四旋翼无人机带机械臂的设计与研究

合集下载

微小型四旋翼无人机研究进展及关键技术浅析

微小型四旋翼无人机研究进展及关键技术浅析
S tationary F ly ing Ou tstretched Robot)
[ 1- 2]
国内开展了 微 小型 四 旋翼 无 人机 的 相关 技 术研 究。主要两种四旋翼, 图 4所 示四旋 翼机 身由两 支空 心铝竿构成; 动 力 设备 采 用 Dragan flyer ! 旋 翼、 瑞士 M axon 电机以及自行 设计 的齿轮 减速 装置; 飞行 控制 系统主要包括飞行控 制计 算机、 旋 翼转速 伺服 控制子 系统、 传感器子系统、 无线通信子系统。图 5 所示四旋 翼采用玻纤板结构, 重量轻, 且不易损坏。螺旋桨采用 10 in( 1 in = 2. 54 c m ) GW S 三叶正反桨, 经过多次飞行 试验证明该桨抗 撞击 力强, 不 易折断。视 频采 集模块 可以实时传输视频 (图 像压 缩, 可以 通过 W iF i实时传 输 ) , 数据加载卡可记录飞行数据。下一步的研究目标 是实现在室外环境中 高精 度姿态 稳定控 制、 全 自主航 点飞行、 碰撞规避等实验。
图 2 X 4 F ly er 图 3 X 4 F lyer M ark I 四旋翼平台 F ig . 3 X 4 F lye rM a rk I M ark II四旋翼 平台 F ig . 2 X 4 F lye rM ark II
1 . 1 微小型四旋翼原型探索研究与开发 主要介绍瑞士洛桑联邦科技学 院 ( EPFL ), 澳 大利 亚国立大学 ( AUN ) 以 及 国内 某大 学在 微 小型 四旋 翼 无人机原型探索方面的研究进展。 瑞士洛桑联 邦科技 学院 OS4项 目 ( Omn id irect ional
。 OS4四旋翼无
人机是由电 力驱动的 (见图 1) , 可在室内 /外环 境全自 主飞行。 OS4原型是全自主四旋翼平台, 该项目的研究 目标是设 计和 开发一 个自主 控制 四旋翼 直升 机系统。 此外, EPFL 还研究了 OS4的避障问题 , 使用 4个超声 波传感器探测障碍物、 一个 超声波传感 器测高度, 并在 M atlab /S m i u link仿真环 境下进行了 OS4 避障模 型的测 试, 设计了避障控制器、 基于 位置和速度 控制的 5 种不 同避碰方法, 并做了 相关测试 实验证 明, OS4在 仿真环

