高一数学简单随机抽样1

合集下载

高一数学随机抽样试题

高一数学随机抽样试题

高一数学随机抽样试题1.某校高三年级有男生500人,女生400人.为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是()A.系统抽样法B.抽签法C.随机数法D.分层抽样法【答案】D【解析】=,根据定义知为分层抽样,故选D.2.已知某单位有职工120人,男职工有90人,现采用分层抽样(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为()A.30B.36C.40D.没法确定【答案】B【解析】抽取比例为=,故样本容量为:×120=36.3.某校高一年级有x名学生,高二年级有y名学生,高三年级有z名学生,采用分层抽样抽取一个容量为45的样本,高一年级被抽取20人,高二年级被抽取10人,高三年级共有学生300人,则此学校共有学生________人.【答案】900【解析】高三年级被抽取了45-20-10=15(人),设此学校共有学生N人,则=,解得N=900.4.总体容量为203,若采用系统抽样法抽样,当抽样间距为多少时不需要剔除个体()A.4B.5C.6D.7【答案】D【解析】因为203=7×29,即203能被7整除,所以间隔为7时,不需要剔除个体.5.下列抽样问题中,最适合用系统抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中有大型商店20家,中型商店40家,小型商店150家,为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加考试的1200名考生中随机抽取100人分析试题作答情况D.从参加模拟考试的1200名高中生中随机抽取10人了解情况【答案】C【解析】A中总体、样本容量都较小,可用抽签法或随机数法;B中总体不均匀,不易用系统抽样;D中样本容量较小,可用随机数法;只有C中总体与样本容量都较大6.某学校有学生4022人.为调查学生对2010年上海世博会的了解情况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是________.【答案】134【解析】由于不是整数,所以从4022名学生中随机剔除2名,则分段间隔是=134,故填134.7.下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题.本村人口:1200人,户数300,每户平均人口数4人.应抽户数:30户.抽样间隔=40.确定随机数字:取一张人民币,编码的后两位数为12.确定第一样本户:编码为12的户为第一样本户.确定第二样本户:12+40=52,52号为第二样本户.……(1)该村委会采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样?【答案】(1)系统抽样【解析】(1)系统抽样.(2) (3)见解析(2)本题是对某村各户收入情况进行抽样,而不是对某村人口抽样,抽样间隔为=10,其他步骤相应改为:确定随机数字:取一张人民币,编码的最后一位为2.确定第一样本户:编号为002的户为第一样本户.确定第二样本户:2+10=12,012号为第二样本户.……(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的最后一位为2.8.下列调查的方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对载人航天飞船“神舟七号”零部件的检查,采取抽样调查的方式【答案】C【解析】普查工作量大,有时受客观条件限制,无法对所有个体进行普查,有时调查还具有破坏性,不允许普查;抽样调查范围小,节约时间、人力、物力、财力,但保证抽样具有代表性,广泛性.航天器不同于一般事情,必须普查.9.已知总体容量为106,若用随机数表法抽取一个容量为10的样本,下面对总体的编号正确的是()A.1,2,…,106B.01,…,105C.00,01,…,105D.000,001,…,105【答案】D【解析】因总数大于100,所以编号应为3位数10.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中,样本容量是() A.40B.50C.120D.150【答案】C【解析】40×3=120。

【课件】简单随机抽样+课件高一下学期数学人教A版(2019)必修第二册+

【课件】简单随机抽样+课件高一下学期数学人教A版(2019)必修第二册+

样本量为50的平均数 165.2 162.8 164.4 164.4 165.6 164.8 165.3 164.7 165.7 165.0
样本量为100的平均 数
164.4 165.0 164.7 164.9 164.6 164.9 165.1 165.2 165.1
165.2
下图中的红线表示树人中学高一年级全体学生身高的平均数.
(1)抽签法 (2)随机数法
(1)抽签法
开始 712名同学从1到712编号
制作编号为1到712的号签(共712个) 将712个号签搅拌均匀
随机从中逐一抽出n个号签
与所抽取号码一致的学生即被选中
结束
(2)随机数法 随机数法抽取样本的步骤
把总体的N个个体依次编号,例如按0,1,2,···,N-1编号,然 后利用随机数 工具产生0~N-1 范围內的整数随机数,产生的随机 数是几就是选几号个体,直到抽足样本所需的数量.
练习3. 下列抽样中,是简单随机抽样的( D ) A.从无数个个体中抽取50个个体作为样本; B.仓库中有1万只灯泡,从中一次性抽取100只灯泡进行质检; C.某年级从300名学生中挑选出20名最优秀的学生参加数学竞赛; D.从全班50名学生中任意选取5名进行家访.
总体均值与样本均值
P178
(1)总体均值
2.最常用的简单随机抽样 抽签法 随机数法(随机试验、信息技术)
3.总体均值与样本均值
Y
Y1 Y2 YN N
1 N
N
Yi
i1
4.加权平均数公式
y
y1
y2
n
yn
1 n
n i1
yi
统计学:
??? ?
是研究如何收集、整理、归纳和分析数据的学科,它可以为人

高一数学简单随机抽样

高一数学简单随机抽样

知识探究(一):简单随机抽样的基本思想
思考1:从5件产品中任意抽取一件,则 每一件产品被抽到的概率是多少?一般 地,从N个个体中任意抽取一个,则每 一个个体被抽到的概率是多少? 思考2:从6件产品中随机抽取一个容量 为3的样本,可以分三次进行,每次从中 随机抽取一件,抽取的产品不放回,这 叫做逐个不放回抽取.在这个抽样中,某 一件产品被抽到的概率是多少?
简单随机抽样的含义: 一般地,设一个总体有N个个体, 从中逐个不放回地抽取n个个体作为样 本(n≤N), 如果每次抽取时总体内 的各个个体被抽到的机会都相等, 则 这种抽样方法叫做简单随机抽样.
思考5:根据你的理解,简单随机抽样有 哪些主要特点?
(1)总体的个体数有限;
(2)样本的抽取是逐个进行的,每次 只抽取一个个体; (3)抽取的样本不放回,样本中无重 复个体; (4)每个个体被抽到的机会都相等, 抽样具有公平性.
方法一:抽签法; 方法二:随机数表法.
例3 利用随机数表法从500件产品 中抽取40件进行质检. (1)这500件产品可以怎样编号? (2)如果从随机数表第10行第8列的数 开始往左读数,则最先抽取的5件产品 的编号依次是什么?
小结作业
1.简单随机抽样包括抽签法和随 机数表法,它们都是等概率抽样,从 而保证了抽样的公平性.
第二章 统 计
2.1 随机抽样 2.1.1 简单随机抽样
问题提出
1.我们生活在一个数字化时代,时 刻都在和数据打交道,例如,产品的合 格率,农作物的产量,商品的销售量, 电视台的收视率等.这些数据常常是通 过抽样调查而获得的,如何从总体中抽 取具有代表性的样本,是我们需要研究 的课题.
2.要判断一锅汤的味道需要把整锅 汤都喝完吗?应该怎样判断? 3.将锅里的汤“搅拌均匀”,品尝 一小勺就知道汤的味道,这是一个简 单随机抽样问题,对这种抽样方法, 我们从理论上作些分析.

