高速铁路牵引供电技术课件
合集下载
牵引供电-供电方式
牵引网供电方式的比较
AT供电方式特点 1) AT供电方式特点 25kV系统,供电电压比直供方式高一倍, kV系统 ① 2×25kV系统,供电电压比直供方式高一倍,电压 损失降为1/4 , 牵引网单位阻抗约为直供方式的1/4 损失降为 1 牵引网单位阻抗约为直供方式的 1 实际略高) 电能损失小,显示了良好的供电特性; (实际略高),电能损失小,显示了良好的供电特性; 牵引变电所的间距大,易选址, ② 牵引变电所的间距大 ,易选址 ,减少了外部电源 的工程数量和投资; 的工程数量和投资; 减少了电分相数量,有利于列车的高速运行; ③ 减少了电分相数量,有利于列车的高速运行; 牵引网回路是平衡回路,防干扰效果, ④牵引网回路是平衡回路,防干扰效果,可改善电磁 环境,并减少防干扰费用; 环境,并减少防干扰费用;
• •
IC 1
•
•
•
IC 2
I
•
•
•
C
I1
AC
U1
55kV
•
•
I2
T
IT 1
•
IT 2
U2
I1
′ U1
•
IF
′ U2
•
•
I2
F C
T
F
复线末端并联AT网络 复线末端并联 网络
电流分配关系
•
• •
I1
•
IC 1
•
IC 2
•
•
U1
•
I
•
IT 1
•
IT 2
U2
I2
′ U1
•
•
IF
′ U2
•
•
I2
I1
x
D
单线短回路中的电流分配
模块1.高速铁路基础知识《高速铁路牵引供电》教学课件
4 发展高速铁路是贯彻可持续发展战略的体现 基本国情及客流特点决定了我国主要应发展大容量、低能耗、少占地、适应性强的公共 交通体系。高速铁路具有能耗低、占地少、污染轻的特点,在我国发展高速铁路同样是在交 通运输领域贯彻可持续发展战略、优化交通运输结构的重要手段。
谢谢观看!
Thanks for your watching!
1.4 中国发展高速铁路的技术条件与社会需求
1. 技术条件
1 工程建造技术达到世界先进水平 针对我国复杂多样的地质及气候条件,攻克了湿陷性黄土和软土地区沉降变形控制难题, 掌握了复杂地质条件下高速铁路地基处理和路基填筑技术等。
2 高速列车技术达到世界先进水平 系统掌握了时速200~250 km动车组核心技术,全面构建了设计制造体系。在此基础上, 攻克了制约速度提升的技术难题等。 3 列车控制技术达到世界先进水平 系统掌握了满足时速250 km的CTCS-2级列车运行控制技术,成功应用于既有线第六次 大面积提速和新建的时速250 km高速铁路等。
《高速铁路牵引供电》
第一章
高速铁路基础 知识
目录 目录
1.1 高速铁路的定义与特点 1.2 我国高速铁路的发展历程与方向 1.3 高速铁路的技术特点 1.4 中国发展高速铁路的技术条件与
社会需求
1.1 高速铁路的定义与特点
1. 高铁的定义
1 国际规定 西欧把新建时速达到250~300 km、旧线改造时速达到200 km的铁路线路称为高速铁 路。1985年联合国欧洲经济委员会在日内瓦签署的国际铁路干线协议规定:新建客运列车专 用型高速铁路时速为350 km以上,新建客货运列车混用型高速铁路时速为250 km。 2 中国规定 中国2014年1月1日起实施的《铁路安全管理条例》规定:高速铁路(高铁)是指设计开 行时速250 km以上(含预留),并且初期运营时速200 km以上的客运列车专线铁路(客运 专线)。
谢谢观看!
Thanks for your watching!