四旋翼无人机研究现状及研究意义

四旋翼无人机研究现状及研究意义

四旋翼无人机研究现状及研究意义四旋翼无人机是一种可以进行垂直起降和悬停的飞行器。

它由四个垂直起降的电动螺旋桨和一个设备负载平台组成,可以携带各种传感器和设备,用于完成各种任务,如航拍、输送物资、监视和侦查等。

近年来,四旋翼无人机的研究不断发展,它在农业、气象、电力、物流等领域得到了广泛应用。

目前,四旋翼无人机研究的主要方向包括控制系统、感知与导航、通信与协同和物理设计等。

控制系统研究主要包括飞控算法、姿态控制和轨迹规划等,旨在提高无人机的飞行稳定性和精确性。

感知与导航研究主要关注无人机的环境感知和自主导航能力,包括视觉识别、避障和地图构建等。

通信与协同研究主要关注无人机之间的信息交流和协同任务能力,实现多机协同和群体行为。

物理设计研究主要关注无人机的结构设计和材料选择,以提高无人机的轻巧性和飞行效率。

四旋翼无人机的研究具有重要的意义。

首先,四旋翼无人机可以完成人力难以达到的任务,如航拍高空照片、观察植物生长和监测天气等,为科学研究和实际应用提供了有力的工具。

其次,四旋翼无人机可以实现航空领域的自主化和智能化,通过自主导航和协同任务能力提高飞行器的效能和安全性。

再次,四旋翼无人机在物流和运输领域的应用前景广阔,可以实现货物的快速和安全运输,减少人力和时间成本。

最后,四旋翼无人机在农业领域的应用也具有重要意义,可以实现农作物的精细管理和立体耕作,提高农业生产效益。

总之,四旋翼无人机的研究正在不断发展,它的应用领域广泛,具有重要的研究意义和实际应用价值。

在未来的研究中,需要加强控制系统的研究,提高飞行器的稳定性和控制精度。

同时,还需要加强对感知与导航、通信与协同和物理设计等方面的研究,实现无人机的自主化和智能化。

更加全面和深入的研究将促进无人机技术的进一步发展和应用。

仿人机器人四自由度机械臂的设计与性能分析

仿人机器人四自由度机械臂的设计与性能分析

仿人机器人四自由度机械臂的设计与性能分析一、机械臂的设计仿人机器人四自由度机械臂的设计需要考虑多个方面的因素,包括结构设计、运动学设计、控制系统设计等。

1. 结构设计机械臂的结构设计是其设计的基础,需要考虑到机械臂的负载能力、稳定性和灵活性。

首先要确定机械臂的长度、负载能力以及工作范围,然后根据这些参数设计出合适的结构。

通常,仿人机器人的机械臂会模仿人体的肢体结构,因此可以参考人体的骨骼结构设计机械臂的连接方式和关节转动范围。

2. 运动学设计机械臂的运动学设计是指确定机械臂的运动范围、姿态和关节角度等参数。

在设计过程中,需要考虑到机械臂的可达空间、运动学逆解和轨迹规划等问题,以确保机械臂能够在工作空间内完成自如的运动。

3. 控制系统设计控制系统设计是机械臂设计的另一个重要方面,通过合理的控制系统设计,可以实现机械臂的精确控制和灵活运动。

控制系统通常包括传感器模块、执行机构和控制算法等组成部分,需要根据机械臂的具体应用场景选择合适的控制方案。

二、机械臂的性能分析机械臂的性能对其应用效果具有重要影响,因此需要对机械臂的性能进行全面的分析和评估。

1. 负载能力机械臂的负载能力是指其能够承受的最大负载大小,在设计过程中需要根据实际应用场景确定负载能力,并进行相应的结构设计和材料选择。

2. 精度和重复定位精度机械臂在工作过程中需要具备一定的精度和重复定位精度,以确保工作结果的准确性和一致性。

因此需要对机械臂的传动系统、控制系统和传感器系统等方面进行精细化设计和优化。

3. 动态性能机械臂的动态性能包括其运动速度、加速度和响应速度等参数,这些参数直接影响机械臂的工作效率和响应能力。

在设计过程中需要合理选择执行机构和控制系统,以提高机械臂的动态性能。

4. 稳定性和安全性机械臂在工作过程中需要具备稳定性和安全性,避免因外部干扰或设备故障导致意外发生。

因此需要在设计过程中考虑到机械臂的结构强度和稳定性问题,同时设置相应的安全保护装置。

四旋翼无人机设计与制作毕业论文

四旋翼无人机设计与制作毕业论文

四旋翼无人机设计与制作毕业论文摘要:无人机作为一种重要的航空器,具有广泛的应用前景。

本论文以四旋翼无人机为研究对象,通过对其设计与制作的实践,在硬件和软件方面进行详细阐述。

主要包括无人机的结构设计、电路设计以及飞行控制系统的编程。

通过实际测试,验证了该无人机的飞行性能。

关键词:无人机、四旋翼、设计、制作、飞行控制系统第一章引言无人机是一种可以在没有人操控的情况下自主飞行的航空器。

其广泛应用于航拍、农业、交通、救援等领域。

四旋翼无人机作为一种应用广泛的无人机,具有结构简单、稳定性好的特点。

因此本论文以四旋翼无人机为研究对象,旨在通过具体的设计与制作过程探究其相关技术和原理。

第二章无人机的结构设计2.1无人机的基本组成部分2.2机身设计机身的设计要考虑到材料的轻量化和强度的要求。

一般使用轻质的碳纤维材料制作机身,同时增加机身的刚性,提高结构的强度和稳定性。

2.3电机和螺旋桨设计电机是驱动四旋翼无人机飞行的关键器件,其选型要根据负载和飞行需求来确定。

同时,螺旋桨的选择也要考虑到机身的尺寸和重量,以及飞行的稳定性。

第三章无人机的电路设计3.1电路原理图设计根据四旋翼无人机的功能要求,设计相应的电路原理图。

主要包括电源供给电路、电机驱动电路和飞行控制系统。

3.2电路板制作将电路原理图转化为实际的电路板,并通过蚀刻和钻孔等工艺制作出来。

可使用CAD软件进行设计,选择合适的印刷电路板材料,然后通过化学方法蚀刻出电路线路图。

第四章无人机的飞行控制系统的编程4.1控制算法设计无人机的飞行控制系统是其能够自主飞行的关键。

通过对四旋翼无人机的姿态控制、高度控制和速度控制等方面进行算法设计。

4.2编程实现基于设计出的控制算法,利用C语言等编程语言进行实际代码的编写。

通过传感器采集到的数据以及飞行控制系统的指令进行相应的处理,并将处理结果发送给无人机的执行机构(电机)。

第五章实验与结果分析通过将设计好的无人机进行实际测试,对其飞行性能进行验证。

仿人机器人四自由度机械臂的设计与性能分析

仿人机器人四自由度机械臂的设计与性能分析

仿人机器人四自由度机械臂的设计与性能分析一、引言1. 结构设计仿人机器人四自由度机械臂的结构设计是其设计的核心,直接影响了机械臂的性能和功能。

一般而言,仿人机器人四自由度机械臂的结构设计主要包括四个方面:机械臂的关节结构、连杆结构、末端执行器以及传动系统。

首先是机械臂的关节结构,一般采用旋转关节和直线关节相结合的方式,使得机械臂能够在不同方向上做出灵活的运动;其次是连杆结构,通常采用轻质、高强度的材料制造,以保证机械臂的刚性和稳定性;再次是末端执行器,根据机械臂的实际应用需求,可以选择不同的末端执行器,如夹持器、激光切割头等;最后是传动系统,一般采用电机和减速器相结合的方式,以保证机械臂具有较高的运动精度和稳定性。

2. 控制系统仿人机器人四自由度机械臂的控制系统是其设计的另一个重要组成部分,其设计主要包括控制算法的设计和实现、传感器系统的设计和实现以及执行系统的设计和实现。

首先是控制算法的设计和实现,其主要目的是根据外部输入的控制信号,计算出机械臂各个关节的运动轨迹,并将其转化为相应的控制信号;其次是传感器系统的设计和实现,通常包括位置传感器、力传感器等,用于实时监测机械臂的运动状态和外部环境的信息;最后是执行系统的设计和实现,主要包括电机、减速器等,用于实现机械臂的各种运动。

1. 运动性能仿人机器人四自由度机械臂的运动性能是其重要的性能指标之一,主要包括运动范围、运动速度、加速度以及动态性能。

首先是运动范围,通常根据机械臂的实际应用需求确定,一般要求机械臂能够在一定的空间范围内进行灵活的运动;其次是运动速度,通常要求机械臂具有较高的运动速度,以提高工作效率;再次是加速度,一般要求机械臂具有较高的加速度,以保证机械臂在短时间内能够完成快速的运动;最后是动态性能,一般要求机械臂具有较好的动态性能,以保证机械臂在运动过程中能够具有较好的稳定性和精度。

2. 精度性能3. 负载能力仿人机器人四自由度机械臂的负载能力是其另一个重要的性能指标,主要包括静态负载能力和动态负载能力。

四旋翼无人机研究现状及研究意义

四旋翼无人机研究现状及研究意义

四旋翼无人机研究现状及研究意义虽然目前四旋翼飞行器因为自身诸多优点吸引了很多研究者的注意,并且己经被应用到各种领域,但是在技术方面依然存在很多难题需要克服。

其中,最为关键的问题便是飞行控制问题,在设计控制策略方面主要存在两个方面的困难:第一,难以对其建立精确的数学模型。

和一般飞行器一样,四旋翼飞行器在飞行过程中,不仅要受到重力、空气动力、本体升力等作用,还要受到未知并且变化的气流等外部干扰的影响,这导致很难获得准确的气动性能参数,从而难以建立精确有效的数学模型,大大阻碍了设计控制效果优良的控制策略的设计。

第二,四旋翼飞行器是一个典型的多输入多输出(MIMO)、非线性、强耦合的欠驱动系统,同时对干扰比较敏感,这大大增加了控制的难度,使得飞行控制系统的设计变得非常困难。

针对四旋翼飞行器,目前主要有三种控制策略:局部线性化、非线性控制和智能控制。

(1)局部线性化方法局部线性化方法是基于线性化的思想,首先将四旋翼飞行器的非线性模型通过小扰动模型思想或者局部线性化的思想转化为线性模型,然后基于线性控制方法设计控制器,其主要包括传统PID控制和最优LQR控制。

