ANSYS电磁声固耦合数值分析APDL命令流

合集下载

ansys workbench中apdl的用法

ansys workbench中apdl的用法

ANSYS Workbench中的APDL(ANSYS Parametric Design Language)是一种参数化设计语言,用于在ANSYS软件中自动化建模和求解过程。

以下是APDL的一些用法:
1. 创建模型:使用APDL可以创建各种类型的模型,包括结构、流体动力学、电磁等。

在创建模型时,可以通过定义参数、约束条件和载荷等来自动化建模过程。

2. 优化设计:APDL可以用于优化设计,通过调整参数、约束条件和载荷等,获得最佳的设计方案。

3. 自动化求解:使用APDL可以自动化求解过程,包括网格划分、求解设置、结果后处理等。

4. 批处理操作:通过APDL,可以对一组模型进行批处理操作,例如批量分析、批量结果后处理等。

5. 自定义功能:使用APDL可以自定义功能,例如创建自定义的命令流、宏等,扩展ANSYS软件的功能。

在使用APDL时,需要注意以下几点:
1. 学习APDL需要一定的编程基础和数学知识。

2. 在使用APDL之前,需要了解ANSYS软件的基本操作和功能。

3. 在编写APDL脚本时,需要注意语法错误和逻辑错误,并进
行充分的测试和验证。

4. 在使用APDL进行复杂模型的分析时,需要注意计算资源和内存的分配,以确保计算过程的稳定性和效率。

ansys零件受力计算图文教程及APDL命令流

ansys零件受力计算图文教程及APDL命令流

ansys零件受力计算图文教程及APDL命令流目录图文教程 (2)附件 APDL命令流 (13)图文教程图1 选择单元类型图2 设定平面应力问题图3 设定材料属性图4 建立关键点图5作出圆弧图6建立其余的关键点和直线,用线围成面图7 复制并旋转、平移面得到另一个面图8 布尔运算图9删除多余的面图10设置材料,单元号图11设定单元尺寸图12划分网格图13约束左上销孔的全部位移图14 右下销孔施加均布压力载荷图15计算图16计算完成附件 APDL命令流finish/clear/prep7et,1,plane183keyopt,1,3,0mp,ex,1,30e6 !psi mp,prxy,1,0.27建模k,1,,1k,2,,-1k,3,,0.4k,4,,-0.4csys,1l,1,2l,3,4csys,0lsymm,x,allnummrg,allnumcmp,allldele,1,,,1k,,kx(1)+6,ky(1)k,,kx(2)+6,ky(2)l,1,5$l,5,6$l,6,2$l,2,4$l,1,3 al,3,4,7,8$al,1,2,5,6,7,8 wpoff,5cswplan,11,1agen,2,all,,,,90wpcsys,-1,0 csys,0 agen,,3,4,,,2,,,,1 aovlap,all adele,6,,,1 nummrg,all numcmp,all aesize,all,0.1 amesh,all约束dl,1,,alldl,3,,all加载lsel,s,,,9,11,2 sfl,all,pres,500 allsel,all计算/solusolvefinish。

ANSYS计算结果无难事,APDL经典命令让你的模型舞起来

ANSYS计算结果无难事,APDL经典命令让你的模型舞起来

ANSYS计算结果无难事,APDL经典命令让你的模型舞起来1、让你的ANSYS模型'舞'起来ANSYS计算结果的动画可采用ANTIME、ANMODE、ANCNTR、ANHARM等自动生成动画(AVI格式),使结果展示更加生动直观,相信使用ANSYS的都会制作。

然而,几何模型或有限元模型则无动画显示功能,有时为展示模型本身,会从多个角度截取图片。

那么,模型能否也可制作动画呢?答案是肯定的。

利用ANSYS的图形存储命令/SEG可以实现此功能,让你的模型动起来。

具体过程详见命令流中及其注释,动画上传总是失败,自己生成不要观看吧。

Finish$/clear$/prep7!简单的创建几何模型以减少篇幅blc4,0,0,4,2,5cyl4,2,4,1,,2,,4!关闭图例信息/plopts,info,off!以下开始制作模型动画!删除当前储存的图形/seg,dele/seg,multi,jhdh,1 !独立存储且不覆盖,文件名为jhdh/auto,1 !自动计算与图形区合适显示方式!正视/view,1,0,0,1$vplot!侧视/view,1,1$vplot!俯视/view,1,,1$vplot!D视图/view,1,1,1,1$vplot!循环36次,每次改变10度视角*do,i,1,36$/ang,1,10,ys,1$/replot$*enddo!关闭图形存储操作,保存为jhdh.avi文件/seg,off$/anfile,save,jhdh,avi其实比较简单,一旦进入模型动画制作过程,所有的xPLOT(x=KLAVNE)绘制的图形都将进入动画序列,按显示过程形成一部连续的动画。

2、用一个命令解决ANSYS数据列表分页早年初学ANSYS时,经常用到xLIST(如NLIST、ELIST、KLIST、LLIST、ALIST、VLIST等命令)和PRxSOL(如PRNSOL、PRESOL、PRRSOL、PRETAB、PRPATH)等列表命令,并希望将这些内容保存到TXT文件中,然后再导入EXCEL中处理。

ANSYS软件APDL命令流建模的体会

ANSYS软件APDL命令流建模的体会

ANSYS软件APDL命令流建模的体会首先申明,本人学习ANSYS基本上是靠自己一点一点琢磨出来的,由于本人喜欢用APDL命令流,故总结出来的几点经验也就比较适合用APDL命令的朋友。

1、多看help,ANSYS的help为我们提供了很强大的功能,我最喜欢的是其中对各个命令有关参数的说明和解释部分,不管是建模、加载、后处理等,都可以通过apdl命令来实现。

只要你知道命令,如“aatt”,在help搜索栏输入“aatt”,回车,弹出aatt的有关页码,一般其中有一个只有“aatt”的一项,确认,即可看到你要查询的aatt命令的有关参数意义,本人常用的命令有:et---定义单元类型mp---定义材料属性k----建关键点,l----建线条a---由关键点建立面al---由线建立面v----由关键点建立体vl---由线建立体va--由面建立体lsel---在很多很多线中选择你需要的目标线,数量可以无限多……asel---在很多很多面中选择你需要的目标面,数量也可以无限多……vsel---在很多很多体中选择你需要的目标体,数量也可以无限多……latt----给选中的线按材料编号赋属性(前提是首先已定义好材料)aatt---给选中的面按材料编号赋属性vatt-----给选中的体按材料编号赋属性acel---按坐标轴赋体积力,lmesh,amesh,vmesh---对线、面、体进行剖分d---在节点上加约束边界dl---在线上加载约束边界da----在面上加载约束边界2、以上只是列出了常见的几个命令,但是ansys提供的命令是很多的,我们不可能都记得,计算记得,也不知道其有关参数是如何定义的,那不要紧,我们可以与界面操作结合起来学习。

