
Q wv
返回 上页 下页
流体力学基础知识
2.恒定流和非恒定流 流体运动形式分为恒定流动和非恒定流动两类。 恒定流动是指流体中任一点的压强和流速等运动 参数不随时间而变化的流动。 非恒定流动是指流体中任一点压强和流速等参数 随时间而变化的流动。 自然界的流体流动都是非恒定流动,在一定条件 下工程上近似认为是恒定流。

流体力学基本知识

流体力学基本知识
即真空度=大气压强– 绝对压强 绝对压强越高,表压愈大;真空度越大,绝对压强愈低。
第二节 流体静力学的基本概念
▪ 2、压强的计量单位
▪ (1)定义式:
▪ 国际单位制(SI)制:1N/m2=1Pa;
1bar=105 Pa
▪ 工程制: 1kgf/cm2=1kg×9.8065[m/s2]/10–4[m2]

=9.8065×104 Pa
第二节 流体静力学的基本概念
▪ (2)用大气压表示: ▪ 1atm(标准大气压)=1.033 kgf/cm2 ▪ =1.033×9.8065×104 Pa=1.0133×105 Pa ▪ =1.0133 bar
第二节 流体静力学的基本概念
(3)用液柱的高度表示: p=F/A=ρVg/A=ρ(AZ)g/A=ρZg
力增大,动力消耗增大,操作费用增大; 当V一定时,u减小,则d增大,管材费用增加,流动
阻力减小,动力消耗减小,操作费用减小;在允许 范围内,从长远利益考虑,一般选择管径较大者。
第三节 管内流体流动的基本方程式
二、流体运动的类型 1、有压流: 流体在压差作用下流动,流体各个过流断面的
整个周界都与固体壁相接触,没有自由表面,这种流体流 动为有压流。 2、无压流: 流体在重力作用下流动,流体各个过流断面的 部分周界与固体壁相接触,具有自由表面,这种流体流动 为无压流。 3、稳定流动:流体在管道中流动时,若任一点的流速、压 力等有关物理参数都不随时间改变,仅随位置改变,即 u=f(x,y,z),ut=ut+△t,则这样的流动为稳定流动。 4、不稳定流动:流体在管道中流动时,若任一点的流速、 压力等有关物理参数不仅随位置改变,而且随时间发生部 分或全部改变,即u=f(x,y,z,t),ut≠ut+△t,这样的流 动为不稳定流动