PID控制基本思想是将四旋翼飞行器的模型分为化个独立的线性化通道,并分别对每个通道设计PID控制律,步骤简单,易于实现。

例如,Salih设计了一种PID控制器对四旋異飞行器进行飞行控制,他将四旋翼系统分为全驱动和欠驱动通道,分别对两个通道设计PID控制器,并通过仿真证明了控制器的有效性[8]。

LQR(Linear Quadratic Regulator)即线性二次型调节器是一种最优控制策略,基本思想是在满足性能函数取得最优值的约束下,根据相应原理设计控制器。

例如,高青等人为四旋翼飞行器的姿态稳定控制提出了新的LQR控制器,该控制器能够实现姿态的快速稳定控制并跟踪参考输入[9];李一波等人采用一种指令跟踪増广LQR方法设计了飞翼式无人机纵向姿态控制律,并取得不错的控制效果[10]。

四旋翼无人机设计

四旋翼无人机设计

四旋翼无人机设计四旋翼无人机(Quadcopter)是一种由四个电动马达驱动的无人机,通过分别控制每个马达的转速和方向来实现悬停、飞行和转弯等动作。

四旋翼无人机在农业、电力巡检、安防监控以及航拍等领域有着广泛的应用。

下面将详细介绍四旋翼无人机的设计要点和主要部件。

在结构设计方面,四旋翼无人机的主要部件包括机架、电机、螺旋桨、电调和飞控。

机架通常采用轻质材料(如碳纤维)制成,具有重量轻、刚性强和抗冲击能力好的特点。

电机负责驱动螺旋桨旋转,通常使用无刷电机,其转速和电流特性需要与电调相匹配。

螺旋桨是产生升力的关键部件,选择合适长度和材质的螺旋桨可以提高飞行效率和稳定性。

电调则负责控制电机的转速和方向,将飞控发送的控制信号转化为电机的控制信号。

飞行控制系统设计则是四旋翼无人机最核心的部分。

飞控是指通过传感器、信号处理芯片和控制算法等组成的电子设备,用于检测和响应无人机的姿态、位置和运动状态。

常见的飞控系统有飞行控制器(Flight Controller)和惯性测量单元(Inertial Measurement Unit,简称IMU)。

飞行控制器是无人机的“大脑”,负责接收遥控器、GPS和其他传感器的信号,并发送控制指令给电机和电调。

IMU包括加速度计和陀螺仪,用于测量无人机的加速度和角速度,从而实现对姿态和运动的控制。

载荷系统设计根据应用需求而定,可以包括相机、传感器和机械臂等。

载荷系统需要与飞行控制系统进行数据交互,并能够通过控制指令实现相应的操作。

总之,四旋翼无人机的设计需要考虑结构、电力、飞行控制和载荷系统等多个方面。

合理选择和设计各个部件,同时优化飞行控制算法和传感器配置,可以提高无人机的性能和稳定性,实现更多的功能和应用。

基于pixhawk飞控的四旋翼机械臂无人机设计

基于pixhawk飞控的四旋翼机械臂无人机设计

• 181•无人机技术的快速发展,在日常生活中越来越常见,目前人们主要是在无人机上装上相机,以航拍为主。

为了扩大无人机的应用我们采用了在无人机下面安装一个轻型机械臂来进行生活中的实际应用,实现了高空作业人们做不到的一些操作,例如高空电线的简单悬挂问题。

其中存在的缺点持续性不强。

其中优点也很明显轻便、可操作性强,机械臂能进行一些简单的作业增加了其实操性,提高了安全性。

1 四旋翼无人机飞行基本原理整体上旋翼对称分布在机体的4个轴上,四个旋翼要求处于同一高度平面,且四个旋翼的整体以及半径都要求相同,四个电机对称的安装在飞行器的支架端,机架中间平台安装飞行控制器、外部设备和电子调速器。

通过计算机控制电子调速器来调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。

然后再无人机上安装机械臂并且能够通过飞控进行控制。

在图1中,四旋翼无人机的电机1和3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。

电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x 轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。

图1 无人机4种运动图2 硬件部分我们采用的是以PIXHAWK2.4.8飞控为主的无人机的硬件设计。

飞控有极强的输出能力:可以对14个舵机输出PWN ,其中8个输出引脚带失效保护功能,可进行人工设定。

6个输出引脚可用于输入,并且全部支持高压舵机。

还拥有大量外设接口,如:UART ,I2C ,CAN 。

在飞翼模式中,可使用飞行中备份系统,可设置、可存储飞行状态等数据。

外置安全开关、全色LED 智能指示灯、外接式大音量智能声音指示器。

可插拔式microSD 卡控制器,可以进行高速数据记录。

在电源方面,所有外设输出带有功率保护,所有输入带有静电保护,多余度供电系统,可实现不间断供电。

如图2。

四旋翼无人直升机控制系统的研究的开题报告

四旋翼无人直升机控制系统的研究的开题报告

四旋翼无人直升机控制系统的研究的开题报告一、研究背景及意义随着机械自动化技术的不断发展,无人直升机作为一种新型的机器人已经广泛应用于军事侦查、民航、农业、测量和监视等领域。

四旋翼无人直升机具有起降简单、悬停稳定、机动灵活等优点,是目前应用最广泛的一种无人直升机。

四旋翼无人直升机主要由机身、四个转子、电池和控制系统等部件组成。

其中,控制系统是保证飞行安全和稳定的关键,包括了传感器、控制器、通信模块、执行机构等。

当前,对四旋翼无人直升机控制系统的研究主要集中在控制策略的设计和控制器的优化方面。

但是,传感器的选择和安装、不同环境下的控制性能、失控情况的应对等问题也是需要研究的重点。

因此,本研究旨在针对四旋翼无人直升机的控制系统进行深入研究,探究其控制策略和控制器优化的同时,重点关注传感器选型和布置、控制性能和失控情况的分析和解决方案研究,进一步提高四旋翼无人直升机的飞行安全性和稳定性,提升其在军事和民用领域的应用。

二、研究内容及方法本研究的主要内容包括以下几个方面:1.四旋翼无人直升机控制系统设计:通过对四旋翼无人直升机各个部件的分析,采用Angular Velocity Control(AVC)控制策略,设计出符合实际应用需求的控制系统模型。

2.传感器选型与布置方案研究:在控制系统中,传感器是获取外界信息的重要途径,本研究将结合传感器的原理和适用范围,选择合适的传感器并设计出最优的传感器布置方案。

3.环境因素对控制性能影响的研究:探究不同环境下四旋翼无人直升机的控制性能,通过实验验证并分析环境因素对于四旋翼无人直升机控制性能的影响。

4.失控情况应对措施研究:为了提高无人直升机的安全性,本研究将对四旋翼无人直升机出现失控情况时的应对措施进行研究,提出相应的解决方案。

本研究的方法包括理论分析和实验研究相结合,利用MATLAB和Simulink软件进行算法设计和仿真,通过搭建四旋翼无人直升机控制系统实验平台开展实验研究,采用误差分析和数据处理方法对实验结果进行分析和评估。