我们先利用界面操作实现,然后在保存路径里面找到文件“file.log”,在该文件里有该操作等价的apdl命令,那以后我们就可以使用了。

3、复合命令,很多命令是复合命令,通过几个命令的组合以实现一定的目标,如FITEM、FLST等。

ANSYSapdl命令流笔记16-------耦合场分析基础

ANSYSapdl命令流笔记16-------耦合场分析基础

ANSYSapdl命令流笔记16-------耦合场分析基础耦合场分析概述前⾔耦合场分析,也称为多物理场分析,分析不同的物理场的相互作⽤以解决⼀个全局性的⼯程问题。

例如,当⼀个场分析的输⼊依赖于从另⼀个分析的结果,那么分析就会被耦合。

耦合⽅式有:单向耦合:前⼀个分析的结果作为载荷施加给下⼀个分析,⽽下⼀个分析的结果不会影响前⼀个场的分析结果。

例如,在热应⼒问题中,温度场会在结构场中引⼊热应变,但是结构应变通常不会影响温度分布。

因此,⽆需在两个现场解决⽅案之间进⾏迭代。

双向耦合:两个物理场的结果会相互影响。

例如,⾮线性材料的感应加热中,谐波电磁分析计算出焦⽿热,该热在瞬态热分析中⽤于随时间变化的温度解,⽽温度的变化会反过来影响电磁场材料属性的变化,从⽽改变电磁分析结果。

⼀、耦合场分析类型1.直接耦合场分析直接⽅法通常只包含⼀个分析,它使⽤⼀个包含所有必需⾃由度的耦合单元类型,通过计算包含所需物理量的单元矩阵或单元载荷向量的⽅式进⾏耦合。

具有直接耦合功能的单元有:SOLID5 ---------3-D 耦合场实体单元 (电磁矩阵的推导,耦合效应)PLANE13---------⼆维耦合场实体单元 (电磁矩阵的推导,耦合效应)FLUID29 ---------⼆维声学流体 单元(声学矩阵的推导)FLUID30 ---------3-D 8 节点声学流体单元 (声学矩阵的推导)LINK68------------热电耦合杆单元SOLID98----------四⾯体耦合场实体单元 (电磁矩阵的推导,耦合效应)FLUID116---------热流体耦合管单元CIRCU124--------电路单元TRANS126-------机电转换器单元(电容计算,耦合机电⽅法)SHELL157--------热电耦合壳单元FLUID220---------3-D 20 节点声学流体单元FLUID221---------3-D 10 节点声学流体单元PLANE222--------⼆维 4 节点耦合场实体单元PLANE223--------⼆维 8 节点耦合场实体单元SOLID226---------3-D 20 节点耦合场实体单元SOLID227---------3-D 10 节点耦合场实体单元PLANE233--------⼆维 8 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)SOLID236--------3-D 20 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)SOLID237--------3-D 10 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)优点:1.允许解决通常的有限元⽆法解决的问题。

【达尔整理】ANSYS流固耦合分析实例命令流

【达尔整理】ANSYS流固耦合分析实例命令流

达尔文档DareDoc分享知识传播快乐ANSYS流固耦合分析实例命令流本资料来源于网络,仅供学习交流2015年10月达尔文档|DareDoc整理目录ANSYS流固耦合例子命令流............................................................................. 错误!未定义书签。

ANSYS流固耦合的方式 (3)一个流固耦合模态分析的例子1 (3)一个流固耦合模态分析的例子2 (4)一个流固耦合建模的例子 (7)一加筋板在水中的模态分析 (8)一圆环在水中的模态分析 (10)接触分析实例---包含初始间隙 (14)耦合小程序 (19)流固耦合练习 (21)一个流固耦合的例子 (22)使用物理环境法进行流固耦合的实例及讲解 (23)针对液面晃动问题,ANSYS/LS-DYNA提供三种方法 (30)1、流固耦合 (30)2、SPH算法 (34)3、ALE(接触算法) (38)脱硫塔于浆液耦合的分析 (42)ANSYS坝-库水流固耦合自振特性的例子 (47)空库时的INP文件 (47)满库时的INP文件 (49)计算结果 (52)ANSYS流固耦合的方式一般说来,ANSYS的流固耦合主要有4种方式:1,sequential这需要用户进行APDL编程进行流固耦合sequentia指的是顺序耦合以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。

在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。

即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。

ANSYS CD中包含有MpCCI库和一个相关实例。

关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin2,FSI solver流固耦合的设置过程非常简单,推荐你使用这种方式3,multi-field solver这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵一个流固耦合模态分析的例子1这是一个流固耦合模态分析的典型事例,采用ANSYS/MECHANICAL可以完成。

ANSYS命令流总结(全)

ANSYS命令流总结(全)

ANSYS命令流总结(全)ANSYS结构分析单元功能与特性/可以组成一一些命令,一般是一种总体命令(session),三十也有特殊,比如是处理/POST1! 是注释说明符号,,与其他软件的说明是一样的,ansys不作为命令读取,* 此符号一般是APDL的标识符,也就是ansys的参数化语言,如*do ,,,*enddo等等NSEL的意思是node select,即选择节点。

s就是select,选择。

DIM是定义数组的意思。

array 数组。

MP命令用来定义材料参数。

K是建立关键点命令。

K,关键点编号,x坐标,y坐标,z坐标。

K, NPT, X, Y, Z是定义关键点,K是命令,NPT是关键点编号,XYZ是坐标。

NUMMRG, keypoint 用这个命令,要保证关键点的位置完全一样,只是关键点号不一样的才行。

这个命令对于重复的线面都可以用。

这个很简单,压缩关键。

Ngen 复制节点e,节点号码:这个命令式通过节点来形成单元NUMCMP,ALL:压缩所有编号,这样你所有的线都会按次序重新编号~你要是需要固定的线固定的标号NSUBST,100,500,50:通过指定子步数来设置载荷步的子步LNSRCH线性搜索是求解非线性代数方程组的一种技巧,此法会在一段区间内,以一定的步长逐步搜索根,相比常用的牛顿迭代法所要耗费的计算量大得多,但它可以避免在一些情况下牛顿迭代法出现的跳跃现象。

LNSRCH激活线性搜索PRED 激活自由度求解预测NEQIT指定一个荷载步中的最大子步数AUTOTS 自动求解控制打开自动时间步长.KBC -指定阶段状或者用跳板装载里面一个负荷步骤。