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。

高一数学《随机抽样》练习题

高一数学《随机抽样》练习题

高一数学《随机抽样》练习题一、选择题1。

对于简单随机抽样,个体被抽到的机会 A.相等B .不相等 C.不确定 D.与抽取的次数有关2. 抽签法中确保样本代表性的关键是A.制签 B 。

搅拌均匀 C .逐一抽取 D.抽取不放回3。

用随机数表法从100名学生(男生25人)中20人进行评教,某男学生被抽到的机率是A.1001 B .251C.51D.414。

某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是 A.40 B 。

50 C .120 D.1505。

从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为A。

36%B .72% C .90%D .25%6。

为了解1200名学生对学校教改试验,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为A 。

40B .30 C.20 D.127。

从N 个编号中要抽取n 个号码入样,若采用系统抽样方法抽取,则分段间隔应为 A。

n N C.[n N ] D.[nN]1 8.下列说法正确的个数是①总体的个体数不多时宜用简单随机抽样法②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样 ③百货商场的抓奖活动是抽签法④整个抽样过程中,每个个体被抽取的机率相等(有剔除时例外) A.1 B.2 C .3 D 。

49。

某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员 A 。

3人 B。

4人 C 。

7人 D.12人 10. 问题:①有1000个乒乓球分别装在3个箱子内,其中箱子内有500个,蓝色箱子内有200个,箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ。

随机抽样法Ⅱ。

系统抽样法Ⅲ。

分层抽样法。

其中问题与方法能配对的是A.①Ⅰ,②ⅡB。

高一数学抽样方法

高一数学抽样方法
(2)要抽样了解某年参加高考考生的语 文考试成绩,我们可以
①按照科目分类:文科、理科、艺术、体育 和外语五个层次。
②按照地区分类:大城市、中等城市、城镇 、乡镇四个层次。
③按照学校分类:重点、非重点两个层次。
.
.
.
.
.
.
.
; / 英国房产置业 英国房地产 英国海外置业 英国房产投资 英国购房 曼城购房
(3)用随机数表进行抽样的步骤:将总体 Nhomakorabea个体编号; 选定开始的数字;获取样本号码。
(4)由于随机数表是等概率的,因此利用随机数表抽 取样本保证了被抽取个体的概率是相等的。
随机抽样并不是随意或随便抽取,因为随 意或随便抽取都会带有主观或客观的影响因素
提出问题
(1)一个礼堂有30排座位,每排有40个 座位。一次报告会礼堂坐满了听众。会后 为听取意见留下了座位号为20的30名听众 进行座谈。这里选用了哪种抽取样本的方 法?写出抽取过程。
1、简单随机抽样
一般地,设一个总体的个体数为N,如果通过逐个 不放回地抽取的方法从中抽取一个样本,且每次抽取时 各个个体被抽到的概率相等,就称这样的抽样为简单随 机抽样。
注意以下四点: (1)它要求被抽取样本的总体的个体数有限; (2)它是从总体中逐个进行抽取; (3)它是一种不放回抽样; (4)它是一种等概率抽样。
简单随机抽样是在特定总体中抽取样本,总体中每一 个体被抽取的可能性是等同的,而且任何个体之间彼此 被抽取的机会是独立的。如果用从个体数为N的总体中抽 取一个容量为n的样本,那么每个个体被抽取的概卒等n于
N
2、用随机数表法进行抽取
(1)随机数表是统计工作者用计算机生成的随机数, 并保证表中的每个位置上的数字是等可能出现的。 (2)随机数表并不是唯一的,因此可以任选一个数作为 开始,读数的方向可以向左,也可以向右、向上、向下 等等。

9.1.1 简单随机抽样(课件)2022-2023学年高一数学同步备课(人教A版2019 必修第二册

9.1.1 简单随机抽样(课件)2022-2023学年高一数学同步备课(人教A版2019 必修第二册
(多选)下面的抽样方法是简单随机抽样的是( BD )
A、从无数个个体中抽取50个个体作为样本; B、某车间工人加工一种零件100个,为了解这100个零件的直 径,从中不放回地依次抽取5个进行测量; C、从100名运动员中挑选10名优秀的运动员参赛; D、一彩民选号,从装有36个大小、形状都相同的号签的盒子 中不放回地逐个抽出7个号签.
注:若生成的随机数有重复,则需剔除重复的编号并重新新产生 随机数,直到产生的不同编号个数等于样本所需要的人数.
随机数法的特点:方便快捷,取到相同编号时要剔除. 随机数法一般适用于总体容量较大,但样本量不大的情形.
1.3简单随机抽样的方法——②随机数法
产生随机数的方法: 1.用随机试验产生随机数: 准备10个大小、质地一样的小球,小球上分别写上数字0,1,2 ,…,9, 把它们放入一个不透明的袋中. 从袋中有放回摸取3次 , 每次摸前充分 搅拌 , 并把第一、二、三次摸到的数字分别作为百、十、个位数,这 样就生成了一个三位随机数 . 若这个三位数在1~712范围内,就代表 对应编号的学生被抽中,否则舍弃编号. 注:这样产生的随机数可能会有重复.
2.总体均值和样本均值
上面我们通过简单随机抽样得到部分学生的平均身高,并把样本 平均身高作为树人中学高一年级所有学生平均身高的估计值.
概念
总体均值(总体平均数)
样本均值(样本平均数)
条件 总体中有N个个体,它们的变量 从总体中抽取一个容量为n的样本,
【问题1】树人中学高一年级有712名学生,通过简单随机抽样的方 法调查高一年级学生的平均身高. 1.编号:先给712名学生编号,例如1~712进行编号; 2.获取样本号码:用随机数工具产生1~712范围内的整数随机数, 把产生的随机数作为抽中的编号,使与编号对应的学生进入样本; 3.按所得号码抽取样本:重复上述过程,直到抽足样本所需要的人数.

9.1.1简单随机抽样(一)课件-高一下学期数学人教A版必修第二册

9.1.1简单随机抽样(一)课件-高一下学期数学人教A版必修第二册

总体 个体
树人中学全部高一年级学生的身高 每一位学生的身高
• 我们可以对高一年级进行简单随机抽样,用抽出的样本的平均身高 估计高一年级学生的平均身高.
问题1
一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高一年级的平 均身高,以便设定可调节课桌椅的标准高度。已知树人中学高一年级有712名学生,如果 要通过简单随机抽样的方法调查高一年级学生的平均身高,应该怎样抽取样本?
随机获取. 摇匀后再摸出一个球,如此重复n次.
特别地,当样本量n=1000时,不放回摸球己经把袋中的所有球取出, 这就完全了解了袋中红球的比例.
思考2:两种抽样方式有何优劣?
放回摸球可能出现同一个小球被摸中多次的情况,极端情况是每 次摸到同一个小球,而被重复的小球只能提供同一个小球颜色信息. 这样的抽样结果误差较大.
解析 在简单随机抽样中,每一个个体被抽到的可能性都相等,与第 几次抽样无关,故A,C,D不正确,B正确.
3
问题1
一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高一年级的平
均身高,以便设定可调节课桌椅的标准高度。已知树人中学高一年级有712名学生,如果 要通过简单随机抽样的方法调查高一年级学生的平均身高,应该怎样抽取样本?
合用全面调查?哪些适合用抽样调查?
(1)调查一个班级学生每周的体育锻炼时间;
全面调查
(2)调查一个地区结核病的发病率;
抽样调查
(3)调查一批炮弹的杀伤半径;
抽样调查
(4)调查一个水库所有鱼中草鱼所占的比例.
抽样调查
思考1:“普查”与“抽样”各有何优缺点?
方式 普查
优点
全面、准确性高
缺点
工作量大,时间长, 耗人力、物力、财力