小型攻击型四旋翼无人机系统设计分析

小型攻击型四旋翼无人机系统设计分析

小型攻击型四旋翼无人机系统设计分析一、引言无人机技术的飞速发展,使得四旋翼无人机成为了军事领域的重要装备之一、小型攻击型四旋翼无人机以其低成本、高机动性和灵活性得到了广泛的关注和应用。

本文将对小型攻击型四旋翼无人机的系统设计进行分析。

二、系统组成1.机身结构:小型攻击型四旋翼无人机的机身结构应该具备轻巧、坚固和耐用的特点,能够承受高强度的运动和突发力的冲击。

同时,机身应具备良好的气动性能,以提高飞行效率和稳定性。

2.动力系统:动力系统是小型攻击型四旋翼无人机的核心组成部分,通常采用电动驱动的无刷直流电机作为动力源。

电机通过旋转螺旋桨产生升力,控制螺旋桨的转速和旋转方向可以实现飞行、悬停和转弯等动作。

3.控制系统:控制系统是小型攻击型四旋翼无人机的“大脑”,负责控制飞行、导航和任务执行等功能。

通常包括姿态控制、位置控制、导航控制和飞行控制等模块。

姿态控制使用陀螺仪、加速度计和磁力计等传感器来感知机身的姿态变化,然后通过电调控制电机的转速来实现平衡。

位置控制使用GPS、激光雷达和视觉传感器等感知器件来获取位置信息,然后通过PID控制算法控制飞行方向和速度。

4.任务载荷系统:小型攻击型四旋翼无人机通常搭载各种任务载荷,如摄像机、传感器、弹药等。

摄像机可以在任务中提供实时监视和情报收集功能,传感器可以用于目标侦测和测距等功能,弹药可以进行攻击和破坏敌方目标。

5.通信系统:通信系统是小型攻击型四旋翼无人机与地面站或其他系统进行通信的关键环节。

通常使用无线电通信技术,如Wi-Fi、蓝牙和卫星通信等来实现数据传输和控制指令的交互。

同时,通信系统还应该具备一定的抗干扰和保密性能,以防止被敌方干扰和攻击。

三、系统设计优化1.重量优化:小型攻击型四旋翼无人机需要具备较高的机动性和机载载荷能力,但受限于自身重量的限制。

因此,在设计中应该尽量减少机身结构和各组件的重量,采用轻量化的材料和结构设计来提高整体性能。

2.能量效率优化:小型攻击型四旋翼无人机的电池容量有限,为了延长续航时间,应该通过优化动力系统和降低飞行的功耗来提高能量效率。

四旋翼无人飞行器设计与实验研究的开题报告

四旋翼无人飞行器设计与实验研究的开题报告

四旋翼无人飞行器设计与实验研究的开题报告一、选题背景及意义随着科技的不断发展,无人机已经广泛应用于农业、环境监测、救援、安保等领域。

而四旋翼无人飞行器由于其灵活、稳定、可控等特点,在室内、室外、风力较小的环境中具有广泛的应用前景。

本研究旨在设计和实验一种基于四旋翼的无人飞行器,并探索其在悬停、航行、姿态控制等方面的应用。

二、研究内容及方法1.无人飞行器设计(1)飞行器主要部件的选型和设计;(2)飞行器控制系统的设计,包括姿态控制、飞行控制、安全控制等。

2.无人飞行器实验(1)飞行器性能测试,包括悬停、航行、载荷能力等;(2)姿态控制实验,包括角速度控制、角度控制、PID控制等。

3.研究方法(1)参考文献研究;(2)设计手册、飞行器工程手册等资料查阅;(3)使用仿真软件进行初步测试;(4)进行实验室实验。

三、预期结果设计并成功试飞一架基于四旋翼的无人飞行器,能够实现悬停、航行、载荷能力等基本性能,并实现姿态控制,包括角速度控制、角度控制、PID控制等。

四、可能遇到的问题及解决方法1.设计不合理导致无法飞行问题。

解决方法:书籍、专利等资料查找,咨询相关领域专家。

2.实验前期仿真测试结果不准确问题。

解决方法:改变仿真软件,检查测试环境的合理性,加强对程序的分析。

3.技术难度较大,长时间解决不了问题。

解决方法:与合作单位、专家进行讨论协商,不断完善解决方案。

四、研究计划及进度安排1.文献综述 2周2.设计方案确定 2周3.飞机部件选型和设计 4周4.控制系统设计 4周5.设计报告编写 2周6.编写程序及模拟测试 4周7.实验室实验 8周8.论文写作及答辩准备 8周五、参考文献[1] 李培生. 无人机系统工程[M]. 北京:国防工业出版社,2015.[2] 张天泽,赵岩. 基于四旋翼的无人机姿态控制研究[J].计算机系统应用,2013,22(8):129-132.[3] 赵天维,姜太平. 基于PID控制的四旋翼无人直升机姿态控制算法[J].自动化与仪器仪表,2015,101(9):187-192。

四旋翼无人机研究现状及研究意义

四旋翼无人机研究现状及研究意义

四旋翼无人机研究现状及研究意义四旋翼无人机(Quadcopter)是一种以四个对称布置的旋翼为主要飞行装置的无人机。

由于其结构简单、控制灵活、携带能力强等特点,近年来已经成为无人机领域的研究热点之一、以下将从研究现状和研究意义两个方面进行探讨。

目前,四旋翼无人机的研究涵盖了不同层面和领域。

在飞行控制方面,研究者基于PID控制、模糊控制、神经网络等方法,不断提高四旋翼无人机的稳定性和控制精度。

在传感器技术方面,激光雷达、红外传感器等高精度传感器的应用使得四旋翼无人机在环境感知和避障方面取得了突破。

在自主导航与路径规划方面,利用图像处理、机器学习等技术,使得四旋翼无人机能够在复杂环境中进行自主飞行和路径规划。

此外,四旋翼无人机在农业、环境监测、物流配送等领域的应用也得到了广泛研究。

首先,四旋翼无人机的应用领域广泛。

在农业领域,可以利用四旋翼无人机进行精准种植、植保喷洒等操作,提高农作物的产量和质量;在环境监测方面,可以利用四旋翼无人机进行空气污染监测、水质监测等工作,提供及时、准确的数据支持;在物流配送方面,四旋翼无人机可以实现快递、医疗物资等紧急物资的快速送达,提高配送效率。