SPLINE:P1,P2,P3,P4,P5,P6,XV1,YV1,ZV1,XV6,YV6,ZV6(生成分段样条曲线)*DIM,Par,Type,IMAX,JMAX,KMAX,Var1,Var2,Var3(定义载荷数组的名称)【注】Par: 数组名Type:array 数组,如同fortran,下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符)tableIMAX,JMAX,KMAX各维的最大下标号Var1,Var2,Var3 各维变量名,缺省为row,column,plane(当type为table时)/config是设置ansys配置参数的命令格式为/CONFIG, Lab, V ALUELab为参数名称value为参数值例如:/config,MXEL,10000的意思是最大单元数为10000 杆单元:LINK1、8、10、11、180梁单元:BEAM3、4、23、24,44,54,188,189管单元:PIPE16,17,18,20,59,602D实体元:PLANE2,25,42,82,83,145,146,182,183 3D实体元:SOLID45,46,64,65,72,73,92,95,147,148,185,186,187,191壳单元:SHELL28,41,43,51,61,63,91,93,99,143,150,181,208,209弹簧单元:COMBIN7,14,37,39,40质量单元:MASS21接触单元:CONTAC12,52,TARGE169,170,CONTA171,172,173,174,175,178矩阵单元:MATRIX27,50表面效应元:SURF153,154粘弹实体元:VISCO88,89,106,107,108,超弹实体元:HYPER56,58,74,84,86,158耦合场单元:SOLID5,PLANE13,FLUID29,30,38,SOLID62,FLUID79,FLUID80,81,SOLID98,FLUID129,INFIN110,111,FLUID116,130界面单元:INTER192,193,194,195显式动力分析单元:LINK160,BEAM161,PLANE162,SHELL163,SOLID164,COMBI16杆单元单元名称简称节点数节点自由度特性备注LINK1 2D杆 2 Ux,Uy EPCSDGB常用杆元LINK8 3D杆Ux,Uy,Uz EPCSDGBLINK103D仅受拉或仅受压杆EDGB模拟缆索的松弛及间隙LINK11 3D线性调节器EGB模拟液压缸和大转动LINK180 3D有限应变杆EPCDFGB 另可考虑粘弹塑性E-弹性(Elasticity),P-塑性(Plasticity),C-蠕变(Creep),S-膨胀(Swelling),D-大变形或大挠度(Large deflection),F-大应变(Large strain)或有限应变(Finite strain),B-单元生死(Birth and dead),G-应力刚化(Stress stiffness)或几何刚度(Geometric stiffening),A-自适应下降(Adaptive descent)等。

终极耦合方案——ansys命令流详解

终极耦合方案——ansys命令流详解

ANSYS耦合终极解决方案TAG» ANSYS, 学习, 有限元| 由长河发表于:2009-12-17 19:20这两天很忙,源于自己对论文中可能出现的问题估计不足,不过话说回来,很多问题着实也是在实践过程中才发现其中奥秘。

不过这段时间效率低下是一定的了,想必和网上多了有很大关系。

看来是我真正下决心息网的时候到了,成功的前提是有选择性地放弃,看来这句话是对我说的。

而且,看着即将完成的一篇论文,怎么看怎么像是我写博客的风格,囧。

博客对生活影响真大啊!好了,言归正传,刚才在仿真论坛发现了一篇好贴《高效耦合小程序》,si13俨然是个天才,程序写得太牛了,我读了三遍才理解其中奥秘,不禁啧啧称奇。

对其作品更是五体投地,相当佩服。

首先来围观下面si13编写的APDL代码:说明:其中加粗的部分需要根据不同的分析自行修改。

!**************************************allsel !最好保留这句命令!*******将从属节点编号依次存入数组****************cmsel,s,slavenode*get,count1_node,node,0,count*del,slave_node*dim,slave_node,array,count1_node*get,slave_node(1),node,0,num,min*do,i,2,count1_nodeslave_node(i)=ndnext(slave_node(i-1))*enddo!*******将主节点编号依次存入数组****************allselcmsel,s,masternode*get,count2_node,node,0,count*del,master_node*dim,master_node,array,count2_node*get,master_node(1),node,0,num,min*do,i,2,count2_nodemaster_node(i)=ndnext(master_node(i-1))*enddo!********将与从属节点耦合的节点数组初始化*****************del,cp_node*dim,cp_node,array,count1_node*do,i,1,count1_nodecp_node(i)=0*enddo!*********开始选择程序****************allselcmsel,s,masternode*do,i,1,count1_nodekk=1k=1*dowhile,kkk=nnear(slave_node(i))nsel,s,cp,,allkk=nsel(k)+0.001allselcmsel,s,masternodensel,u,node,,kcm,masternode,node*enddocp_node(i)=k*enddo!*******选择完毕****************!*******开始耦合****************allsel,all/prep7*do,i,1,count1_nodecp,next,UX,slave_node(i),cp_node(i)cp,next,UY,slave_node(i),cp_node(i)cp,next,UZ,slave_node(i),cp_node(i)*enddo!*******耦合完毕****************过去常见的耦合命令,主要分三步(以钢筋与混凝土耦合为例):选择钢筋线上的节点;通过新定义的数组,对这些节点进行排序;用一个循环,是这些钢筋上的节点与其周围最近的节点进行耦合。

APDL-ansys

APDL-ansys

本文列出了A开头的ansys命令及功能。

学习ansys一定要学学APDL,初学者很多人都疑问,那么多指令怎么去背啊其实很简单,常用的也就那么几个,用多了就知道了,忘记查查就行,更多的时候我们并不是自己去写,而是通过ANSYS产生的日志去稍微修改下就可以了。

但是编比较高级的代码流,还要对fortran有所了解,下面是部分ansys指令可供参考。

1. A,P1,P2,…,P17,P18(以点定义面)2. AADD,NA1,NA2,…NA8,NA9(面相加)3. AATT,MAT,REAL,TYPE,ESYS,SECN(指定面的单元属性)【注】ESYS为坐标系统号、SECN为截面类型号。

4. *ABBR,Abbr,String(定义一个缩略词)5. ABBRES,Lab,Fname,Ext(从文件中读取缩略词)6. ABBSAVE,Lab,Fname,Ext(将当前定义的缩略词写入文件)7. ABS,IR,IA,--,--,Name,--,--,FACTA(取绝对值)【注】*************8. ACCAT,NA1,NA2(连接面)9. ACEL,ACEX,ACEY,ACEZ(定义结构的线性加速度)10. ACLEAR,NA1,NA2,NINC(清除面单元网格)11. ADAMS,NMODES,KSTRESS,KSHELL【注】*************12. ADAPT, NSOLN, STARGT, TTARGT, FACMN, FACMX, KYKPS, KYMAC【注】*************13. ADD,IR, IA, IB, IC, Name, --,-- , FACTA, FACTB, FACTC(变量加运算)14. ADELE,NA1,NA2,NINC,KSWP(删除面)【注】KSWP =0删除面但保留面上关键点、1删除面及面上关键点。