大学物理流体力学基础知识点梳理

大学物理流体力学基础知识点梳理

大学物理流体力学基础知识点梳理一、流体的基本概念流体是指能够流动的物质,包括液体和气体。

与固体相比,流体具有易变形、易流动的特点。

流体的主要物理性质包括密度、压强和黏性。

密度是指单位体积流体的质量,用ρ表示。

对于均质流体,密度等于质量除以体积;对于非均质流体,密度是空间位置的函数。

压强是指流体单位面积上所受的压力,通常用 p 表示。

在静止流体中,压强的大小只与深度和流体的密度有关,遵循着著名的帕斯卡定律。

黏性是流体内部抵抗相对运动的一种性质。

黏性的存在使得流体在流动时会产生内摩擦力,阻碍流体的流动。

二、流体静力学流体静力学主要研究静止流体的力学规律。

(一)静止流体中的压强分布在静止的均质流体中,压强随深度呈线性增加,其关系式为 p =p₀+ρgh,其中 p₀为液面处的压强,h 为深度,g 为重力加速度。

(二)浮力定律当物体浸没在流体中时,会受到向上的浮力。

浮力的大小等于物体排开流体的重量,即 F 浮=ρgV 排,这就是阿基米德原理。

三、流体动力学(一)连续性方程连续性方程是描述流体在流动过程中质量守恒的定律。

对于不可压缩流体,在稳定流动时,通过管道各截面的质量流量相等,即ρv₁A₁=ρv₂A₂,其中 v 表示流速,A 表示横截面积。

(二)伯努利方程伯努利方程反映了流体在流动过程中能量守恒的关系。

其表达式为p +1/2ρv² +ρgh =常量。

即在同一流线上,压强、动能和势能之和保持不变。

伯努利方程有着广泛的应用。

例如,在喷雾器中,通过减小管径增加流速,从而降低压强,使得液体被吸上来并雾化;在飞机机翼的设计中,利用上下表面流速的差异产生压强差,从而提供升力。

四、黏性流体的流动(一)层流与湍流当流体流速较小时,流体呈现出有规则的层状流动,称为层流;当流速超过一定值时,流体的流动变得紊乱无序,称为湍流。

(二)黏性流体的流动阻力黏性流体在管道中流动时会受到阻力。

阻力的大小与流体的黏度、流速、管道的长度和直径等因素有关。

流体力学相关知识点

流体力学相关知识点

流体力学相关知识点流体力学是一门研究流体(液体和气体)的力学行为的学科。

以下是流体力学中的一些基本概念和知识点:1. 牛顿粘性定律:流体力学中的内摩擦力或粘性力,与相对速度梯度和接触面面积成正比,与流体的物理属性(粘度)有关。

2. 伯努利定理:在不可压缩、无粘性的理想流体中,流体的总能量(动能+势能)沿流线保持不变。

3. 斯托克斯定理:在重力和表面张力作用下的粘性流体,如果流动是小扰动引起的,则流线是围绕封闭曲线的闭合曲线。

4. 泊肃叶定律:在一定条件下,粘性流体在管道中流动时,其流量Q与管道半径r,流体粘度μ及管道长度L成正比,与压强差ΔP成正比。

5. 库塔流定理:在二维不可压缩、无粘性的理想流体中,如果存在一个封闭的不可穿透的曲线(库塔流线),则在该曲线所包围的区域内,存在一个与之相对应的稳定流体运动。

6. 欧拉方程:描述了流体运动的动量变化率等于外力(体积力与表面力之和)对该流体微元的作用。

7. 雷诺方程:描述了粘性流体在管内层流时,其动量方程如何受到粘性的影响。

8. 纳维-斯托克斯方程:描述了考虑粘性效应的流体运动的动量、能量和组分变化等基本方程。

9. 普朗特边界层方程:描述了流体在物体表面附近形成边界层后,边界层的动量、能量和组分变化等基本方程。

10. 流体静力学:研究流体静止时的平衡状态及对固体壁面的压力和作用力。

11. 流体动力学:研究流体运动的基本规律,包括速度场、压力场、温度场等。

12. 湍流理论:研究湍流的形成、发展和衰减机理,建立湍流模型并求解湍流运动的基本方程。

13. 流动稳定性理论:研究流体运动的稳定性问题,分析流体微小扰动的发展和演化过程。

14. 计算流体力学:通过数值方法求解流体力学的基本方程,模拟和分析流体运动的规律和特性。

以上是流体力学中的一些基本概念和知识点,它们是理解和解决实际工程问题的基础。

流体力学基础知识

流体力学基础知识

余热发电专业理论知识培训教材流体力学基础知识一、流体的物理性质1、流动性流体的流动性是流体的基本特征,它是在流体自身重力或外力作用下产生的。