因此,研究四旋翼无人机的应用技术对于推动相关领域的发展具有重要意义。

其次,四旋翼无人机在紧急救援和灾害应急方面具有巨大潜力。

在自然灾害和人为灾害发生时,四旋翼无人机可以快速到达事故现场,通过图像采集、搜救定位等功能,提供重要的信息支持和援助救援行动。

在城市交通堵塞、海上搜救等场景中,四旋翼无人机也可以发挥重要作用,提高救援效率,减少人员伤亡。

此外,四旋翼无人机在科学研究和教育培训方面也有着重要作用。

科学家们可以利用无人机采集数据,进行地质勘探、环境监测、天文观测等研究。

在教育培训方面,四旋翼无人机可以作为教学工具,帮助学生更好地理解物理学、数学等学科知识,培养创新思维和动手能力。

总之,四旋翼无人机作为一项新兴技术,其研究具有重要的现实意义和应用前景。

仿人机器人四自由度机械臂的设计与性能分析

仿人机器人四自由度机械臂的设计与性能分析

仿人机器人四自由度机械臂的设计与性能分析机器人技术是现代工业领域中的重要组成部分,仿人机器人在模拟人类动作、进行精细操作等方面具有广泛的应用前景。

本文设计了一种四自由度仿人机器人的机械臂,同时对其性能进行了分析。

首先,我们设计了四自由度仿人机器人的机械臂。

该机械臂由四个关节组成,分别为基座关节、肩关节、肘关节和腕关节,它们分别控制机械臂的上下、前后、左右和旋转运动。

基座关节固定在机器人的基座上,肩关节和肘关节之间通过伸缩臂连接,腕关节通过腕关节呈水平状连接到机器人的末端执行器。

该机械臂的各关节均配备有电机和减速器,由控制系统负责控制和驱动。

其次,我们对该四自由度机械臂的性能进行了分析。

通过坐标变换,我们得到了机械臂在三维空间中的运动轨迹。

在运动过程中,机械臂的各关节之间会产生相互干扰的情况,需要对其进行分析和优化。

我们利用动力学模型进行了分析,确定了各关节的加速度、角速度和扭矩等参数。

同时,为了保证机械臂能够完成稳定的运动,我们利用PID控制器对机械臂进行了控制,通过对控制器的参数进行调整,实现了机械臂的稳定运动。

最后,我们对该机械臂的应用进行了探讨。

该机械臂可以在工业、医疗、服务等领域中发挥重要作用。

例如,在工厂生产线上,可以应用该机械臂进行物料搬运、装配等操作;在医疗领域,可以利用该机械臂进行手术操作和康复治疗;在服务领域,可以将该机械臂应用于服务机器人中,为人们提供更加便利的服务。

综上所述,我们设计的四自由度仿人机器人机械臂具有稳定性和灵活性,并且在应用领域中具有广泛的潜力。

未来,我们将继续优化该机器人的性能和功能,以更好地满足实际应用需求。

四旋翼无人机设计与制作毕业论文

四旋翼无人机设计与制作毕业论文

四旋翼无人机设计与制作毕业论文标题:四旋翼无人机设计与制作摘要:随着无人机技术的发展与广泛应用,四旋翼无人机成为了目前市场上最常见的无人机之一、本论文对四旋翼无人机的设计与制作进行研究,并详细介绍了设计思路、飞行控制器选用、整体结构设计以及实际制作过程。

最终通过实验验证了设计方案的可行性与有效性,并对无人机的未来发展进行了展望。

一、引言无人机作为一种新兴的飞行器,广泛应用于军事、民航、航测等领域。

其中四旋翼无人机由于其结构简单、操作容易、机动性好而备受瞩目。

因此,设计与制作一台稳定、可靠的四旋翼无人机具有很高的现实意义。

二、设计思路本论文选择了X型四旋翼的结构,通过电机及相应的叶片产生协同作用,实现四旋翼的稳定飞行。

首先,确定无人机的使用目的,然后确定设计的主要指标,例如飞行时间、载荷能力等。

接下来,根据主要指标和材料性能选用相关部件,并进行整体结构设计。

三、飞行控制器选用飞行控制器是无人机的核心部件,起到飞行稳定性控制的作用。

在本论文中,采用了先进的飞控行业中广泛应用的飞控PX4、通过与传感器、执行器等硬件的连接,完成对无人机飞行状态的监测与控制。

四、整体结构设计通过根据飞行控制器的要求设计机身结构,保证传感器的稳定性与可靠性。

同时,根据载荷能力要求设计相应的云台结构,使无人机具有较大的灵活性,适应不同任务的需求。

在设计过程中,需要考虑重量分配和整体结构的强度,确保无人机的安全与稳定。

五、实际制作过程在制作过程中,根据设计方案拟定材料清单,并选择符合规格要求的电机、无人机螺旋桨、电子元器件等进行购买和组装。

然后,按照设计方案将各个部件进行装配,最后进行整体调试与测试。

六、实验验证通过对设计制作的四旋翼无人机进行实验验证,测试其飞行稳定性、载荷能力等性能指标。

结果显示,设计的无人机能够实现稳定、可靠的飞行,并具备较好的载荷能力,能满足实际工作的需求。

七、未来展望虽然本论文设计与制作的四旋翼无人机取得了较好的成果,但仍存在一些局限性,比如飞行时间短、控制精度有限等。

四旋翼飞行器控制算法设计与研究的开题报告

四旋翼飞行器控制算法设计与研究的开题报告

四旋翼飞行器控制算法设计与研究的开题报告一、选题背景和意义四旋翼飞行器是一种灵活、便携、多用途的无人机,广泛应用于军事、民用、科研等领域,如遥感、地质勘探、气象观测、灾害救援等。

其中,控制算法是决定四旋翼飞行稳定性和性能的核心因素,对四旋翼飞行器的飞行效率、准确性和可靠性等方面有重要的影响。

本课题旨在探究四旋翼飞行器控制算法的设计与研究,分析四旋翼飞行器的运动特性、建立四旋翼飞行器的运动学和动力学模型,并应用控制理论和方法设计出稳定、高效、灵活的控制算法,提高四旋翼飞行器的飞行稳定性和性能。

二、课题研究目标和内容2.1 研究目标(1)分析四旋翼飞行器的运动特性,建立四旋翼飞行器的运动学和动力学模型;(2)综述四旋翼飞行器控制算法的现状和发展趋势,包括位置控制算法、姿态控制算法、路径规划算法等;(3)应用控制理论和方法设计出高性能、高稳定性的四旋翼飞行器控制算法,并进行仿真验证。