高一数学简单随机抽样1

高一数学简单随机抽样1

问题2 2个人通过抽签决定胜负,先抽与后抽是否公 平(即获胜的概率是否相等)? 答:这是简单随机抽样,两个人的概率分别为0.5与0.5
进一步:在简单随机抽样中,每个样本被抽到的概率是 否相等? 我们以从含有6个个体的总体中抽取样本为例 加以说明。
(1)抽取一个容量为1的样本,则任意一个个体a被抽到的概率为多少? (2)抽取一个容量为2的样本,则任意一个个体a被抽到的概率为多少? (3)抽取一个容量为3的样本,则任意一个个体a被抽到的概率为多少?
梦幻味……能上下翻转的眼镜闪出魂嚎病态声和咝咝声……弹射如飞的舌头时浓时淡渗出地图凶动般的漫舞!接着玩了一个,飞蛙麋鹿翻三百六十度外加猫嚎瓜秧旋三周半 的招数,接着又来了一出,怪体蟒蹦海飞翻七百二十度外加笨转十一周的陶醉招式……紧接着像淡绿色的百尾旷野蛙一样神吼了一声,突然演了一套仰卧振颤的特技神功, 身上骤然生出了三只特像油瓶样的亮白色舌头!最后旋起粗壮的;淘宝流量 收藏加购 https:/// 拼多多流量 京东流量 ;大腿一旋,突然从里面抖出一 道奇光,她抓住奇光迷人地一扭,一样灰叽叽、亮晶晶的法宝¤天虹娃娃笔→便显露出来,只见这个这件宝贝儿,一边变形,一边发出“咻咻”的奇响……。骤然间壮扭公 主闪电般地发出五声暗金色的神秘长笑,只见她憨厚自然的嘴唇中,狂傲地流出二串转舞着¤雨光牧童谣→的地灯状的高岗钻石唇蟹,随着壮扭公主的摆动,地灯状的高岗 钻石唇蟹像香槟一样在双脚上疯狂地耍出隐约光霞……紧接着壮扭公主又念起嘟嘟囔囔的宇宙语,只见她奇如熨斗的手掌中,萧洒地涌出四片抖舞着¤雨光牧童谣→的花苞 状的柿子,随着壮扭公主的晃动,花苞状的柿子像烟妖一样,朝着女招待X.玛娅婆婆轻盈的嫩黄色香槟般的脸猛转过去……紧跟着壮扭公主也摇耍着法宝像柳丝般的怪影 一样朝女招待X.玛娅婆婆猛颤过去随着两条怪异光影的猛烈碰撞,半空顿时出现一道绿宝石色的闪光,地面变成了深黑色、景物变成了灰蓝色、天空变成了亮黄色、四周 发出了变态般的巨响!壮扭公主饱满亮润如同红苹果样的脸受到震颤,但精神感觉很爽!再看女招待X.玛娅婆婆轻盈的极似毛刷造型的手臂,此时正惨碎成弹头样的鲜红 色飞光,全速射向远方女招待X.玛娅婆婆暴啸着加速地跳出界外,疾速将轻盈的极似毛刷造型的手臂复原,但元气已受损伤窜壮扭公主:“哈哈!这位妖怪的专业特别超 脱哦!太没有马屁性呢!”女招待X.玛娅婆婆:“呀呀!我要让你们知道什么是正点派!什么是飘然流!什么是艺术荒凉风格!”壮扭公主:“哈哈!小老样,有什么想 法都弄出来瞧瞧!”女招待X.玛娅婆婆:“呀呀!我让你享受一下『红雾甩仙方砖经文』的厉害!”女招待X.玛娅婆婆猛然转动嫩黄色香槟般的脸一挥,露出一副迷离 的神色,接着耍动修长的极似鲇鱼造型的肩膀,像橙白色的玉头森林兔般的一转,变态的极似鲇鱼造型的肩膀顿时伸长了三倍,孤傲的神态也猛然膨胀了四倍!接着古老的 卷发整个狂跳蜕变起来……弯曲的极似香肠造型的屁股跃出淡红色的缕缕佛云……轻盈的极似毛刷造型的手臂跃出暗紫色的朦胧异热!紧接着暗紫色面板般的神态突然飞出 光黑仙境色的坟茔猫蹦惨梦味……上面长着古老的浓绿色的细小土豆般的肚毛跃出狼精古蹦声和呜呜声……时尚的鹅黄色螃蟹模样的油饼峰影云舞服变幻莫测射出杏静豹歌 般的跳动……最后转起极似鲇鱼造型的肩膀一挥,威猛地从里面跳出一道余辉,她抓住余辉奇妙地一摆,一件灰叽叽、明晃晃的咒符『红雾甩仙方砖经文』便显露出来,只 见这个这件宝器儿,一边振颤,一边发出“呜喂”的怪声!!突然间女招待X.玛娅婆婆闪速地连续使出九千五百二十六帮荡驴榛子冲,只见她浓黑色菊花造型的身材中, 突然弹出三道颤舞着『红雾甩仙方砖经文』的铅笔状的大腿,随着女招待X.玛娅婆婆的颤动,铅笔状的大腿像马心一样在双脚上欢快地调配出朦胧光盔……紧接着女招待 X.玛娅婆婆又用自己上面长着古老的浓绿色的细小土豆般的肚毛捣腾出墨黑色狂鬼般漫舞的烟斗,只见她稀奇的暗绿色面条模样的炸弹遁形履中,萧洒地涌出四团摇舞着 『红雾甩仙方砖经文』的仙翅枕头锅状的布条,随着女招待X.玛娅婆婆的晃动,仙翅枕头锅状的布条像骨渣一样念动咒语:“七臂嚷噎唷,砂锅嚷噎唷,七臂砂锅嚷噎唷 ……『红雾甩仙方砖经文』!老子!老子!老子!”只见女招待X.玛娅婆婆的身影射出一片橙白色亮光,这时偏西方向酷酷地出现了二片厉声尖叫的春绿色光猫,似奇影 一样直奔金橙色银光而来……,朝着壮扭公主如同天边小丘一样的鼻子直冲过来。紧跟着女招待X.玛娅婆婆也晃耍着咒符像烟袋般的怪影一样向壮扭公主直冲过来壮扭公 主猛然摆动好像桥墩一样的大腿一嚎,露出一副怪异的神色,接着甩动圆圆的的脖子,像暗黄色的青眉平原凤般的一摆,凸凹的力如肥象般的霸蛮屁股猛然伸长了二倍,弯 弯亮亮的晶绿色三尖式力神戒指也顿时膨胀了三倍。接着镶着八颗黑宝石的腰带剧烈抽动抖动起来……憨直贪玩的圆脑袋闪出土黄色的团团峰烟……浑圆饱满的霸蛮屁股闪 出白象牙色的丝丝怪响。紧接着晶绿色的三尖式力神戒指顿时喷出晨粉九烟色的风动梦幻味……能上下翻转的眼镜闪出魂嚎病态声和咝咝声……弹射如飞的舌头时浓时淡渗 出地图凶动般的漫舞!最后摆起力如肥象般的霸蛮屁股一转,飘然从里面涌出一道奇影,她抓住奇影怪异地一颤,一件绿莹莹、亮光光的咒符¤雨光牧童谣→便显露出来, 只见这个这件东西儿,一边狂跳,一边发出“咝咝”的神响。!突然间壮扭公主闪速地连续使出三千二百二十九路梦鹿面包撬,只见她古古怪怪的紫晶色葡萄一样的海光项 链中,酷酷地飞出三缕扭舞着¤雨光牧童谣→的霉菌状的耳朵,随着壮扭公主的扭动,霉菌状的耳朵像恐龙一样在双脚上欢快地调配出朦胧光盔……紧接着壮扭公主又用自 己强壮结实的骨骼策划出亮橙色疯狂飘浮的狗腿,只见她金海冰石框的超视距眼镜中,猛然抖出四组晃舞着¤雨光牧童谣→的仙翅枕头球状的门帘,随着壮扭公主的抖动, 仙翅枕头球状的门帘像水波一样念动咒语:“原野 哽啪,肥妹 哽啪,原野肥妹 哽啪……¤雨光牧童谣→!指!指!指!”只见壮扭公主的身影射出一片水绿色 怪影,这时正北方向轻飘地出现了七缕厉声尖叫的淡青色光鹤,似神光一样直奔米黄色佛光而去。,朝着女招待X.玛娅婆婆匀称的鼻子直冲过去。紧跟着壮扭公主也晃耍 着咒符像烟袋般的怪影一样向女招待X.玛娅婆婆直冲过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道青远山色的闪光,地面变成了橙白色、景物变成了紫罗兰色、 天空变成了鲜红色、四周发出了疯狂的巨响……壮扭公主如同天边小丘一样的鼻子受到震颤,但精神感觉很爽!再看女招待X.玛娅婆婆淡黄色砂锅耳朵,此时正惨碎成弹 头样的鲜红色飞光,全速射向远方,女招待X.玛娅婆婆暴啸着加速地跳出界外,疾速将淡黄色砂锅耳朵复原,但元气已损失不少。壮扭公主:“老老板,臭气够浓烈!你 的戏法水平好像很有麻辣性哦……女招待X.玛娅婆婆:“我再让你领会领会什么是神奇派!什么是离奇流!什么是贪婪离奇风格!”壮扭公主:“您要是没什么新说法, 我可不想哄你玩喽!”女招待X.玛娅婆婆:“你敢小瞧我,我再让你尝尝『蓝宝晶鬼冰碴绳』的风采!”女招待X.玛娅婆婆陡然像深红色的金胸圣地狮一样长喘了一声 ,突然来了一出曲身膨胀的特技神功,身上顷刻生出了四只犹如花篮似的青远山色眼睛。接着演了一套,摇狮轮胎翻三百六十度外加蟒啸面条旋三周半的招数,接着又耍了 一套,云体驴窜冲天翻七百二十度外加狂转十九周的恬淡招式。紧接着把极似香肠造型的屁股晃了晃,只见五道跳动的仿佛漏斗般的奇灯,突然从丰盈的手掌中飞出,随着 一声低沉古怪的轰响,亮蓝色的大地开始抖动摇晃起来,一种怪怪的病摇凶光味在疯妖般的空气中漫舞。最后旋起弯曲的极似香肠造型的屁股一嚎,变态地从里面弹出一道 鬼光,她抓住鬼光迷人地一转,一组蓝冰冰、紫溜溜的功夫『黄雪浪精地图耳』便显露出来,只见这个这件神器儿,一边抖动,一边发出“咝咝”的仙声…………悠然间女 招待X.玛娅婆婆狂鬼般地使自己单薄的暗橙色河马样的复眼飘动出墨蓝色的小鱼味,只见她淡绿色细小柴刀般的胡须中,轻飘地喷出二组背带状的仙翅枕头蝇拍,随着女 招待X.玛娅婆婆的旋动,背带状的仙翅枕头蝇拍像荷叶一样在脑