这也是流体容易通过管道输送的原因2、可压缩性流体的体积大小会随它所受压力的变化而变化,作用在流体上的压力增加,流体的体积将缩小,这称为流体的可压缩性。

3、膨胀性流体的体积还会随温度的变化而变化,温度升高,则体积膨胀,这称为流体的膨胀性。

4、粘滞性粘滞性标志着流体流动时内摩擦阻力的大小,它用粘度来表示。

粘度越大,阻力越大,流动性越差。

气体的粘度随温度的升高而升高,液体的粘度随温度的升高而降低。

二、液体静力学知识1、液体静压力及其基本特性液体静压力是指作用在液体内部距液面某一深度的点的压力。

液体静压力有两个基本特性:①液体静压力的方向和其作用面相垂直,并指向作用面。

②液体内任一点的各个方向的静压力均相等。

2、液体静力学基本方程P=Pa+ρgh式中Pa----大气压力ρ-----液体密度上式说明:液体静压力的大小是随深度按线性变化的。

3、绝对压力、表压力和真空①绝对压力:是以绝对真空为零算起的。

用Pj表示。

②表压力(或称相对压力):以大气压力Pa为零算起的。

用Pb表示。

③真空:绝对压力小于大气压力,即表压Pb为负值。

绝对压力、表压力、真空之间的关系为:Pj=Pa+Pb三、液体动力学知识1、基本概念①液体的运动要素:液体流动时,液体中每一点的压力和流速,反映了流体各点的运动情况。

因此,压力和流速是流体运动的基本要素。

②流量和平均流速:假定流体在流过断面时,其各点都具有相同的流速,在这个流速下所流过的流量与同一断面各点以实际流速流动时所流过的流量相当,这个流速称为平均流速,记作V。

单位时间内,通过与管内液流方向相垂直的断面的液体数量,称为流量。

流量可分为体积流量Qv和质量流量Qm。

Qv=V AQm=ρV A③稳定流和非稳定流:稳定流是指流体流速和压力不随时间的变化而变化的流动,反之则为非稳定流。

流体力学的基本概念和原理

流体力学的基本概念和原理

流体力学的基本概念和原理流体力学是物理学中研究流体运动以及其力学性质的学科。

在工程学、地球科学和生物学等领域中都有广泛的应用。

本文将介绍流体力学的基本概念和原理。

一、流体的定义和性质流体是指能够流动的物质,包括液体和气体。

相比固体,流体的特点是没有一定的形状和体积,能够适应所处容器的形状和体积。

流体的性质包括密度、压力、粘性等。

1. 密度:流体的密度定义为单位体积内的质量,通常用符号ρ表示。

密度越大,单位体积内的质量越多,流体的惯性越大。

2. 压力:流体由于自身重力和外界作用力而产生的分子间压力,即压强。

单位面积的压力常用符号p表示。

3. 粘性:流体的内部存在分子间的相互作用力,这种内部摩擦力使得流体具有黏性,即粘稠度。

二、流体流动的基本特征流体力学研究的核心是流体的运动问题。

流体的流动可以分为稳定流动和非稳定流动两种状态。

1. 稳定流动:当流体在一段时间内保持流速和流向不变时,称为稳定流动。

稳定流动的流速分布是均匀的,流体各处的速度相等。

2. 非稳定流动:当流体的流速和流向随时间变化时,称为非稳定流动。

非稳定流动的流速分布不均匀,流体各处的速度不等。

三、流体运动的描述为了更准确地描述流体的运动,流体力学引入了速度场和流线两个概念。

1. 速度场:速度场是指在流体中任意一点上的瞬时速度。

它可以用速度向量来表示,速度向量的大小表示速度的大小,方向表示速度的方向。

2. 流线:流线是指沿着流体的运动方向而形成的曲线。

流线上的任意一点的速度矢量和流线切线方向相同。

流线的密度越大,流体的速度越大。

四、流体运动的基本原理流体力学的研究依赖于一些基本原理,其中包括连续性方程、动量方程和能量方程。

1. 连续性方程:连续性方程表明流体在任意两个相邻截面上的质量流量相等。

它可以通过质量守恒定律推导得到。

2. 动量方程:动量方程用于描述流体中的力学行为。

根据牛顿第二定律,流体中单位体积的动量随时间的变化率等于由外力和压力产生的合力。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结x一、流体力学基本概念1、流体:指气体和液体,其中气体又称气态物质,液体又称液态物质,也指过渡态的固、液、气。