2.2 研究内容(1)四旋翼飞行器运动特性分析:分析四旋翼飞行器的运动特性,包括六自由度运动、姿态变化、空气动力学特性等,建立四旋翼飞行器的运动学和动力学模型。

(2)四旋翼飞行器控制算法综述:综述四旋翼飞行器控制算法的现状和发展趋势,包括位置控制算法、姿态控制算法、路径规划算法等。

(3)四旋翼飞行器控制算法设计:应用控制理论和方法设计出高性能、高稳定性的四旋翼飞行器控制算法,包括位置控制算法和姿态控制算法。

(4)仿真验证和优化:进行控制算法的仿真验证,验证控制算法的稳定性和性能,并进行算法的优化调整。

三、研究方法和技术路线3.1 研究方法本课题主要采用理论分析和仿真实验相结合的方法。

理论分析:分析四旋翼飞行器的运动特性,建立四旋翼飞行器的运动学和动力学模型,应用控制理论和方法设计控制算法。

仿真实验:应用MATLAB/Simulink等仿真软件进行建模和仿真验证,对所设计的控制算法进行性能测试和仿真实验。

3.2 技术路线(1)四旋翼飞行器运动学和动力学模型的建立(2)四旋翼飞行器控制算法的综述与分析(3)位置控制算法的设计和实现(4)姿态控制算法的设计和实现(5)控制算法仿真验证和性能测试(6)算法优化和改进四、预期成果(1)分析四旋翼飞行器的运动特性,建立四旋翼飞行器的运动学和动力学模型;(2)综述四旋翼飞行器控制算法的现状和发展趋势;(3)设计出高性能、高稳定性的四旋翼飞行器控制算法;(4)控制算法仿真验证和性能测试;(5)提出控制算法优化和改进的方法和思路。

仿人机器人四自由度机械臂的设计与性能分析

仿人机器人四自由度机械臂的设计与性能分析

仿人机器人四自由度机械臂的设计与性能分析一、引言随着科技的发展,机器人技术不断地得到突破和进步,而仿人机器人的研究也成为了当前的热点之一。

仿人机器人四自由度机械臂作为仿人机器人的重要组成部分,其设计与性能分析显得尤为重要。

本文将对仿人机器人四自由度机械臂的设计与性能进行详细分析。

1. 结构设计仿人机器人四自由度机械臂的结构设计需要考虑到其在模仿人体手臂动作的具有较好的稳定性和灵活性。

一般来说,仿人机器人四自由度机械臂包括基座、肩部关节、肘部关节和手部末端执行器。

基座用于支撑整个机械臂,肩部关节连接基座和肘部关节,肘部关节连接肩部关节和手部末端执行器。

这样的结构设计使得仿人机器人四自由度机械臂可以模仿人体手臂的运动轨迹和姿态。

2. 关节设计仿人机器人四自由度机械臂的关节设计需要兼顾其运动范围和受力情况。

一般来说,仿人机器人四自由度机械臂的关节设计包括电机、减速器和传动装置。

电机用于驱动机械臂的运动,减速器用于降低电机的转速,并且增加扭矩输出,传动装置用于将电机的转动转化为机械臂的运动。

通过合理的关节设计,能够使得仿人机器人四自由度机械臂具有良好的动作稳定性和较大的运动范围。

3. 控制系统设计1. 运动精度仿人机器人四自由度机械臂的运动精度是其性能的重要指标之一。

一般来说,运动精度可以通过机械臂的姿态误差和末端执行器的定位误差来衡量。

姿态误差是机械臂实际姿态与期望姿态之间的偏差,而末端执行器的定位误差是指实际位置与期望位置之间的偏差。

通过对仿人机器人四自由度机械臂的运动精度进行分析,能够评估其在不同工作条件下的运动表现。

2. 负载能力仿人机器人四自由度机械臂的负载能力是指其能够承受的最大负载。

一般来说,负载能力直接影响机械臂的实际应用范围和工作效率。

通过对仿人机器人四自由度机械臂的负载能力进行分析,能够评估其在不同工作条件下的负载承受能力,为实际工程应用提供参考。

四旋翼飞行器飞行控制系统研究与设计

四旋翼飞行器飞行控制系统研究与设计

四旋翼飞行器飞行控制系统研究与设计四旋翼飞行器是无人机中常见的一种飞行器类型,在军事、民用等领域有着广泛的应用。

而对于这种飞行器,飞行控制系统的研究与设计是其性能和稳定性的关键。

一、四旋翼飞行器的工作原理四旋翼飞行器是一种通过四个独立的旋翼进行飞行的飞行器。

它的工作原理是通过调节不同旋翼的转速和倾斜角度,控制飞行器的姿态和飞行方向。

通过这种方式,飞行器可以实现上下、前后、左右的飞行运动,并且可以在空中悬停。

二、四旋翼飞行器飞行控制系统基本组成四旋翼飞行器的飞行控制系统主要由传感器、控制算法和执行器三部分组成。

传感器用于获取飞行器的姿态和状态数据,控制算法用于根据传感器数据计算控制指令,执行器则用于执行控制指令,调节旋翼的转速和倾斜角度。

1. 传感器传感器是飞行控制系统的数据获取部分,主要用于获取飞行器的姿态、位置和运动状态等数据。

常见的传感器包括陀螺仪、加速度计、磁力计、气压计等。

陀螺仪用于测量飞行器的角速度,加速度计用于测量飞行器的加速度,磁力计用于测量飞行器的方向,气压计用于测量飞行器的高度。

这些传感器可以提供给控制算法所需的姿态和状态数据,为飞行器的控制提供支持。

2. 控制算法控制算法是飞行控制系统的核心部分,它主要用于根据传感器数据计算控制指令,调节飞行器的姿态和飞行状态。

常见的控制算法包括PID控制、模糊控制、自适应控制等。

PID控制是一种经典的控制算法,它通过比例、积分和微分三部分组成,可以根据误差信号调节执行器输出,实现对飞行器的精确控制。

模糊控制是一种基于模糊逻辑的控制方法,可以处理复杂的非线性系统,对于四旋翼飞行器的控制具有一定的优势。

自适应控制是一种基于自适应参数的控制方法,可以根据飞行器的动态特性实时调节控制参数,适应不同的飞行环境和工况。

3. 执行器执行器是飞行控制系统的执行部分,主要用于控制飞行器的旋翼转速和倾斜角度,调节飞行器的姿态和飞行状态。

常见的执行器包括电动调速器、舵机等。

小型四旋翼无人机组机方案设计

小型四旋翼无人机组机方案设计

一、小型四旋翼无人机总体架构典型的小型四旋翼无人机,一般由机械部分(机架),动力部分(包括电机、电子调速器、电调连接板、桨叶、电池),电子部分(包括飞控板、通信模块、遥控器接收机、PPM编码板)组成。