15. ADRAG,NL1,NL2,…,NL6,NLP1,NLP2,…,NLP6(将既有线沿一定路径拖拉成面)16. AESIZE,ANUM,SIZE(指定面上划分单元大小)17. AFILLT,NA1,NA1,RAD(两面之间生成倒角面)18. AFSURF,SAREA,TLINE(在既有面单元上生成重叠的表面单元)19. *AFUN, Lab(指定参数表达式中角度单位)20. AGEN, ITIME, NA1, NA2, NINC, DX, DY, DZ, KINC, NOELEM, IMOVE(复制面)21. AGLUE,NA1,NA2,…,NA8,NA9(面间相互粘接)22. AINA,NA1,NA2,…,NA8,NA9(被选面的交集)23. AINP,NA1,NA2,…,NA8,NA9(面集两两相交)24. AINV,NA,NV(面体相交)25. AL,L1,L2,…,L9,L10(以线定义面)26. ALIST,NA1,NA2,NINC,Lab(列表显示面的信息)【注】Lab=HPT时,显示面上硬点信息,默认为空。

如何学习ANSYS命令流及APDL简解

如何学习ANSYS命令流及APDL简解

ANSYS没有像其他软件一样的工具图标,但是可以把一些经常 用的功能通过自定义按钮的方式添加到Toolbar里面。
主要用到了*ABBR(Abbreviation的缩写)命令,其格式为 *ABBR,按钮上的标签名称,按钮调用的命令或宏的名称
命令*ABBR的使用格式如下: *ABBR,Abbr,string abbr:显示在工具条上的缩写名,最多可包含8个字符. string:Abbr所代表的ANSYS命令,系统UIDL函数名或宏名的缩写字符串.如果*ABBR命令 的值域string是一个宏名,那么该宏必须放在指定的宏搜索路径下.
9
Dare Design 2014
上篇
简介及准备
如何学习ALeabharlann SYS命令和APDL >ANSYS命令按照功能可分为三个大类:前 处理命令、后处理命令、和结果查看命令, 每个大类有自己对应的处理器,/PREP7处 理器,后处理/POST1、/POST26等。 ANSYS有超过1000条命令,很难有人把 这些完完全全记住,我建议先学习APDL语 法及规则,记住常用的关键词,配合这些关 键词套用需要的命令。然后了解常用的 ANSYS命令。对于ANSYS常用命令的学习 ,网上资料很多,更详细的用法可以在 ANSYS主菜单-help-help topic中查找。
10
Dare Design 2014
上篇
简介及准备
如何学习ANSYS命令和APDL >
图1 APDL在ANSYS14.5 帮助中的位置
11
Dare Design 2014
工欲善其事必先利其

(编辑器选择)
多数命令流可以直接拷贝到ANSYS命令提示符栏中运行,但部 分命令不支持这种方式,而且执行速度比较慢。更常用的方法是 将命令流在文本文档中整理好,然后通过/input命令或Utility Menu>File>Read Input From运行。 最常见的文本编辑器就是WINDOWS自带的记事本了,具有 系统自带、功能简单,使用方便的特点,能够满足基本的需求。

ANSYS APDL命令流建模及模态分析实例相关内容

ANSYS APDL命令流建模及模态分析实例相关内容

本文介绍了轮毂的ANSYS APDL命令流建模及模态分析实例相关内容。

ANSYS命令流及注释五个辐条的轮毂!!初始化ANSYS环境!FINISH/CLEAR !清空内存/FILNAM,WHEEL5 !文件名/TITILE,WHEEL5 PARAMETER MODELING !工作名!!定义几何尺寸参数!R1=180R2=157R3=75R4=75R5=30R6=28R7=20R8=90R9=60S_HOLE=5TH1=48TH2=23TH3=11TH4=180TH5=40TH6=45TH7=105TH8=25TH9=15TH10=25TH11=13/VIEW,1,1,1,1 !改变视图/ANG,1/PNUM,LINE,1/PNUM,AREA,1/PNUM,VOLU,1/NUMBER,1!!关键点!/PREP7k,1,r5,r7,0k,2,r4-ky(1),ky(1),0k,3,r4,0,0k,4,r1,0,0k,5,kx(4),th5-th9,0k,6,r1-th8,ky(5),0k,7,kx(6),th4/2,0k,8,kx(7)+th11,ky(7)+th10,0 k,9,kx(8),th4-th3,0k,10,kx(4),ky(9),0k,11,kx(4),th4,0k,12,r2,ky(11),0k,13,kx(12),ky(8),0k,14,kx(7)-th3,ky(7),0k,15,kx(14),th5,0k,16,r3+r6,ky(15),0k,17,kx(3),r7+th1,0k,18,kx(1),ky(17),0k,19,kx(16),ky(17),0k,20,kx(2),0,0k,21,0,0,0k,22,0,th1+r7,0*ask,s_hole,'the number of hole',5 !宏!!创建轮毂面!lstr,1,2 !连接1,2关键点,形成直线larc,2,3,20,r7 !以20点为圆心r7为半径,2,3点为端点作弧线lstr,3,4lstr,4,5lstr,5,6lstr,6,7lstr,7,8lstr,8,9lstr,9,10lstr,10,11lstr,11,12lstr,12,13lstr,13,14lstr,14,15lstr,15,16larc,16,17,19,r6lstr,17,18lstr,18,1al,allcm,an-all,area !形成组件!!创建实体模型!allsel,allvrotat,an-all,,,,,,21,22,360,S_hole, !旋转拉伸形成体cm,v-an-all,volu!!减去孔洞!vsel,nonewpro,,-90, !绕Y轴转动工作平面cswpla,11,1,1,1csys,11wpoff,r8*sin(180/s_hole),r8*cos(180/s_hole)RPR4,3,-th5,th5/2,r9,, !创建三角形adele,96LFILLT,182,181,10, , !在直线182,181间形成半径10的圆角LFILLT,182,183,10, ,LFILLT,183,181,10, ,LARC,98,100,21,144,ldele,182asel,noneal,181,184,187,185,183,186 !连接各线形成面cm,sanjiao_hole,areavext,sanjiao_hole,,,0,0,th5,,,, !以th5为厚度形成体cm,v_hole,voluvgen,s_hole,all,,,,360/s_hole,,,0 !旋转拉伸形成s_hole个体cm,v-hole,voluvsel,allvsbv,v-an-all,v-hole !布尔运算减去体,形成孔洞cm,v-an-all,voluALLSEL,ALL!!定义单元属性!et,1,solid45mp,ex,1,71000 !铝合金材料特性mp,nuxy,1,0.33mp,dens,1,2720!!划分单元创建网格模型!SMRT,5 !自由网格划分MSHAPE,1,3DMSHKEY,0FLST,5,5,6,ORDE,2FITEM,5,11FITEM,5,-15CM,_Y,VOLUVSEL, , , ,P51XCM,_Y1,VOLUCHKMSH,'VOLU'CMSEL,S,_YVMESH,_Y1finish!!保存!saveAPLOT/SOLUFLST,2,5,5,ORDE,5 !约束固定FITEM,2,19FITEM,2,38FITEM,2,57FITEM,2,76FITEM,2,95/GODA,P51X,ALL,*DEL,_FNCNAME !函数加载*DEL,_FNCMTID*DEL,_FNC_C1*DEL,_FNCCSYS*SET,_FNCNAME,'jiazai'*DIM,_FNC_C1,,1*SET,_FNC_C1(1),5*SET,_FNCCSYS,11! /INPUT,111.func,,,1*DIM,%_FNCNAME%,TABLE,6,7,1,,,,%_FNCCSYS% !! Begin of equation: 1000*{X}/cos(180/s_hole)*SET,%_FNCNAME%(0,0,1), 0.0, -999*SET,%_FNCNAME%(2,0,1), 0.0*SET,%_FNCNAME%(3,0,1), %_FNC_C1(1)%*SET,%_FNCNAME%(4,0,1), 0.0*SET,%_FNCNAME%(5,0,1), 0.0*SET,%_FNCNAME%(6,0,1), 0.0*SET,%_FNCNAME%(0,1,1), 1.0, -1, 0, 1000, 0, 0, 2 *SET,%_FNCNAME%(0,2,1), 0.0, -2, 0, 1, -1, 3, 2*SET,%_FNCNAME%(0,3,1), 0, -1, 0, 180, 0, 0, 17*SET,%_FNCNAME%(0,4,1), 0.0, -3, 0, 1, -1, 4, 17 *SET,%_FNCNAME%(0,5,1), 0.0, -1, 10, 1, -3, 0, 0 *SET,%_FNCNAME%(0,6,1), 0.0, -3, 0, 1, -2, 4, -1 *SET,%_FNCNAME%(0,7,1), 0.0, 99, 0, 1, -3, 0, 0 ! End of equation: 1000*{X}/cos(180/s_hole) FLST,2,3,1,ORDE,3 !确定加载点位置FITEM,2,37FITEM,2,54FITEM,2,354/GOF,P51X,FX, %JIAZAI%/STA TUS,SOLU !求解SOLVE/VIEW,1,1,1,1/ANG,1/REP,FAST/SOLUANTYPE,2 !模态求解MSA VE,0MODOPT,LANB,10EQSLV,SPARMXPAND,10, , ,1LUMPM,0PSTRES,0MODOPT,LANB,10,0,0, ,OFF/STA TUS,SOLUSOLVEFINISHSave模型图网格划分位移图应变图应力图应力模态(其中之一)。