简单随机抽样(1)+课件——2022-2023学年高一下学期数学人教A版(2019)必修第二册

简单随机抽样(1)+课件——2022-2023学年高一下学期数学人教A版(2019)必修第二册

问题:放回摸球有什么不足吗?你还有其他的方法吗?
在有放回地摸球中,同一个小球有可能被摸中多次,极端情况是 每次摸到同一个小球,而被重复的小球只能提供同一个小球颜色 信息。这样的抽样结果误差较大。
我们可以采用不放回摸球,即从袋中随机摸出一个球后不再放 回袋中,每次摸球都在余下的球中随机摸取,这样就可以避免 同一个小球被重复摸中。 特别地,当样本量n=1000时,不放回摸球已经把袋中的所有球 取出,这就完全了解了袋中红球的比例,而有放回摸球一般还 不能对袋中红球的比例做出准确的判断。
(3) 重复上述过程,直到抽足样本所需要的人数; (4) 如果生成的随机数有重复,即同一编号被多次抽到,可以剔除重复的 编号并重新产生随机数,直到产生的不同编号个数等于样本所需要的人数.
读数获取样本号码
①在随机数表中任选一个数作为起始数;(选起始数)
②从选定的数开始依次向右(或向左、向上、向下)读,将 编号范围内的数取出,编号范围外的数去掉,直到取满样本 容量的样本.(抽取样本)
问题1 一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全 体高一年级学生的平均身高,以便设定可调节课桌椅的标准高度. 已知树 人中学高一年级有712名学生,如果要通过简单随机抽样的方法调查高一年 级学生的平均身高,应该怎么抽取样本?
树人中学全部高一年级的学生构成调查的总体, 每一位学生是个体, 学生的身高是调查的变量.
汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿 将在选举中获胜.
实际上选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:
候选人
预测结果﹪
选举结果﹪
罗斯福
ห้องสมุดไป่ตู้
43
62

9.1.1 简单随机抽样 课件(第1课时)2024学年高一下学期数学人教A版(2019)必修第二册

9.1.1 简单随机抽样 课件(第1课时)2024学年高一下学期数学人教A版(2019)必修第二册
工具来生成随机数.尤其是一些统计软件,可以非常方便地按要求生成各种随机数
.用信息技术工具产生随机数最大的优点是方便、快捷.
新知探索
思考2:用简单随机抽样方法抽取样本,样本量是否越大越好?
新知探索
我们知道,在重复试验中,试验次数越多,频率接近概率的可能性越大.与
此类似,用简单随机抽样的方法抽取学生,样本量越大,样本中不同身高的比例
样本:从总体中抽取的那部分个体称为样本
样本容量:样本中包含的个体数称为样本容量,简称样本量
样本数据:调查样本获得的变量值称为样本的观测数据,简称样本数据
新知探索
相对全面调查而言,抽样调查由于只抽取一部分个体进行调查,因此具有
花费少、效率高的特点.在总体规模比较大的调查中,如果经费、时间受限,那
么抽样调查是比较合适的调查方法.在有些调查中,抽样调查则具有不可替代的
复.
新知探索
②用电子表格软件生成随机数
在电子表格软件的任意单元格中输入“=RANDBETWEEN(1,712)”,即可
生成一个1—712范围内的整数随机数.再利用电子表格软件的自动填充功能,可
以快速生成大量的随机数.这样产生的随机数可能会有重复.
新知探索
随着信息技术的发展,人们越来越多地利用计算器、数学软件、统计软件等
弃编号,这样产生的随机数可能会有重复.
新知探索
(2)用信息技术生成随机数
①用计算器生成随机数
进入计算器的计算模式(不同的计算器型号可能会有不同),调出生成随机数的
函数并设置参数,例如RandInt#(1,712),按“=”键即可生成1—712范围内的
整数随机数.重复按“=”键,可以生成多个随机数.这样产生的随机数可能会有重

简单随机抽样(教学课件)高一数学(人教A版2019必修第二册)

简单随机抽样(教学课件)高一数学(人教A版2019必修第二册)
作物的产量、人均水资源、居民人均年收入、电视台节目的收视率、学
生的平均身高等.要正确阅读并理解这些数据,需要具备一些统计学的知
识.
统计的研究对象是数据,核心是通过数据分析研究和解决问题,因
此,首先要设法获取与问题有关的数据,从而为解决问题奠定基础.
温故知新
统计的相关概念
名称
定义
总体
所要 考察对象 的全体叫作总体
)
A.要求总体的个体数有限
B.从总体中逐个抽取
C.每个个体被抽到的机会不一样
D.这是一种不放回抽样
【解答】解:根据随机抽样的定义可知,要求总体的
个体数有限,为了保证抽样的公平性,
要求每个个体被抽到的机会是相同的.从总体
中逐个抽取,这是一种不放回抽样.
综合以上几点可知C错误.
故选:C.
变式训练
下列抽样方法是简单随机抽样的是(
过程,直到抽足所需要人数.
比较随机数法与抽签法,它们各有什么优点和缺点?
(1)随机数法的概念:
利用随机数工具产生的随机数进行抽样方法,叫做随机数法.
(2)随机数法的步骤:
①将总体的个体编号;
②在产生的随机数选择数字;
③读数获取样本号码.
如果生成的随机数有重复,即同与编号被多次抽到,
可以剔除重复的编号并重新产生随机数,直到产生的
个”抽取,故不是简单随机抽样;
故选:C.
解题技巧
判断所给的抽样是否为简单随机抽样的依据是简单随机抽样
的四个特征:
上述四点特征,如果有一点不满足,就不是简单随机抽样.
典例分析
题型二 抽签法的应用
例2.用抽签法从50个个体中选出5个个体,则共需制作号签的
个数为(

最新人教A版高一数学必修二课件:9.1.1简单随机抽样

最新人教A版高一数学必修二课件:9.1.1简单随机抽样

安全生产行政处罚决定书(贵)应急罚〔2023〕19号安全生产行政处罚决定书根据《中华人民共和国安全生产法》第二十六条第一款和第三十一条的规定,经对贵公司进行安全生产现场检查,发现以下违法行为:一、违反安全生产法规定,未按照规定建立健全安全生产管理制度,未建立、未落实应急预案。

根据现场检查结果,贵公司未能建立健全安全生产管理制度,未制定并落实应急预案。

这是对安全生产管理的严重违法行为,直接威胁人民群众的生命财产安全。

根据《中华人民共和国安全生产法》第八十四条,现决定对贵公司采取以下行政处罚措施:1. 对贵公司处以罚款人民币10万元(¥100,000);2. 贵公司应在收到本决定书之日起十五日内,将罚款款项缴至指定银行账户,缴款凭证需向我局报送;3. 贵公司应立即整改,依法制定并落实安全生产管理制度,并制定应急预案,确保生产过程中的安全。

特此通知。

日期:2023年月日安全生产监督管理局负责人签名:XXX尊敬的贵公司:根据我局对贵公司进行的安全生产现场检查,我们深切关注到贵公司未按照规定建立健全安全生产管理制度,并未建立和落实应急预案的违法行为。