2、流体静力学:指研究流体在外力作用下的静态特性、压强及重力场等的一般理论。

3、流体动力学:指研究复杂流动现象的动态特性,如流速、湍流及涡流等。

4、流体性质:指流体具有的物理性质,如密度、粘度、比容、表面张力和热特性等。

二、基本假定1、流体的原子间的相互作用是可以忽略的,可以认为是稀薄的。

2、可以假设流体每@点的性质是一致的,允许有速度和温度的变化,其变化有连续性。

3、流体的流动受力不受力,受力的变化很小。

4、流体流动的程度比凝固物体的几何比例大,可以忽略凝固物体对流体流动的影响。

三、流体力学基本概念1、流体质量流率:是流体中的所有物质在某一时刻的移动量,单位为千克/秒(千克/秒)。

2、流体动量流率:是流体中所有物质在某一时刻的动量的移动量,单位是千克·米/秒(千克·米/秒)。

3、流体的动量守恒:流体系统中的动量移动量不变,即:动量进入系统等于动量离开系统。

4、流体的动量定理:假定流体的粘度是恒定的,在流体力学中,运动的流体的动量守恒定理如下:5、流体的能量守恒:流体系统中的能量移动量不变,即:能量的一部分进入系统、离开系统或转移到其他系统中等于能量的一部分离开系统或转移到系统中。

6、绝对动量守恒:在不考虑粘度、流体的办法、温度及热量的变化的情况下,流体系统的绝对动量总量不变。

四、流体力学基本公式1、流体的动量定理:即Bernoulli定理,它用来描述非稳定流动中的动量转换,其形式为:p+ρv2∕2+ρgz=P+ρV+2;2、流体的能量定理:即费休定理,它用来描述流体中的施加动能和升能变化,其形式为:p+ρv2∕2+ρgz=P+ρV∕2+ρgz;3、流体力学定理:即拉格朗日定理,它用来描述流体的流动变化,其形式为:p+ρv2∕2+ρgz=p0+ρv02∕2+ρgz0;4、流体的动量方程:用来描述流体的动量变化,其形式为:(ρv)t+·ρvv=p+·μv+ρf。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体力学基本概念和基础知识(部分)1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体?流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dydu A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。

水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。

(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。

2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。

连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化)3.什么是理想流体?不考虑黏性作用的流体,称为无黏性流体(或理想流体)4.什么是实际流体? 考虑黏性流体作用的实际流体5.什么是不可压缩流体?流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。

6.为什么流体静压强的方向必垂直作用面的内法线?流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向7.为什么水平面必是等压面?由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。

8.什么是等压面?满足等压面的三个条件是什么?在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。

满足等压面的三个条件是同种液体连续液体静止液体。

9.什么是阿基米德原理?无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。

10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况?重力大于浮力,物体下沉至底。

重力等于浮力,物体在任一水深维持平衡。

重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。

11.等角速旋转运动液体的特征有那些?(1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。

12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少?绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。

相对压强:当地同高程的大气压强ap为零点起算的压强。

压力表的度数是相对压强,通常说的也是相对压强。

1atm=101325pa=10.33mH2O=760mmHg.13.什么叫自由表面?和大气相通的表面叫自由表面。

14.什么是流线?什么是迹线?流线与迹线的区别是什么?流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。

区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。

流线是由无究多个质点组成的,它是表示这无究多个流体质点在某一固定瞬间运动方向的曲线。

而迹线则是在时间过程中表示同一流体质点运动的曲线。

15.什么是流场?我们把流体流动占据的空间称为流场16.什么是欧拉法?什么是拉格朗日法?欧拉法:通过描述物理量在空间的分布来研究流体运动的方法。

拉格朗日法:通过描述每一质点的运动达到了解流体运动的方法。

17.什么是恒定流动?什么是非恒定流动?什么是均匀流?什么是非均匀流?什么是急变流?什么是渐变流?运动平衡的流动,各点流速不随时间变化,由流速决定的压强、粘性力也不随时间变化,这种流动称之为恒定流动反之为非恒定流动。