ansys 固液耦合实例

ansys 固液耦合实例

FSI solveransys 固液耦合2010-01-03 15:24一般说来,ANSYS的流固耦合主要有4种方式:1,sequential这需要用户进行APDL编程进行流固耦合;2,FSI solver流固耦合的设置过程非常简单,推荐你使用这种方式;3,multi-field solver这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合;4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵。

流固耦合的边界应用带有SFIN标记的SF,SFA,SFE,SFL等命令来标记耦合界面,具体方法见ansys help很详细的。

固液耦合实例length=2width=3height=2/prep7et,1,63et,2,30 !选用FLUID30单元,用于流固耦合问题r,1,0.01mp,ex,1,2e11mp,nuxy,1,0.3mp,dens,1,7800mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水mp,sonc,2,1400mp,mu,0,!block,,length,,width,,heightesize,0.5mshkey,1!type,1mat,1real,1asel,u,loc,y,widthamesh,allalls!type,2mat,2vmesh,allfini/soluantype,2modopt,unsym,10 !非对称模态提取方法处理流固耦合问题eqslv,frontmxpand,10,,,1nsel,s,loc,x,nsel,a,loc,x,lengthnsel,r,loc,yd,all,,,,,,ux,uy,uz,nsel,s,loc,y,width,d,all,pres,0allsasel,u,loc,y,width,sfa,all,,fsi !定义流固耦合界面allssolvfini/post1set,firstplnsol,u,sum,2,1fini在涡集振动的计算过程中经历过若干警告和错误,小结如下:1,必须严格按照建模顺序,先建立流体区域,后建立固体。

ANSYS+APDL+命令集合

ANSYS+APDL+命令集合
Lab:材料属性类别,任何元素具备何种属性在元素属性表中均有说明。例如杨氏系数(Lab=EX,EY,EZ),密度(Lab=DENS),泊松比(Lab=NUXY,NUXYZ,NUZX),剪切模数(Lab=GXY,GYZ,GXZ),热膨胀系数(Lab=ALPX,ALPY,ALPZ)等。
2./ANTYPE,Antype,Status
nset: data set number
dscale, wn, dmult 显示变形比例
wn: 窗口号(或all),缺省为1
dmult, 0或auto : 自动将最大变形图画为构件长的5%
pldisp, kund 显示变形的结构
kund: 0 仅显示变形后的结构
1 显示变形前和变形后的结构
2 显示变形结构和未变形结构的边缘
SPACE:间隔比。通常不用,指定间隔比推荐使用命令LESIZE。
说明: 线的形状由激活坐标系决定,直角坐标系中将产生一条直线,柱坐标系中,随关键的坐标不同可能产生直线,圆弧线或螺旋线。
KGEN, ITIME, NP1, NP2, NINC, DX, DY, DZ, KINC, NOELEM, IMOVE:通过一组关键点生成额外的关键点。
ASIN(X) 反正弦
ATAN(X) 反正切
ATAN2(X,Y) 反正切, ArcTangent of (Y/X) , 可以考虑变量X,Y 的符号
COS(X) 求余弦
COSH(X) 双曲余弦
EXP(X) 指数函数
GDIS(X,Y) 求以X为均值,Y为标准差的高斯分布,在使用蒙地卡罗法研究随机荷载和随机材料参数时,可以用该函数处理计算结果
WPRO,,,90 !将工作平面绕Y轴旋转90度
CSWPLA,11,1,1,1, !在工作平面原点创建柱坐标系,并激活