为了加强安全生产管理,保障人民群众的生命财产安全,根据中华人民共和国安全生产法的有关规定,我局决定对贵公司进行行政处罚。

首先,贵公司在安全生产管理制度方面存在不完善的问题。

根据《中华人民共和国安全生产法》第十三条,企业应建立健全安全生产管理制度,明确各个岗位的责任与义务,确保企业安全生产工作的高效运行。

然而,在我局的检查中发现,贵公司未能完善相关制度,缺乏明确的安全生产责任分工和操作规程,严重影响了公司的安全生产管理水平。

其次,贵公司未制定并落实应急预案。

根据《中华人民共和国安全生产法》第二十八条,企业应当根据自身生产经营的特点,制定相应的应急预案,并进行演练和培训,确保在突发事件发生时能够及时、科学、有序地应对。

然而,贵公司在应急预案方面存在明显的缺失,没有对可能发生的突发事件进行科学的预测和规划,并且未进行相应的应急演练和培训。

高一数学《概率与统计》

高一数学《概率与统计》

考点1:抽样方法一.随机抽样随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方法:1.简单随机抽样:从元素个数为N 的总体中不放回地抽取容量为n 的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.简单随机抽样是最简单、最基本的抽样方法.⑴抽出办法:①抽签法:用纸片或小球分别标号后抽签的方法.②随机数表法:随机数表是使用计算器或计算机的应用程序生成随机数的功能生成的一张数表.表中每一位置出现各个数字的可能性相同.随机数表法是对样本进行编号后,按照一定的规律从随机数表中读数,并取出相应的样本的方法.⑵简单随机抽样必须具备下列特点:①简单随机抽样要求被抽取的样本的总体个数N 是有限的. ②简单随机样本数n 小于等于样本总体的个数N . ③简单随机样本是从总体中逐个抽取的. ④简单随机抽样是一种不放回的抽样.⑤简单随机抽样的每个个体被抽取的可能性均为nN.<教师备案>样本获取分为两种,一种是全面统计,一种是样本统计.全面统计的例子非常多,比如美国大选,每个州的选民都是通过投票选出每个州的负责人.也就是每个人都表达了自己的意见.再比如我们调查学生是海淀还是非海淀,我们也是给每个学生打了电话,访谈出结果,每个同学也都表达了自己的意见.再比如一些小事,像一群人中午的时候讨论去哪吃饭,每个人都可以说自己喜欢的地方.全面统计的好处在于无遗漏,数据准确无偏差,但是缺点也很明显,那就是非常的繁琐、麻烦.对于大数据的处理很无力,所以我们需要有样本统计. 样本统计的意义就是从一个大数据中抽取数据样本分析,通过对样本的分析来估计原数据的性质.于是首要的问题就是如何抽样.一个合理的抽样方法的基本要求是“平等”,也就是每个个体被抽取的可能性是相同的.比如我们发现,老师选出的学生代表很可能不能真正代表全体同学的意见,因为老师选取的一定是自己比较熟悉的学生,这类学生平时一定非常活跃.而对于一些比较内向,“存在感”比较低的同学来说,老师可能就不会关注,被选中的可能性就会降低.由此可以推知,人为的抽样一般是不靠谱的.再比如,现在很多的新闻都有网上的调查,有的媒体通过网上调查的数据来分析广大人民对新闻的反馈.这样的调查也是不靠谱的,因为网上调查反映出来的大多是经常上网的人的意见,而对于平时不上网的人就没有调查,所以这样的抽样也是不合理的.最常见的合理抽样方式是“抓阄”,这可以保证每个个体都能“等可能”的被选中.当然抓阄的方式有很多,比如很多时候我们不需要每个人都去抓一次,我们可以把每个人编一个号,然后由一个人来抽号就可以了.比如我们常见的彩票大致就是这个原理.不过需要注意的是彩票里面的等可能是对彩票是等可能的,对人不一样,因为一个人可以买很多彩票.6.1随机抽样知识点睛第6讲概率默统计类<教师备案>老师在讲完简单随机抽样后可以让学生做例1的【铺垫】⑴,本小题主要是让学生理解什么是总体,什么是个体,什么是样本容量,因为简单随机抽样比较简单,而且在后边要讲的系统抽样和分层抽样中都要用到,所以这里就不再详细讲解了.2.系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,由于抽样间隔相等,又被称为等距抽样.⑴抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整除,设Nkn=,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作为2(1)s k s k s n k+++-,,,个数,这样就得到容量为n的样本.如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样.⑵系统抽样时,当总体个数N恰好是样本容量n的整数倍时,取Nkn=;若Nn不是整数时,先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n的机会相等,因而整个抽样过程中每个个体被抽取的机会仍然相等为nN.<教师备案>随着数量的增大,抓阄的方式效率会比较低.当然,随着现在计算机的发展,数据量很大的时候也是可以通过“选号”的方式进行随机抽样.课本上提到的系统抽样其实现在已经不怎么使用了.不过作为传统意义下的抽样方法,我们还是有必要介绍一下.系统抽样的核心是“选出代表”,每个代表会直接代表一个群体的意见.系统抽样的方式分为两种,一种是横向抽样,也就是我们教科书上的抽样方式,这种例子非常多,比如军训的时候,可能我们出现过“一到三”报数,这样就把我们分成了“一”“二”“三”三个组,然后就可以随机选一个数“一”,然后所有的“一”就被选中了.同样的道理,我们对1000人,选取一个100人的样本,那么我们就需要把总数分成100组,每组10个人,然后让第一组的人抓阄(为的是随机抽样),比如“4”抓到,那么每一组的“4”就被选中了.另一种系统抽样的方式是“纵向抽样”,它出现的原理是这样的:原始的系统抽样方法会造成直观上的不公平.比如我们1000人里面选100人去叙利亚旅游,大家肯定都不愿意去,第一组的人抓阄之后,由于第一组的4号被选中,那么每一组的4号就都被选中了,其他组的4号会认为被第一组的4号连累,因为他们是“被”选中的.虽然从可能性上说,这没有道理,不过直观上确实有点“躺枪”的意思.于是人们改变了方式,也就是纵向系统抽样.比如现在我们还是1000人里面选100人去叙利亚,我们把所有人分成10组,每组100人,然后每组自行推举一个代表上台抓阄,被选中的人所在的组,整组都被选中.这样我们每个组都有人去抓阄,也就实现了直观上的公平.但是在可能性的角度,横向和纵向抽样都是“等可能”的,没有本质区别.<教师备案>老师在讲完系统抽样后就可以让学生做例1的铺垫⑵,例1⑵以及尖子班拓展⑵,这几个题都是系统抽样,老师可以选择几个让学生做做,不一定都让学生做,老师自己选择.3.分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样.分层抽样的样本具有较强的代表性,而且各层抽样时,可灵活选用不同的抽样方法,应用广泛.<教师备案>简单随机抽样(抓阄)和系统抽样都是绝对意义上的公平,但是分层抽样就是相对意义上的公平,因为我们人为的干扰了抽样的过程.不过现实意义之下我们统计数据必须进行分层,否则统计数据会闹出笑话.常见的一个就是我家房子10平米,后来搬过来一个邻居,房子面积是100平米,那么我家的生活状况有没有改变.实际上没有,但是统计数字可能告诉你,你们的平均面积增加了.现实生活中,很多的统计需要分层,比如统计收入水平的时候需要分不同的城市,统计生育问题的时候要分城市和农村,统计化妆品消费水平的时候要分性别等等.所以分层抽样就是为了保证每个层面上的公平性,我们按照每个层次占到总体的多少来分配选取的比例.这里老师可以开发更多的统计实例,一定要讲出现实意义来.<教师备案>老师在讲完分层抽样后可以让学生做例1的铺垫⑶,例1⑶以及目标班专用⑷,让学生熟练掌握分层抽样,因为在以后考试和北京高考中,三个抽样重点考察分层抽样.老师在讲完三个抽样后一定要让学生明白什么情况下用什么抽样,这个时候就可以让学生做例1⑴,尖子班拓展⑴.