质点流速的大小和方向均不变的流动叫均匀流动,反之为非均匀流动。

不均匀流动又按流速随流向变化的缓急,分为渐变流和急变流18.应用恒定总统能量方程时,为什么把过流断面选在渐变流段或均匀流段?19.因为建立恒定总流的伯努利方程时,把(z+P/pg)作为常熟提到积分号外面,只有渐变流断面或均匀流断面的(Z+P/pg)=C。

19.在写总流能量方程时,过流断面上的代表点、基准面是否可以任意选取?为什么?可以,因为渐变流断面或均匀流断面上(Z+P/pg)=C20.动能修正系数?动量修正系数?二者的大小和速度分布有何关系?动能修正系数:总流有效断面上的实际动能对按平均流速算出假象动能的比值,流速分布越不均匀,值越大。

动量修正系数:实际动量和按照平均流速计算的动量的比值,流速分布越不均匀,值越大。

21.什么是沿程损失?什么是局部损失?紊流流态下,管内沿程阻力系数的变化规律?在沿程不变的管段上,流动阻力沿程也基本不变,称这类阻力为沿程阻力,克服沿程阻力引起的能量损失为沿程损失。

在边壁急剧变化的区域,阻力主要地集中在该区域中及其附近,这种集中分布的阻力称为局部阻力。

克服局部阻力的能量损失为局部损失。

紊流光滑区(Re ≥4000) (Re)f =λ22.雷诺实验揭示了流体存在两种流态,它们是如何定义的?判别流态的准则是什么?并阐述其物理意义。

对有压圆管流,判别准则的临界值为多少?层流:各液层间毫不相混,分层有规则的流动状态。

紊流:液体质点的运动轨迹是极不规则的,各部分流体相互剧烈掺混。

用临界雷诺数作为判断准则,圆管流临界雷诺数等于200023.圆管层流流速分布规律?切应力的分布规律?)(420r r J u -=μγ γ——容重;J ——水力坡度;μ——动力黏度;0r ——管半径 J R g '=ρτ R '——对应的水力半径24.尼古拉兹实验中,沿程阻力系数的变化曲线分为哪几个区域?请分别阐述其变化规律?湍流三个不同流区沿程阻力系数的影响因素以及形成不同流区的根本原因。

层流区;层,紊流过渡区;紊流光滑区;紊流过渡区;紊流粗糙区25.相同的水力条件下,孔口自由出流的流量与管嘴出流的流量相比较,哪一个大?为什么会产生这种现象?管嘴正常工作的条件是什么?在相同条件下,管嘴的过流能力是孔口的 1.32倍。

收缩断面处真空起的作用。

圆柱形外管嘴的正常工作条件:作用水头 H0≤9.3m,管嘴长度l=(3~4)d.26.什么叫孔口自由出流和淹没出流?在容器侧壁或底壁上开一孔口,容器中的液体自孔口出流到大气中,称为孔口自由出流。

如出流到充满液体的空间,则称为淹没出流。

27.什么是有旋流动?什么是无旋流动?流体微团的旋转角速度不完全为零的流动称为有旋流动,流场中各点旋转角速度等于零的运动,成为无旋运动。

28.在流体力学中,拉格朗日分析法和欧拉分析法有何区别?拉格朗曰法着眼于流体中各质点的流动情况跟踪每一个质点观察与分析该质点的运动历程然后综合足够多的质点的运动情况以得到整个流体运动的规律。

欧拉法着眼于流体经过空间各固定点时的运动情况它不过问这些流体运动情况是哪些流体质点表现出来的也不管那些质点的运动历程因此拉格朗曰分析法和欧拉分析法是描述流体的运动形态和方式的两种不同的基本方法。