ANSYS APDL命令流详解-13通用与时间历程后处理技术

ANSYS APDL命令流详解-13通用与时间历程后处理技术
/HEADER,STAT可查看当前状态 /HEADER,DEFA可恢复到缺省设置。
5.1 通用后处理—图形显示结果
命令
功能
PLDISP 显示结构变形图
PLNSOL 显示节点结果图
PLESOL 显示单元结果图
PLVECT
PLCRACK
以矢量方式显示 结 果图
显示裂缝或压碎图
备注
结果内容很多,根据需要选用Item及 Comp 结果内容很多,根据需要选用Item及 Comp 如U、S等
Lab2,Lab3---用户定义的分矢量标识符,如Item为预定标识符,必须为空。 LabP---合成矢量标识符,缺省为Item。 Mode---显示方式控制。
如为空,则采用/DEVICE中的KEY参数指定的方式; 如MODE=RAST则采用光栅模式; 如MODE=VECT则采用矢量模式显示。 Loc---显示单元场结果的矢量位置。
5.1 通用后处理—结果输出控制选项
用于图形显示和列表显示,如导出结果的方式和显示比例等设置。
命令
功能
备注
AVPRIN
定义矢量和主轴的计算方法
用于计算主应力或主应变等时
AVRES
定义结果数据平均处理
仅适用于PowerGraphics模式
/EFACET
设置单元每边的分段数目
见2.4.1中
/DSCALE
第5章 通用与时间历程后处理技术
ANSYS两个后处理器: ★通用后处理器POST1:
查看整个模型在各个时间点上的结果. ★时间历程后处理器POST26:
查看整个模型上的某一点结果随时间的变化曲线。 后处理可在求解完后直接进入,也可在重新进入 ANSYS后读入文件进入后处理。
5.1 通用后处理—读入结果文件

ANSYS 分析的命令流(APDL语言)

ANSYS 分析的命令流(APDL语言)

ANSYS 分析的命令流(APDL语言)前面分析的过程都是基于ANSYS用户图形界面(GUI命令流)形式,GUI 形式非常的直观明了,分析过程中通常会采用此种的分析方式。

但是这种分析方式会有一个缺点,就是当我们操作失误时候,没有后退的功能,因此我们不得不重新操作,这样就会给分析带来很多的麻烦。

但如果以命令流的形式进行计算的话就能很容易的减少这些麻烦。

下面就是本次点机前处理和分析计算过程的命令流/UNITS,SI !采用国际单位制/TITLE,2D DIANJI Static Analysis !定义分析名称KEYW,MAGNOD,1*AFUN,DEG !指定角度单位为度/PREP7 !进入前处理器ET,1,PLANE53 !设定单元类型为plane53EMUNIT,MKS !电磁单位LOCAL,12,0,0,0,0,90 !定义局部坐标系12--17LOCAL,13,0,0,0,0,30LOCAL,14,0,0,0,0,330LOCAL,15,0,0,0,0,270LOCAL,16,0,0,0,0,210LOCAL,17,0,0,0,0,150MP,MURX,1,1.0 ! 定义第一种材料的相对磁导率MP,MURX,2,1.0 ! 定义第二种材料的相对磁导率TB,BH,3TBPT,,35.03,0.1 ! 第三种材料的B-H磁化特性TBPT,,46.97,0.2TBPT,,57.32,0.3TBPT,,66.08,0.4TBPT,,74.04,0.5TBPT,,82.01,0.6TBPT,,91.56,0.7TBPT,,103.5,0.8TBPT,,117.83,0.9TBPT,,136.15,1TBPT,,160.83,1.1TBPT,,203.03,1.2TBPT,,286.62,1.3TBPT,,461.78,1.4TBPT,,955.41,1.5TBPT,,2547.8,1.6!TBPLOT,BH,3 !绘制B-H曲线TB,BH,4TBPT,,130,0.1 ! 定义第四种材料的B-H磁化特性TBPT,,170,0.2TBPT,,197,0.3TBPT,,218,0.4TBPT,,250,0.5TBPT,,290,0.6TBPT,,338,0.7TBPT,,400,0.8TBPT,,472,0.9TBPT,,570,1TBPT,,682,1.1TBPT,,810,1.2TBPT,,970,1.3TBPT,,1600,1.4TBPT,,2520,1.5TBPT,,3520,1.6!TBPLOT,BH,4 !绘制B-H曲线MP,MURX,5,1.17 ! 定义第五种材料的相对磁导率MP,MGXX,5,4.4E+005 ! 定义矫顽力矢量为X方向分量MP,MURX,6,1.17 ! 定义第六种材料的相对磁导率MP,MGXX,6,4.4E+005 ! 定义矫顽力矢量为X方向分量MP,MURX,7,1.17 ! 定义第七种材料的相对磁导率MP,MGXX,7,4.4E+005 ! 定义矫顽力矢量为X方向分量MP,MURX,8,1.17 ! 定义第八种材料的相对磁导率MP,MGXX,8,4.4E+005 ! 定义矫顽力矢量为X方向分量MP,MURX,9,1.17 ! 定义第九种材料的相对磁导率MP,MGXX,9,4.4E+005 ! 定义矫顽力矢量为X方向分量MP,MURX,10,1.17 ! 定义第十种材料的相对磁导率MP,MGXX,10,4.4E+005 ! 定义矫顽力矢量为X方向分量RECTNG,-0.00275,0.00275,0.0485,0.062 ! 创建一个矩形RECTNG,-0.00025,0.00025,0.048,0.0485 ! 再创建一个矩形AADD,ALL ! 将两个矩形融合在一起,形成槽结构CSYS,1 !转动工作平面到柱坐标下AGEN,36,3,38,1,,10,0 ! 复制槽/PNUM,AREA,ALL ! 给所有槽编号PCIRC,0.048,0.074 ! 创建定子圆环AOVLAP,ALL !对定子圆环和槽进行交迭布尔操作使得在连接线上共节点PCIRC,0.037,0.047,78,102 ! 创建永磁体极CSYS,1 !转到柱坐标下AGEN,6,3,8,1,,60,0 ! 复制6个磁极PCIRC,0.023,0.047 ! 创建转子圆环AOVLAP,3,10,45,51,57,63,69 ! 对转子圆环与磁极进行交迭操作PCIRC,0.047,0.0475 !创建两层气隙PCIRC,0.0475,0.048AOVLAP,ALLAGLUE,ALL ! 将所有交接面黏在一起NUMCMP,AREA !压缩面编号ASEL,S,AREA,,1,35 !选中槽ASEL,A,AREA,,42AATT,1 !材料定义为1号材料ASEL,S,AREA,,45ASEL,A,AREA,,43 !选中气隙AATT,2 !材料定义为2号材料ASEL,S,AREA,,46 !选中定子铁芯AATT,3 !材料定义为3号材料ASEL,S,AREA,,44 !选中转子磁轭AATT,4 !材料定义为4号材料ASEL,S,AREA,,40 !选中第1-6个永磁体磁极AATT,5,,,12 !材料定义为5-10号材料ASEL,S,AREA,,39AATT,6,,,13ASEL,S,AREA,,38AATT,7,,,14ASEL,S,AREA,,41AATT,8,,,15ASEL,S,AREA,,37AATT,9,,,16ASEL,S,AREA,,36AATT,10,,,17/PNUM,MAT,1 !打开材料编号APLOT !重新显示ALLSEL,ALL !选择所有实体SMRTSIZE,1 !指定智能网格划分等级L AMESH,ALL !智能网格划分!ESEL,S,MAT,,1!CM,ARM,ELEM!FMAGBC,'ARM'!SA VE,DIANJI_2D_MESH.db !保存!SA VEFINISH !完成网格划分/SOLU !进入求解器ANTYPE,STATIC !选择静态磁场分析NROPT,AUTO !采用牛顿---拉夫森迭代方法!ASEL,S,AREA,,1,35 !选中槽!ASEL,A,AREA,,42!BFE,ALL,JS,1,,,15000000 !施加电流密度LOCAL,11,1 ! 定义柱坐标系FLST,2,8,4,ORDE,4FITEM,2,289FITEM,2,-292FITEM,2,561FITEM,2,-564DL,P51X, ,AZ,0, !加边界条件ALLSEL,ALLMAGSOLV!SA VE,EMAGE_2D_MESH.db !保存!SA VEFINISH/POST1PLF2D,27,0,10,1 !显示磁力线图FMAGSUM,'ARM' !对电磁力求和plvect,B,,,,VECT,ELEM,ON,0 !显示磁感应强度矢量plvect,H,,,,VECT,ELEM,ON,0 !显示磁场强度矢量/GRAPHICS,POWERA VRES,2PLNSOL,B,SUM !显示磁通密度等值云图flishESEL,S,MAT,,2CM,ARM,ELEM!生成一个组件FMAGSUM,'ARM'!以下命令流是保存图片时使用,使其背景为白,结合PlotCtrlsHard ﹥Copy命令可设置格式/GRAPHICS,POWER/RGB,INDEX,100,100,100, 0/RGB,INDEX, 80, 80, 80,13/RGB,INDEX, 60, 60, 60,14/RGB,INDEX, 0, 0, 0,15/REPLOT !背景反白显示/SHOW,JPEG,,0JPEG,QUAL,75,JPEG , ORIENT, HORIZJPEG , Color, 2JPEG , TMOD, 1/GFILE,600,EPLOT/SHOW,CLOSE/DEVICE,VECTOR,0。