【铺垫】⑴为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有()个①2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤每个运动员被抽到的概率相等A.1B.2C.3D.4⑵从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.510152025,,,,B.313233343,,,,C.12345,,,,D.2461632,,,,⑶某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7【解析】⑴ B;④⑤正确,①②③错误⑵ B;⑶ C;20(1020)640103020+⨯=+++.【例1】三种抽样⑴现有以下两项调查:①某装订厂装订图书36000册,要求检验员从中抽取500册图书,检查其装订质量状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1:5:9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是()A.简单随机抽样法,分层抽样法B.分层抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法⑵用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是.⑶某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为235∶∶.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n=.⑷(目标班专用)某校有500名学生,A型血的有125人,B型血的有125人,AB型血的有50人,为了研究血型与色弱有没有关系,要从中抽取一个20人的样本,按分层抽样,O型血应抽取的人数为人.【解析】⑴ D;①是系统抽样;②明显是分层抽样;⑵6;不妨设第1组抽出的号码为x,则第16组应抽出的号码是815126x⨯+=,∴6x=.⑶80;A种型号的产品占总体的比例是210,则样本容量1016802n=⨯=.⑷该学校O型血的人数为50012512550200---=,按照分层抽样的抽样比相等得:500:20200:x=,解得8x=,即O型血应抽取的人数为8人.经典精讲<教师备案>学习了抽样后,需要对收集的这些有代表性的样本数据进行研究,找出有用的信息,然后用这些样本来估计总体.这种估计一般分成两种,一种是用样本的频率分布估计总体的分布,另一种是用样本的数字特征估计总体的数字特征.用来估计的图表和方法有很多种,本版块在初中的基础上来学习频率分布直方图、茎叶图和方差.考点2:频率分布直方图1.列出样本数据的频率分布表和频率分布直方图的步骤: ①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:取组距,用极差组距决定组数;③决定分点:决定起点,进行分组;④列频率分布表:对落入各小组的数据累计,算出各小组的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.2.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.3.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x =来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.<教师备案>这里主要介绍的就是样本分析方法,直方图就是很重要的一种.其实直方图的形成过程就是把数据按大小排序,然后分段截取数据.实际生活中最常见的方法就是“画正字”,比如我们收到了一组数据是学生的跳绳次数,我们就可以把次数分成若干组,然后一个一个数据看落在了哪个组里,利用“画正字”的方式看出每组里有几个数,最后画出直方图.直方图的主要作用是看出数据的分布变化趋势,很容易表示大量数据,缺点是原始数据不能在图上表示出来.通过例2的学习,让学生可以由给出的频率分布直方图算出各组数据的频率和频数,理解横纵坐标代表的意义.频率分布折线图和总体密度曲线不需要深究,在频率分布直方图的基础上,简单介绍即可.【例2】 频率分布直方图⑴某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]540,中,其频率分布直方图如图所示,则其抽样的100根中,长度在[)3035,内的频率为______,有______根棉花纤维的长度小于20mm .经典精讲知识点睛6.2用样本估计总体y 510152025303540长度(mm)0.010.020.030.040.050.06频率组距⑵(目标班专用)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间, 将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图,设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )秒频率/组距1918171615141300.360.340.180.060.040.02A .0.9,35B .0.9,45C .0.1,35D .0.1,45【解析】 ⑴ 0.1,30;由频率分布直方图可得,长度在[)3035,内的频率为0.0250.1⨯=. 棉花纤维长度小于20mm 的频率为()0.010.010.0450.3++⨯=,则棉花纤维长度小于20mm 的频数为1000.330⨯=根.⑵ (目标班专用)A .考点3:茎叶图<教师备案>当样本数据较少时,可以用样本分析的另一个常用图表方法――茎叶图,这个图主要作用是两组数据的对比.一左一右很容易估计出两组数据的对比状况,而且茎叶图是把所有的数据都列出来,精确性上比直方图要好一点,但是对于数据特征的分析不如直方图直观.可以结合铺垫讲解知识点,并简单复习一下初中学过的中位数、平均数的概念.1.制作茎叶图的步骤:①将数据分为“茎”、“叶”两部分;②将最大茎与最小茎之间的数字按大小顺序排成一列,并画上竖线作为分隔线; ③将各个数据的“叶”在分界线的一侧对应茎处按一定次序同行列出.<教师备案>“按一定次序”一般是按大小顺序,也可以按统计数据的顺序.2.平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.中位数:是指将统计总体当中的各个数据值按大小顺序排列起来,形成一个数列,处于数列中间位置的数据值就称为中位数.当数列的项数为奇数时,处于最中间位置的数据值即为中位数;当项数为偶数时,中位数则为处于中间位置的两个数据值的平均数.知识点睛8964553819261846172852乙甲54535251【铺垫】某班甲、乙两学生的高考备考成绩如下:甲:512554528549536556534541522538 乙:515558521543532559536548527531①用茎叶图表示两学生的成绩;②分别求两学生成绩的中位数和平均分. 【解析】 ①两学生成绩的茎叶图如图所示 ②将甲、乙两学生的成绩从小到大排列为: 甲:512522528534536538541549554556, 乙:515521527531532536543548558559. 从以上排列可知甲学生成绩的中位数为5365385372+=,乙学生成绩的中位数为5325365342+=.甲学生成绩的平均数为1222283436384149545650053710++++++++++=,乙学生成绩的平均数为1521273132364348585950053710++++++++++=.【例3】 茎叶图随机抽取某中学甲,乙两班各10名同学,测量他们的身高(单位:cm ),获得身高数据的茎叶图如图,则下列关于甲,乙两班这10名同学身高的结论正确的是( ) A .甲班同学身高在175以上的人数较多 B .甲班同学身高的中位数较大C .甲班同学身高的平均值较小D .甲、乙班同学身高的平均值一样大 【解析】 C ;甲班同学身高175以上的有3人,乙班有4人,故而A 错误.甲班同学身高的中位数为169,乙班同学身高的中位数为171.5.故而B 错误. 容易计算得知,=170x 甲,=171.1x 乙,故C 对.考点4:统计数据的数字特征<教师备案>分析样本数据时,我们已经学过了众数、中位数和平均数这些概念,它们都可以用来表示统计数据的特征信息,各有利弊.