(一)机械部分机架考虑到编队飞行对实验室空间的要求,希望机架能够尽量的小。

根据与蔡国伟老师对电机与桨叶(后文提到)的搭配进行讨论后,决定将机架的大小设定为轴距255mm,边距180mm(由6寸桨的大小决定)。

1,底板 2,中间机架板 3,顶板整个机体由底板、中间机架板、顶板连接而成(通过尼龙螺柱和螺丝);底板安置电池、xbee模块、遥控器接收机、电调连接板,中间机架板安置4个电调、pixhawk飞控板,顶板用于安置定位系统标记点(同时起到保护、隐藏pixhawk 飞控板及走线的作用);为便于安装,所有开孔、镂空均根据拟选器件匹配设计;拟采用碳2mm厚3K纤维板加工。

另设计四个保护罩如下(可用于避免桨叶受损或伤人):4,保护罩(二)动力部分(1)电机一般而言,小型四旋翼无人机(轴距250mm左右)选用KV2000左右(配5-6寸桨)的电机。

经过对比讨论后,拟选用飓风D2206 KV1900无刷直流电机(配6寸桨)。

之所以选用这款电机是因为这款电机能够提供较大的拉力,同时该电机的工作电流处在一个比较小的区间,单个电机重量仅为27.5g。

飓风D2206 KV1900参数表飓风D2206 KV1900实物图(2)电子调速器电子调速器用于驱动无刷直流电机,比较重要的参数是工作电流,刷新频率,重量。

一般而言,市面上可售的大部分电子调速器的刷新频率都大于400hz,符合要求。

根据上文所选电机的工作电流,综合考虑重量要求,与蔡国伟老师沟通后,拟选用好盈XRotor-10A电子调速器。

好盈XRotor系列电子调速器参数表好盈XRotor-10A电子调速器实物图(3)电调连接板电调连接板,其本质为一块电源配电板,用于简化电池与电调、电调与飞控之间的电气连接,同时可以避免导线拆装时的反复焊接。

四旋翼无人机带机械臂的设计与研究

四旋翼无人机带机械臂的设计与研究

四旋翼无人机带机械臂的设计与研究摘要:四旋翼无人机已经进入了众多的应用领域,在国家建设以及工程中扮演着越来越重要的角色。

目前研究四旋翼无人机姿态及机身设计的文章较多,但是很少有带机械手臂的无人机。

因此,本文采用了以往常见的无人机模型,设计出机械手臂,既能保证无人机飞行过程的平稳性,而且保证抓取东西的快速、准确性。

本文不仅设计了无人机的整体形态,而且选择了适合无人机飞行的硬件设施,为工程应用打下了基础。

关键字:四旋翼飞行器;机械手臂;抓取;硬件设施一、前言目前,国内外研究无人机的人员越来越多,先进的无人机也层出不穷。

但是大多数研究者只是关注于飞行姿态、飞行稳定性,而带有机械手的无人机则研究较少。

在近年来,无人机不管是在飞行姿态、操纵系统、稳定性设计等都有长足发展,但是带有机械手的无人机动态操作等问题还比较突出。

在设计研究当中,无人机加上先进的操纵手臂之后,不仅改变了飞行器的整体重量,而且对于飞行中的控制提出了较大问题。

在无人机飞行过程中,抓取动作的准确性、稳定性是考虑的重要问题。

比如说,无人机在告诉的飞行中,对于其飞行速度与飞行的时间要求比较高,这就要要求无人机能够快速、及时地抓住物体,而且有时还需要对目标进行监视,这样就会避免因为噪音而引起的注意。

除此之外,无人机动态抓握功能可以扩展到实时栖息,这可以用来快速地躲避大风、通过减少悬停时间来提高续航时间。

华北电力大学张虎[1]等在众多无人机研究的基础上,利用四旋翼飞行器作为基本结构,进行改进与创新,研究了一种飞滑式输电线巡检机器人,这种无人机结合了现有的四旋翼飞行器与巡线机器人优点的具有飞行与线上滑行巡检功能的机器人。

Justin Thomas团队[2]在多年观察仿生机械的基础上设计研究了一种采用被动机制的机械手爪,这种手爪在抓取中能够不受外界环境的干扰,同时在垂直起飞和着陆系统中启用被动栖息的设计上采用了优化分析;Courtney E. Doyle团队[3]在多年针对放生机械研究的基础上,在无人机上加入了受到控制的附属物,使其能够高速地锁定对象并进行抓取。

四旋翼无人直升机飞行控制系统的研究与设计的开题报告

四旋翼无人直升机飞行控制系统的研究与设计的开题报告

四旋翼无人直升机飞行控制系统的研究与设计的开题报告一、选题背景随着科技的不断发展,无人机技术得到了广泛应用,并成为军事、航空、农业等领域的热门话题。

作为一种新型的无人机,四旋翼无人直升机具有结构简单、操控容易、维修方便等优点,因此受到了越来越多人的关注和青睐。

在四旋翼无人机的设计和制造过程中,飞行控制系统是关键的一环,直接决定了无人机的飞行性能。

因此,本文选择了四旋翼无人直升机飞行控制系统的研究与设计作为研究方向,旨在探究如何设计一套高性能、高稳定性的四旋翼无人机飞行控制系统。

二、研究目的本研究的主要目的是探究四旋翼无人直升机飞行控制系统的设计方法和优化策略,开发出一套高效、高性能、高稳定性的控制系统,提高飞行体验和安全性。

三、研究内容本研究的主要内容包括以下几个方面:1. 四旋翼无人机的基础理论研究与分析,掌握其飞行控制原理和数学模型。

2. 飞行控制系统的硬件设计,包括传感器、控制器、执行器等。

3. 飞行控制系统的软件设计,包括飞行控制算法、数据处理、控制策略等。

4. 飞行控制系统测试与优化,通过实验测试、数据分析等方式对控制系统进行改进和优化,提升无人机飞行性能。

四、研究方法本研究主要采用以下几种研究方法:1. 理论分析研究法:深入研究四旋翼无人机的基础理论,探究其飞行控制原理和数学模型。

2. 实验测试研究法:通过实验测试、数据分析等方式对控制系统进行改进和优化,提升无人机飞行性能。

3. 模拟仿真研究法:通过计算机模拟仿真等方式实现飞行控制算法的设计和优化。

五、预期成果通过本研究,预期达到以下成果:1. 可以掌握四旋翼无人机的基础理论和飞行控制原理,建立其数学模型。

2. 设计并制造出一套高效、高性能、高稳定性的飞行控制系统。

3. 经过测试和优化,控制系统的飞行性能得到有效提升,飞行更加稳定和安全。

六、研究意义通过本研究,不仅可以为四旋翼无人机的设计和制造提供技术支持和理论指导,也可以为其他类型的无人机控制系统的研究和开发提供借鉴和启示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四旋翼无人机带机械臂的设计与研究
发表时间:2018-06-06T15:23:16.953Z 来源:《科技新时代》2018年3期作者:鲍佳松[导读] 摘要:四旋翼无人机已经进入了众多的应用领域,在国家建设以及工程中扮演着越来越重要的角色。