完整word版,ANSYSAPDL命令汇总,推荐文档

完整word版,ANSYSAPDL命令汇总,推荐文档

ANSYS APDL命令汇总AA,P1,P2,P3,P4,P5,P6,P7,P8,P9此命令用已知的一组关键点点( P1~P9)来定义面( Area),最少使用三个点才能围成面,同时产生转围绕些面的线。

点要依次序输入,输入的顺序会决定面的法线方向。

如果超过四个点,则这些点必须在同一个平面上。

Menu Paths:Main Menu>Preprocessor>Create>Arbitrary>Through KPsABBR*ABBR, Abbr,String--定义一个缩略语.Abbr: 用来表示字符串"String"的缩略语,长度不超过8个字符.String:将由" Abbr"表示的字符串,长度不超过60个字符.ABBRESABBRES, Lab, Fname,Ext-从一个编码文件中读出缩略语.Lab:指定读操作的标题,NEW:用这些读出的缩略语重新取代当前的缩略语(默认)CHANGE:将读出的缩略语添加到当前缩略语阵列,并替代现存同名的缩略语.Ext:如果" Fname"是空的,则缺省的扩展命是"ABBR".ABBSAVABBSAV, Lab,Fname,Ext -将当前的缩略语写入一个文本文件里Lab:指定写操作的标题,若为ALL,表示将所有的缩略语都写入文件(默认ADDadd, ir, ia,ib,ic,name,--,--,facta, factb, factc将 ia,ib,ic 变量相加赋给 ir 变量ir, ia,ib,ic :变量号name: 变量的名称ADELEAdele,na1,na2,ninc,kswp!kswp=0时只删除掉面积本身,= 1 时低单元点一并删除。

ADRAGAdrag, nl1,nl2,nl3,nl4,nl5,nl6, nlp1,nlp2,nlp3,nlp4,nlp5,nlp6 !面积的建立,沿某组线段路径,拉伸而成AFILLTAfillt,na1,na2,rad!建立圆角面积,在两相交平面间产生曲面,rad 为半径。

ANSYS中的APDL命令总结

ANSYS中的APDL命令总结

ANSYS中的APDL命令总结在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,这些功能一般来说通过菜单操作也能够实现(而那些命令流能够实现,菜单操作实现不了的单个命令比较少见)。

以下命令是结合我自身经验,和前辈们的一些经验而总结出来的,希望对大家有帮助。

(1).Lsel, type, item, comp, vmin, vmax, vinc, kswp选择线type: s 从全部线中选一组线r 从当前选中线中选一组线a 再选一部线附加给当前选中组aunoneu(unselect)inve: 反向选择item: line 线号loc坐标length 线长comp: x,y,zkswp: 0 只选线1 选择线及相关关键点、节点和单元(2).Nsel, type, item, comp, vmin, vmax, vinc, kabs选择一组节点type: S: 选择一组新节点(缺省)R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0”使用正负号“1”仅用绝对值(3).Esel, type, item, comp, vmin, vmax, vinc, kabs选择一组单元type: S: 选择一组单元(缺省)R: 在当前组中再选一部分作为一组A: 为当前组附加单元U: 在当前组中不选一部分单元All: 选所有单元None: 全不选Inve: 反向选择当前组Stat: 显示当前选择状态Item:Elem: 单元号Type: 单元类型号Mat: 材料号Real: 实常数号Esys: 单元坐标系号(4). mp, lab, mat, co, c1,…….c4 定义材料号及特性lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens)ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号(缺省为当前材料号)c : 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数(5). 定义DP材料:首先要定义EX和泊松比:MP,EX,MAT,……MP,NUXY,MAT,……定义DP材料单元表(这里不考虑温度):TB,DP,MAT进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,0.3TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg(6). 根据需要耦合某些节点自由度cp, nset, lab,,node1,node2,……node17nset: 耦合组编号lab: ux,uy,uz,rotx,roty,rotz ,allnode1-node17: 待耦合的节点号。

ANSYS 声学计算算例 流固耦合

ANSYS 声学计算算例 流固耦合

ANSYS 声学计算算例水下圆柱壳体的建模与声学分析使用有限元软件ANSYS进行计算和分析时水下环肋圆柱壳体有限元模型的建立及结构声学分析主要分为以下一些步骤:1.建立壳体的实体模型(包括有圆柱壳体的建立,给圆柱壳体加环肋);2.圆柱壳体外部流体介质的生成;3.对圆柱壳体和流体介质进行有限元4.设置流固耦合单元,并设置外部声场边界条件;5.在求解器中进行振动模态求解和受激励的谐响应求6.求解结果进行后处理分析。