平均数是统计数据一个非常好的特征,它可以利用所有的样本数据,而且比较好算.也正因为平均数利用了所有的数据,所以它容易受到一些极端数据的影响.比如歌唱比赛时,去掉一个最高分和一个最低分,然后再平均,就是为了避免出现个别评委的极端喜恶,尽量体现评分的准确和公正性.再比如公布一个地区的家庭平均收入时,平均数也掩盖了一些极端情况的存在,而这些是不容忽视的.怎么样能反映这些极端情况呢,也就是数据的离散程度呢,从运算方便等各方面考虑,引入了方差或标准差来进行衡量.统计数据的数字特征1.用样本平均数估计总体平均数;用样本标准差估计总体标准差:经典精讲知识点睛乙班甲班98822388900191716159865311822.数据的离散程度可以用极差、方差或标准差来描述:⑴极差又叫全距,是一组数据的最大值和最小值之差,反映一组数据的变动幅度;⑵样本方差描述了一组数据围绕平均数波动的大小,样本的标准差是方差的算术平方根. 一般地,设样本的元素为12n x x x ,,,,样本的平均数为x , 定义样本方差为222212()()()n x x x x x x s n-+-++-=,样本标准差22212()()()n x x x x x x s n-+-++-=,简化公式:22222121()n s x x x nx n ⎡⎤=+++-⎣⎦.<教师备案>这部分其实没有真正的考察,现在最多也就是通过样本的特征直接套用在整体数据上.寒假班对方差只需要初步理解它存在的意义即可,对方差的直观理解放在春季同步班讲解.【例4】 方差甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表1s ,2s ,3s 分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )甲的成绩乙的成绩 丙的成绩 环数 7 8 9 10 环数 7 8 9 10 环数 7 8 9 10 频数5555频数6446频数4664A .312s s s >>B .213s s s >>C .123s s s >>D .231s s s >>【解析】 B ;根据题中数据计算()()12117585951058.57684941068.52020x x =⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯=,,()317486961048.520x =⨯+⨯+⨯+⨯=,∴123x x x ==;()()()()22221178.5588.5598.55108.55 1.2520s ⎡⎤=-⨯+-⨯+-⨯+-⨯=⎣⎦, 同理得231.45 1.05s s ==, ∴213s s s >>.<教师备案>概率的定义是一个漫长的过程,最开始就是根据经验,对统计事实的认识.历史上对概率的理解可以分为三个阶段: 第一阶段:大量统计中发生的几率有 多大.比如很多数学家都玩过“扔硬币”这个游戏,而且还统计了结果,如图.大家发现,扔了很多很多次之后,结 果都差不多是正反面各占一半,所以大家认为硬币出正面的概率是50%.可能有人觉得这个做法很无聊,但是这只是概率的现象,是一个经典精讲6.3随机事件概率结果层面的东西,并不是概率的本质.不过现在计算机在估计概率的时候也是用这样的方法进行多次的实验,最终估计出一个结果.第二阶段:人们开始想一些复杂的问题.这里面著名的问题有两个,一个是赌徒分金问题(注:两个赌徒玩掷硬币,规定正面则甲加一分,反面则乙加一分,谁先得到16分谁就可以赢得一袋金币,现在进行到甲:乙=15:12,警察来了,说不让赌了,那么这些金币该怎么分.(【解析】按照15:1的比例分;假设警察没有来,则乙赢的概率为:11111222216⨯⨯⨯=,甲赢的概率为:111111111115222222222216+⨯+⨯⨯+⨯⨯⨯=,∴应该按照15:1的比例分金币),另一个问题是掷两个骰子,至少有一个6的概率(【解析】:1136).这些问题基本上是很难通过实验来得出结论,毕竟情景比较复杂,这就促使人们要从概率的理论角度入手解决.费马在概率的定义方面做出了杰出的贡献,因为他引入了“等可能”这个概念.就是我们需要先认同一些基本的“等可能”的条件,然后再由此出发考虑复杂情况.第三阶段:古典概型有弊端,因为古典概型的必然要求是要把一个事件分解成若干等可能的基本事件,不过有些问题中这件事是做不到的.比如打靶问题.所以才有了几何概型这个概念.之后随着函数论的发展,我们用函数基础定义概率的时候我们就有了新的概率理论.后续的离散型随机变量说的就是这个阶段的问题.建议老师在一开始教学的时候强化概率的直观解释.比如:掷硬币模型,再比如:猜黑白(俗称手心手背).其实这就是利用了概率均等的原理进行的.我们可以想一想,手心手背其实是很有效的一个等概率选取方式.另外,猜拳也是一个非常有效的等概率选取方式.这些概率其实挺难算的,不过我们可以让学生直观的理解概率的意义.同样的问题还有: 【趣题】1.甲乙两个人去公园,公园有10个景点,在这10个景点中两个人各自独立的选取5个,假定甲和乙同时出发,游览每一个景点的时间都是相同的,那么他们在最后一个景点相遇的概率是多少?【解析】下面有三种方法,老师在给学生讲本讲的时候可以讲法一,法二和法三供老师参考:法一:从概率意义的直观理解,考虑甲最后在的一个景点,乙最后在任何一个景点的可能性相同,恰好在甲所在的景点的概率为110.法二:甲最后一个景点为i 号景点的概率都为110,乙最后一个景点为i 号景点的概率也为110()12310i =,,,,故他们最后一个景点为同一个景点的概率为11110101010⨯⨯=.法三:他们参观景点的所有顺序有551010A A 种,每种参观景点的顺序出现的可能性相同,故在最后一个景点相遇的情况有1441099C A A ,故所求概率为1441099551010C A A 1A A 10=. 2.华约的自招考题:4个人传球,每个人都等概率的传给其他人,由甲开始第一次传球,设n 为传球次数,n 次传球后球在甲手里的概率记为n p ,问当n 趋向于无穷的时候,n p 趋向于多少?【解析】下面有两种方法,老师在给学生讲本题的时候可以讲法一,法二供老师参考:法一:从概率意义的直观理解,因为每个人都等可能的传给其他人,所以球在甲手里的概率为14,传n 次球后球在甲手里的概率依然为14.法二:记n A 表示事件“经过n 次传球后,球在甲手中”,12n =⋅⋅⋅,,则有()10P A =,()()()111n n n n n P A P A A P A A +++=+()()1113n n n P A A p +==-. 所以1n p +与n p 的关系式为()1113n n p p +=-,12n =⋅⋅⋅,,① 设11()3n n p p λλ++=-+,对比得14λ=-.于是①式可以变形为1111434n n p p +⎛⎫-=-- ⎪⎝⎭,从而14n p ⎧⎫-⎨⎬⎩⎭是公比为13-的等比数列,其首项为11144p -=-.故有1111443n n p -⎛⎫⎛⎫-=-⨯- ⎪ ⎪⎝⎭⎝⎭,111143n n p -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,12n =⋅⋅⋅,, ② 由②可得1111lim lim 1434n n n n p -→∞→∞⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 另外还可以介绍一些概率不能直观解释的例子:比如生日悖论:世界上任取50个人,他们至少有两个人生日在同一天的概率是多少?请见下图(转自维基百科)由此可见,当取到23个人的时候,概率已经超过了50%,选取50人的时候,概率应该在95%左右.还有一个例子:乒乓球体育比赛中规定:如果双方得分是10:10,那么一方至少要得12分才能获胜,也就是至少比对方多两分.那么这种“延球”制相对于没有延球制度,到底是对强者更有利,还是帮助弱者有更大的机会翻身呢?(【解析】延球制度对强者更有利;假设强者很强,则再比赛一局有可能强者胜也有可能弱者胜,但是再比赛两局或者比赛无穷多局,肯定是强者赢的概率更大),这些其实都是通过直观解释概率比较复杂的问题. 接下来我们可以定义事件:考点5:随机事件的概率一.事件1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.例子:判断以下现象是否为随机现象知识点睛。