29.什么叫流管、流束、过流断面和元流?流线组成的管状流面,称为流管。

流管以内的流体,称为流束。

垂直于流束的断面称为流束的过流断面,当流束的过流断面无限小时,这根流束就称为元流。

30.什么是入口段长度?对于层流、紊流分别用什么表示?从入口到形成充分发展的管流的长度称为入口段长度,以Xe 表示。

层流:Xe/d=0.028Re.紊流:Xe/d=50.31.什么是单位压能?压力作功所能提供给单位重量流体的能量,称为单位压能32.什么是几何相似、运动相似和动力相似?什么是力学相似?几何相似是指流动空间几何相似,即形成此空间任意相应两线段交角相同,任意相应线段长度保持一定的比例。

运动相似是指两流动的相应流线几何相似,即相应点的流速大小成比例,方向相同。

动力相似是指要求同名力作用,相应的同名力成比例。

33.要保证两个流动问题的力学相似所必须具备的条件是什么?如果两个同一类的物理现象,在对应的时空点上,各标量物理量的大小成比例,各向量物理量除大小成比例外,且方向相同,则称两个现象是相似的。

要保证两个流动问题的力学相似,必须是两个流动几何相似,运动相似,动力相似,以及两个流动的边界条件和起始条件相似。

34.什么是因次(量纲)?什么是因次(量纲)分析法?因次是指物理量的性质和类别。

因次分析法就是通过对现象中的物理量的因次以及因次之间互相联系的各种性质的分析来研究对象相似性的方法。

35.什么是量纲(因次)和谐原理?试举例说明。

完整的物理方程式中的各项的因次应相同的性质36.为什么虹吸管能将水输送到一定的高度?因为虹吸管内出现真空37.什么是泵的扬程?泵所输送的单位重量流量的流体从进口道出口能量的增值,也就是单位重量流量的流体通过泵所获得的有效能量。

38.什么是水力半径?什么是当量直径?水力半径:过流断面面积与湿周的比值。

当量直径=4乘以水力半径。

39.什么是气蚀现象?产生气蚀现象的原因是什么?气蚀指浸蚀破坏材料之意,它是空气泡现象所产生的后果。

产生原因:泵的安装位置高出吸液面的高度太大;泵安装地点的大气压太低;泵所输送的液体的温度过高。

40.试述沿程阻力系数的变化规律?什么是水力光滑?当层流次层的厚度大于壁面粗糙度的尺寸时,粗糙凸出的尺寸淹没在层流次层中,绝对粗糙度对液流没有影响,这种区域称为水力光滑区。

41.什么是沿程损失?沿程阻力系数与哪些因素有关?在沿程不变的管段上,流动阻力沿程也基本不变,称这类阻力为沿程阻力,克服沿程阻力引起的能量损失为沿程损失。

与雷诺数和管壁粗糙度有关42.什么是滞止参数?气流某断面的流速,设想以无摩擦绝热过程降低至零时,断面各参数所达到的值,称为气流在该断面的滞止参数。

滞止参数一下标“0”表示43.气流速度与断面的关系有哪几种?M<1为亚音速流动,说明速度随断面的增大而减慢;随断面的减少而加快。

M>1为超音速流动,说明速度随断面的增大而加快;随断面的减少而减慢。

M=1既气流速度与当地音速相等,此时称气体处于临界状态。

44.自由紊流射流的运动,动力特征是什么?在自由紊流射流的主体段,射流各断面上速度分布是相似的,轴线速度越来越小,横截面积越来越大,质量流量也越来越大;个横截面上的动量守恒。

45.何为自由射流?何为受限射流?试述两种射流的结构图形,并对比有何异同?出流到无限大空间中,流动不受固体边壁的限制,自由射流;反之为受限射流。

受限射流的射流半径和流量不是一直增加,增大到一定程度后反而逐渐减小,使其边界线呈橄榄形48.紊流中为什么存在粘性底层?其厚度与哪些因素有关?其厚度对紊流分析有何意义?在近壁处,因液体质点受到壁面的限制,不能产生横向运动,没有混掺现象,流速梯度du/dy很大,粘滞切应力τ=μdu/dy仍然起主要作用。

粘性底层厚度与雷诺数、质点混掺能力有关。

随Re的增大,厚度减小。

相关文档
最新文档