目前研究四旋翼无人机姿态及机身设计的文章较多,但是很少有带机械手臂的无人机。

因此,本文采用了以往常见的无人机模型,摘要:四旋翼无人机已经进入了众多的应用领域,在国家建设以及工程中扮演着越来越重要的角色。

目前研究四旋翼无人机姿态及机身设计的文章较多,但是很少有带机械手臂的无人机。

因此,本文采用了以往常见的无人机模型,设计出机械手臂,既能保证无人机飞行过程的平稳性,而且保证抓取东西的快速、准确性。

本文不仅设计了无人机的整体形态,而且选择了适合无人机飞行的硬件设施,为工程
应用打下了基础。

关键字:四旋翼飞行器;机械手臂;抓取;硬件设施
一、前言
目前,国内外研究无人机的人员越来越多,先进的无人机也层出不穷。

但是大多数研究者只是关注于飞行姿态、飞行稳定性,而带有机械手的无人机则研究较少。

在近年来,无人机不管是在飞行姿态、操纵系统、稳定性设计等都有长足发展,但是带有机械手的无人机动态操作等问题还比较突出。

在设计研究当中,无人机加上先进的操纵手臂之后,不仅改变了飞行器的整体重量,而且对于飞行中的控制提出了较大问题。

在无人机飞行过程中,抓取动作的准确性、稳定性是考虑的重要问题。

比如说,无人机在告诉的飞行中,对于其飞行速度与飞行的时间要求比较高,这就要要求无人机能够快速、及时地抓住物体,而且有时还需要对目标进行监视,这样就会避免因为噪音而引起的注意。

除此之外,无人机动态抓握功能可以扩展到实时栖息,这可以用来快速地躲避大风、通过减少悬停时间来提高续航时间。

华北电力大学张虎[1]等在众多无人机研究的基础上,利用四旋翼飞行器作为基本结构,进行改进与创新,研究了一种飞滑式输电线巡检机器人,这种无人机结合了现有的四旋翼飞行器与巡线机器人优点的具有飞行与线上滑行巡检功能的机器人。

Justin Thomas团队[2]在多年观察仿生机械的基础上设计研究了一种采用被动机制的机械手爪,这种手爪在抓取中能够不受外界环境的干扰,同时在垂直起飞和着陆系统中启用被动栖息的设计上采用了优化分析;Courtney E. Doyle团队[3]在多年针对放生机械研究的基础上,在无人机上加入了受到控制的附属物,使其能够高速地锁定对象并进行抓取。

本文以无人机整体设计为核心,分别对无人机的控制系统、工作原理及控制做出介绍,合理选择适合无人机的硬件,对工程应用具有较大的指导价值。

二、无人机总体设计
1.无人机控制系统组成
在整个的无人机系统当中,系统通过无线电与地面实现通信。

在四旋翼无人机下方设置机械手,通过舵机控制其运动[4-6]。

操作人员可以在地面输入指令,进而控制飞行器的飞行状态。

同时,控制器还可以控制机械手的动作,实现抓举、松开等动作 2.无人机飞行器工作原理
四旋翼飞行器由四个螺旋桨驱动,螺旋桨分别有独立电机带动。

在控制系统当中,旋转的力矩与平移动作实现了耦合。

如果排除外界扰动,旋翼就能够产生与重力相等的升力,飞行器便处于悬停状态[7]。

同时另外一组螺旋桨一个速度增大,一个速度减小就会产生俯仰和滚动的姿态;两组螺旋桨阻力矩的差异产生偏航姿态。

3.机械手控制
机械手的控制是此次设计的关键。

手爪的设计要顾及到飞行器的相对移动速度,这样就能够获得相应的载荷;同时要考虑到其栖息能力,适应不同的环境,能够在广泛的区域停留。

4.无人机整体效果图
三、硬件系统选择
1.电调的选择
电调一般选择性能较高的无刷电子调速器。

首先,电调的选择要考虑到无人机工作的功率,其次要考虑续航能力与载荷,因此选择无刷电机来与之匹配。

2.电池的选择
旋翼无人机所采用的电池为锂电池,全称为“锂聚合物电池”(又称高分子锂电池),相对于其他比较传统的电池来说,其重量轻、续航时间长,这样就能更加好地实现应用。

3.遥控器选择
无人机遥控器一般选择美国的手遥控器以及日本的手遥控器。

同时,遥控器可以控制多个目标,如果接收机损害之后也能采用其他的遥控器所取代,不用再换遥控器,只需要进行简单的对码设置即可[8]。

即遥控器发射的信号接收机能收到并进行解码,并非任何遥控器都可以对上任意的接收机,应根据制造商的规定,不同遥控器系列对不同接收机系列对码有相应的要求。

四、结论
此次的设计主要是对无人机整体、手臂的设计等进行研究,设计还是在理论基础上进行设计,并没有进行较多的验证,因此没有实物参数进行支撑,因此,它在实际环境中的稳定性和抗干扰能力还有待进一步的研究。

同时,文章中选取了电调、电机及遥控器的选择,针对无人机轻量化的研究还可以选择7075不锈钢铝材、碳纤维管等轻质材料。

参考文献
[1]张虎.飞滑式输电线路巡线机器人控制系统研究与实现[D ].北京:华北电力大学,2014.
[2]程敏.四旋翼飞行器控制系统构建及控制方法的研究[D ].大连:大连理工大学,2012.
[3]刘志军.一种自主飞行四旋翼系统设计与实现[D ].西安:西安科技大学,2014.
[4]郝文杰,刘浩,程吉利.基于红外探测的四旋翼飞行器保护装置设计[J].电子制作,2014,(08):17-18.
[5]张家琪.四旋翼直升机姿态运动控制研究[D ].沈阳:东北大学,2009.
[6] 程雪工 . 六旋翼无人飞行器设计[D].西安:西安电子科技大学,2013.
[7] 聂波纹 . 微小型六旋翼无人飞行器模型及表示方法研究[D].武汉:华中科技大学,2013.
[8] 谭号云 . 控制工程学第三版[M].长沙:湖南大学出版社,2013:59-92.。

相关文档
最新文档