9.1.1简单随机抽样(第一课时)(课件)高一数学(人教A版2019必修第二册)

9.1.1简单随机抽样(第一课时)(课件)高一数学(人教A版2019必修第二册)

(4)总体:这个水库里所有的鱼,个体:这个水库里的每一条鱼,适合用抽样调查;
练习巩固
练习2:判断下列抽取样本的方式是否属于简单随机抽样?
(1)盒子里共有80个零件,从中选出五个零件进行质量检验.在抽样操作时,从中任意拿
出一个零件进行质量检验后再把它放回盒子里;
(2)从20件玩具中一次性抽取三件进行质量检验;
普查
问题4:这种调查方式好不好?适宜采用什么方法调查?
抽样调查
新知探究
思考1:什么是普查和抽样调查?你还能举出生活中使用它们进行调查的
例子吗?它们分别有什么好处呢?
普查
例如,准确掌握全国的人口数据,可以为科学制
定国民经济和社会发展规划及其他方针政策提供依据
.2020年,我国进行了第七次人口普查,对全国人口
②用电子表格软件生成随机数
例如:在电子表格软件的任意单元格中输入“=
(1,712)”,即可生成一个1—
712范围的整数随机数.这样产生的随机数可能会有
重复
新知探究
③用统计软件生成随机数
小贴士
除了上述软件以外,还有很多能够产生随机数的软件,
一般的抽签软件,如:抽签助手,抽签器等;
可节省成本.
机数,需要剔除重复编号并重新产生.
问题7:用简单随机抽样的方法抽取样本,样本量是否越大越好?
抽样调查中样本量的选择要根据实际问题的需要,在精度和费用两者间
进行权衡,并不一定是越大越好.
在简单随机抽样调查中,当样本量和总体一样大时,就是全面调查了.
练习巩固
辨析3:判断正误.
1.在总体规模比较大的调查中,抽样调查比全面调查更合理.
延,调查学生每天晨午晚体温
测试一批待收瓶装牛奶
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
褥期的健康教育,错误的是()。A.经阴道自然分娩的产妇,产后应卧床休息24小时B.保持会阴部和乳房的清洁C.营养合理,防止便秘D.居室应安静,舒适E.阴道自然分娩产后第二日可在室内随意活动 [单选]医疗机构发现了疑似甲类传染病病人在明确诊断前,应()A.转回社区卫生服务中心观察B.留急诊室观察C.在指定场所单独隔离治疗D.收住院进行医学观察E.转到其他医院 [单选]石油基本上由碳、氢、()等五种元素组成。A、硫、钠、氧B、硫、氮、氧C、硫、氮、镁D、氮、氧、钾 [单选,A1型题]治疗糖尿病视网膜病变时,主要是利用了激光的()A.强电场效应B.热效应C.弱刺激效应D.压强效应E.光化学效应 [单选,A4型题,A3/A4型题]男,10月,呕吐3天,腹泻4天,因无尿8小时入院,诊断重度等渗脱水伴酸中毒、营养不良。给以补液后12小时纠正脱水、酸中毒,16小时突然出现惊厥。治疗应采取的措施是()A.脱水B.补钙C.补钾D.补钠E.补镁 [问答题,案例分析题]王先生,40岁。工伤导致右前臂损伤。于现场检查见右前臂有反常活动,伤口有活动性出血。要求:请用止血带、夹板等为患者行止血、固定处理。 [单选]某地提供A、B、O、AB血型人数分布的数据是()A.数值变量资料B.无序分类资料C.有序分类资料D.等级分类资料E.圆形分类资料 [单选,A1型题]以下关于前列腺电切(TURP)综合征的说法中,不恰当的是()A.发生高血容量B.低压冲洗可减少发生C.多发生于手术时间较长时D.高钠血症E.造成水中毒 [单选]下列各项中,能使企业资产总额增加的是()。A.支付职工工资B.计提行政部门固定资产折旧C.处置固定资产,发生的净损失D.交易性金融资产公允价值上升 [单选]对乡(镇)、村集体企业资产中账面价值与实际价位背离较大的主要固定资产的价值进行重新评定估算的工作,称为()。A.核实资金B.清查资产C.资产价值重估D.资产价值评估 [单选]船舶对水航程SL,对地航程SG,船速VE,航时t,若SG<SL<VEt,则船舶航行在()情况下。A.顺风顺流B.顶风顶流C.顺风顶流D.顶风顺流 [单选,A2型题,A1/A2型题]rt-PA溶栓入选标准不包括()A.年龄18~80岁B.确诊为缺血性脑卒中CT检查发现高密度病灶D.卒中症状持续至少30分钟E.CT检查未见特殊发现 [单选,A1型题]在Meta分析中,必须进行异质性分析,产生异质性的原因可能是()A.各个研究采用的研究方法可能不同B.各个研究的环境条件可能不同C.各个研究所定义的暴露、结局等指标可能不同D.随机效应是产生异质性的最重要原因E.各个研究的研究对象可能存在差异 [单选]出境邮寄物经检疫或经检疫处理合格的,检验检疫机构签发()放行。检疫不合格又无有效方法处理的,不准出境。A.《出境货物通关单》B.《出境货物检疫证书》C.《出境邮寄货物通关单》D.《出境邮寄货物检疫证书》 [单选]关于寰枢关节叙述正确的是()A.可使头部做前俯、后仰和侧屈运动B.两侧关节间隙常不对称C.可使头部做旋转运动D.属于联合关节E.由寰椎两侧的下关节面与枢椎的上关节面构成 [单选]气体分馏装置四停事故中,()对装置威胁最大。A、停电B、停汽C、停水D、停风 [单选]在建筑施工现场()是导致事故发生的最主要因素。A.人的因素B.物的因素C.环境因素D.不可测知的因素 [单选]甲为年满22周岁的青年工人,乙为年满15周岁的精神病人(限制行为能力人)。一日乙之父正与甲聊天,甲问乙是否敢拿一块石头砸丙,乙便捡起一块石头向丙扔去,将丙砸伤,对此乙之父未予阻止,花去医药费2000元。对此损失,应由:()A.甲承担B.乙的监护人承担C.主要由甲承担, [单选]下列关于冠状动脉瘤的CT表现哪项是正确的()A.多层螺旋CT不能显示动脉瘤全貌B.CT横断面图像不利于观察动脉瘤壁C.多见附壁血栓D.动脉瘤壁无钙化E.CT横断面图像不利于观察动脉瘤壁局限性或弥漫性扩张,形态为囊状、梭形或不规则形 [单选]关于仲裁协议,说法正确的是:()A.仲裁协议可以通过电子邮件的方式订立B.仲裁协议仅约定纠纷适用的仲裁规则的,以制作该仲裁规则的仲裁委员会为确定的仲裁委员会,仲裁协议有效C.仲裁协议未约定仲裁规则的,仲裁协议无效D.以口头方式订立的仲裁协议有效 [单选,A1型题]关于T、B细胞免疫耐受的特点正确的叙述是()A.诱导T细胞耐受所需时间长,B细胞短B.诱导T细胞耐受维持时间短,B细胞长C.高剂量TD-Ag不能使T、B细胞产生耐受D.低剂量TD-Ag仅能使T细胞产生耐受,不能使B细胞产生耐受E.低剂量的TI-Ag能使T、B细胞均产生耐受 [单选]细菌性肝脓肿病人最常见的早期症状是()A.恶心,呕吐B.消瘦C.食欲减退D.肝区疼痛E.寒战,高热 [单选]下列各项中,不属于事业单位净资产项目的是()。A.事业结余B.固定基金C.专用基金D.应缴预算款 [单选,A2型题,A1/A2型题]对自杀及其预防的认识正确的是()A.自杀的人是真的想死B.谈论自杀的人不会真的去死C.不能与有自杀念头的人谈自杀D.有自杀行为者需要精神医学干预E.危机过去也就是意味着自杀危险性结束 [单选,A2型题,A1/A2型题]关于原子核结构的叙述,错误的是()A.原子均由核及核外电子组成B.电子沿一定轨道绕核旋转C.核外电子具有不同壳层D.K层最多容纳8个电子E.K层电子半径最小 [单选]韦氏成人智力测验首先由()于1955年所编制。A.卡特尔B.瑞文C.比内D.韦克斯勒 [判断题]任何单位和个人在与金融机构建立业务关系或者要求金融机构为其提供一次性金融服务时,都应当提供真实有效的身份证件或者其他身份证明文件。A.正确B.错误 [填空题]A级高度钢筋混凝土高层建筑结构平面布置时,平面宜()、()、()、()。 [单选]保证合同的签订人为()。A.债权人与债务人B.债权人与保证人C.债务人与保证人D.保证人与被保证人 [单选]小肠肠壁组织结构由内向外依次为()。A.黏膜层、黏膜下层、肌层、浆膜层B.黏膜层、黏膜下层、黏膜肌层、肌层、浆膜层C.黏膜层、黏膜肌层、黏膜下层、固有肌层、浆膜层D.黏膜层、黏膜肌层、浆膜层E.黏膜层、肌层、浆膜层 [填空题]一般照明电路的电压为()。 [判断题]螺旋线圈属于机械式导线装臵。()A.正确B.错误 [单选,A1型题]男婴,10个月。对蛋白需要量是3.5g/kg,而成人则为1.0g/kg。其相差如此之大是因为婴儿()A.以乳类食品为主要食品B.氨基酸在体内并非完全吸收C.生长发育旺盛,需要正氮平衡D.对蛋白质的消化吸收功能差E.利用蛋白质的能力差 [问答题,简答题]货运检查作业在列整理有何规定? [单选]初产妇第二产程时,何时应开始保护会阴?()A.胎头仰伸时B.胎头拨露使会阴后联合紧张时C.宫口开全时D.胎头着冠时E.阴道口见胎头时 [单选,A1型题]下列哪种碱基只存在于mRNA而不存在于DNA中()A.腺嘌呤B.胞嘧啶C.鸟嘌呤D.尿嘧啶E.胸腺嘧啶 [单选]HFDSC的遇险与安全频率之一是8414.5kHz,其波长是()。A、36千米B、3.6米C、36米D、无法计算 [问答题,简答题]货运检查主要内容有那些? [单选,A2型题,A1/A2型题]术后发生深静脉血栓,其处理措施不正确的是()A.患肢抬高B.禁忌经患肢静脉输液C.勤按摩D.溶栓治疗E.抗凝治疗 [填空题]电梯安全回路安全触点动作断开,在不停电的情况下,选择万用表的()测量触点动作断开点。
相关文档
最新文档