,1.建立壳体的实体模型这个步骤主要是在预处理模块(PREP7)中完成首先是根据要建立的实体模型,进行单元的选取和定义这些单元的物理属性,水下圆柱壳体半径与壳体壁厚的比超过了20,根据ANSYS中单元的使用原则可以选用Shell63号薄壳单元,这种单元的有限元计算原理在前面已经介绍;环肋选用梁单元,ANSYS 提供了多种梁单元的结构形式,其中Beam188号梁单元符合作为壳体加强筋及肋骨的使用,所以在水下圆柱壳体环肋选用T的Beam188号梁单元进行建模;而流体介质根据分析中用途的不同要定义两种,一种是流体介质中的单元Fluid30号流体介质单元,一种是流体与结构接触的流固耦合面的单元选用Fluid30号流固耦合单元,在实际建模操作中还需要定义一种用于平面声场的29号单元(在计算中未用到,但在建模中需使用);共需要定义五种单元。

Shell63壳体单元与Beam188梁单元为同一种材料,所以物理属性相同。

而Fluid30流体介质单元与Fluid30流固耦合单元物理属性也相同,及在分析中只需要定义两个物理属性即可。

具体的使用APDL命令定义为:/prep7 !进行预处理模块et,1,30,!定义1号单元为Fluid30 流固耦合单元et,2,29 !定义2号单元为Fluid29平面流体单元et,3,30 ,,1 !定义3号单元为Fluid30流体介质单元et,4,63 !定义4号单元为Shell63壳体单元et,5,188 !定义5号单元为Beam188梁单元r,4,0.002 !定义4号单元的厚度为2㎝mp,dens,4,7800 !定义4号物理属性包括有密度mp,ex,4,2.1e11 !杨氏模量、mp,nuxy,4,0.3 !泊松比mp,sonc,1,1460 !设置水中声速mp,dens,1,1000 !设置流体密度sectype,1,beam,T,! 选取T型梁secoffset,,orig !设置梁的方向secdata,0.04,0.05,0.002,0.02,0,0,0,0,0,0 、所建立的圆柱壳体的参数:圆柱长为50 ㎝,半径为25 ㎝,壳体的壁厚为2 ㎝,cyl4,0,0,0.25,,5 !形成圆面k,9,0,0,0 ! 定义原点k,10,0,0,0.5lstr,9,10 !通过原点作直线adrag,5,6,7,8,,,9 !通过放样形成圆柱wpoff,0,0,0.1asel,s,,,2,5asbw,all,,,!移动工作平面与选取的侧面相切…… !重复上面操作,形成四个环肋面wpoff,0,0,-0.4 !工作平面回到原点位置上k,31,0.2,0,0.1 !定义环肋的方向点lsel,s,,,20 !选择要划分为环肋的线段latt,4,5,5,,31,40,1 !定义线段物理属性lesize,20,,,6 !划分数目secnum,1lmesh,20 !划分线段将上述的操作完成以后,壳体的模型基本完成,具体结构如图示图2-6 环肋圆柱壳体模型图2.圆柱壳体外部流体圆柱壳体外部的流体介质主要通过设置好的平面流体单元沿指定的线段进行放样,形成立体的流体介质单元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MPTEMP,1,0
MPDATA,MURX,2,,1
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,MURX,3,,1.0
MPDATA,MGXX,3,,
MPDATA,MGYY,3,,
MPDATA,MGZZ,3,,9e5
MPTEMP,,,,,,,,
emodif,all,type,4
alls
NSel,S,ext
type,3
real,2
mat,2
esurf
alls
vsel,s,,,1
aslv,s
NSLA,S,1
esel,s,type,,2
sf,all,fsi,1
alls
DA,1,UX, ,
DA,1,UY, ,
DA,1,UZ, ,
FINISH
/SOL
ANTYPE,3
LDREAD,FORC,,, ,0,'1','rst',' '
HARFRQ,10000,,
KBC,0
SOLVE
FINISH
/POST1
SET,FIRST
esel,s,type,,1
/clear
/file,1
/prep7
et,1,97,1
et,2,97
wpoff,0,0,-0.05
CYL4,0.0005, ,0.001, , , ,0.1
wpoff,0,0,0.046
CYL4, , ,0.002, ,0.005, ,0.008
wpoff,,,-0.001
MP,SONC,2,344
MP,DENS,3,1.21
MP,SONC,3,344
MP,DENS,4,1.21
MP,SONC,4,344
esel,s,type,,1
nsle,s
esln,s,0
nsle,s
esel,inve
nsle,s
MSHAPE,1,3d
alls
VMESH,all
esel,s,mat,,2
BFE,all,JS,,,-2/24e-6,, ,
ALLSEL,ALL
NSEL,S,EXT
D,all,all
ALLSEL,ALL
FINISH
/SOL
ANTYPE,3
HROPT,FULL
CYL4, , ,0.005, ,0.01, ,0.01
wpoff,,,0.005
sph4,,,0.1
VOVLAP,all
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,MURX,1,,1000
MPDATA,EX,1,,210e9
MPDATA,PRXY,1,,0.3
PLVECT,U, , , ,VECT,ELEM,ON,0
PLNSOL, PRES,, 0,1.0
VSEL, , , , 5
VATT, 3, , 2, 11
VSEL, , , , 6
VATT, 4, , 2, 0
alls
smrt,1
vsweep,Βιβλιοθήκη smrt,3 vsweep,all
MSHKEY,0
MPDATA,DENS,1,,7850
!mpdata,damp,1,,0.004
!mpdata,alpd,1,,0.1
mpdata,betd,1,,0.001
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,RSVX,1,,1e-7
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,MURX,4,,1
MPTEMP,,,,,,,,
MPTEMP,1,0
CSWPLA,11,1,
VSEL, , , , 1
VATT, 1, , 1, 0
VSEL, , , , 2
VATT, 2, , 2, 11
PLVECT,B, , , ,VECT,ELEM,ON,0
FINISH
save
/file,2
/PREP7
et,1,45
ET,2,FLUID30
ET,3,130
R,1,0.3,
R,2,0.1,0,0,0,
ET,4,FLUID30,,1,0
MP,DENS,2,1.21
HROUT,OFF
EQSLV, ,1e-008,
HARFRQ,10000,0,
NSUBST, ,
KBC,0
SOLVE
ESEL,S,MAT,,1
FINISH
/POST1
SET,,, ,,, ,1
PLVECT,JT, , , ,VECT,ELEM,ON,0
相关文档
最新文档