1.4 中国发展高速铁路的技术条件与社会需求
1. 技术条件
1 工程建造技术达到世界先进水平 针对我国复杂多样的地质及气候条件,攻克了湿陷性黄土和软土地区沉降变形控制难题, 掌握了复杂地质条件下高速铁路地基处理和路基填筑技术等。
2 高速列车技术达到世界先进水平 系统掌握了时速200~250 km动车组核心技术,全面构建了设计制造体系。在此基础上, 攻克了制约速度提升的技术难题等。 3 列车控制技术达到世界先进水平 系统掌握了满足时速250 km的CTCS-2级列车运行控制技术,成功应用于既有线第六次 大面积提速和新建的时速250 km高速铁路等。
《高速铁路牵引供电》
第一章
高速铁路基础 知识
目录 目录
1.1 高速铁路的定义与特点 1.2 我国高速铁路的发展历程与方向 1.3 高速铁路的技术特点 1.4 中国发展高速铁路的技术条件与
社会需求
1.1 高速铁路的定义与特点
1. 高铁的定义
1 国际规定 西欧把新建时速达到250~300 km、旧线改造时速达到200 km的铁路线路称为高速铁 路。1985年联合国欧洲经济委员会在日内瓦签署的国际铁路干线协议规定:新建客运列车专 用型高速铁路时速为350 km以上,新建客货运列车混用型高速铁路时速为250 km。 2 中国规定 中国2014年1月1日起实施的《铁路安全管理条例》规定:高速铁路(高铁)是指设计开 行时速250 km以上(含预留),并且初期运营时速200 km以上的客运列车专线铁路(客运 专线)。
高速铁路牵引供电技术.ppt[PPT课件]
2)主接线方案 进线采用不带跨条的接线(即线路变压器组接 线)型式;馈线侧采用AT所和分区所上下行并联 的接线方式,AT实现100%备用,同时并联接线通 过倒闸作业,可实现上下行分开供电。
全并联供电方式
3)综合自动化系统
综合自动化系统是将独立保护、测控单元 设备,通过通信网络构成系统,实现对牵 引供电设施的保护、当地监控及远程数据 传输。
列车运行控制方式:自动控制; 行车指挥方式:综合调度集中; 运输组织模式:不同速度等级的高速列车共线运 行 闭塞方式:车载信号ATC自动闭塞; 列车追踪间隔时分: 高速列车:3min设计,近期4min使用, 设备综合维修天窗:6h。
2)牵引负荷特点 列车运行最高速度(km/h):350km/h 列车传动方式:大功率交-直-交动车组 列车功率:≥16MW;可以近似为1MW/节 负荷电流(A):单车平均电流为770A左右 列车平均带电概率:96% 列车单位能耗(kWh/104tkm):
2)高速铁路的原则
成熟、先进、可靠;无维护、寿命管理。
3)国际高速铁路的现状
GIS户内开关柜良好的性能在电气化铁路,尤 其是高速电气化铁路上普遍采用,又成熟的运行 经验。日本、韩国、荷兰、法国、德国、西班牙 高速铁路和香港西部铁路均采用了GIS高压开关 柜。
1)综合调度系统组成
行车计划编制
行车调度 动车组调度 电力调度 客运调度及旅客服务 综合维修调度 安全监控
1)设计原则
①主接线型式的选择和确定应满足高速铁路供 电系统安全、可靠、灵活的要求;
②两回220kV单相电源,互为热备用,两台单 相牵引变压器,100%固定备用方式;
③馈线采用上、下行分别供电,力求可靠、灵 活、简单、节能;
④尽可能地减少各所的占地面积,并应与选址 条件相适应;
电子课件高速铁路设备运用模块6高速铁路牵引供电
牵
引
变
电
所
6.1.2 牵引供电系统
17
2.分区亭
在电气化铁路上,为了提高运行的可靠性,增加供电工作的灵活性,在相邻变电所供电的相邻两 供电分区的分界处常用分相绝缘器断开,若在断开处设置开关设备和相应的配电装置,则组成分区亭。
在复线电气化区段,分区亭的主要功能如下: (1)使同一供电臂上的上、下行接触网并联工作或单独工作。当并联工作时,分区亭内的断路 器闭合以提高接触网的末端电压;当单独工作时,断路器打开。 (2)当同一供电臂上的上、下行接触网(并联工作)发生短路事故时,由牵引变电所相应的馈 线断路器和分区亭中的断路器配合动作,切除事故区段,缩小事故范围;非事故区段仍可正常供电。 (3)当某牵引变电所全所停电时,可闭合分区亭中的越区隔离开关,由相邻牵引变电所向停电 牵引变电所进行越区供电。 总之,分区亭的作用是:对单线牵引网,使两相邻供电臂单独工作或实现越区供电;对双线牵引 网,使上、下行接触网并联,提高末端电压,缩小事故范围和实行必要时的越区供电。
6.1.1 牵引供电方式
14
5.直供加回流线供电方式
直供加回流线供电方式结构比较简单。这种供电方式由于在接触网同高度的外侧增设了一条回 流线,回流线上的电流方向与接触网上的电流方向相反,大大减轻了接触网对邻近通信线路的干扰。 直供加回流线供电方式与直供方式相比,能防止对沿线通信的干扰;比BT供电方式减少了BT装置, 既减少了建设投资,又便于维修;与AT供电方式相比,减少了AT所和沿线架设的正馈线,不仅减 少了投资,还便于接触网维修。所以,自大秦线以后的电气化铁路基本都采用直供加回流线的供电 方式,京沪、沪昆等高铁线路也都采用这种供电方式。
4
目录
CATALOG
高速铁路牵引供电技术 PPT课件
j120o
,
1 I 0 I 1 1 1 3 I 2 1
1 1 I A a a2 I B I C 2 a a
1个站400kV
1个站400kV 1个站400kV
世界主要高速铁路国家电铁供电电源电压等级
西 班 牙
德国
3个站132kV, 马德里-塞维利亚 250 220 短路容量不 小于2000MVA 马德里-巴塞罗那 350 400 3个站220kV 德国高速铁路最高速度330km/h,采用由铁路自建电网 供电。供电制式为15kV、16又2/3Hz,采用独特的同相 供电方式,牵引站间隔约为普通不同相供电方式的1/3, 牵引变压器容量一般为2×15MVA。牵引站外部电源采用 110kV,系统短路容量不小于1000MVA。
高速铁路牵引供电技术
• 1、牵引供电系统对外部电源的要求
• 2、牵引网供电方式的比较
• 3、直供加回流线供电方式分析
• 4、AT供电方式分析
牵引供电系统对外部电源的要求
1)电压水平对外部电源短路容量的要求
GB 12325—90电能质量 供电电压允许偏差 交流 50Hz 电力系统供电电压偏差定义为实测电 压与额定电压之差,以额定电压的百分数表示。 供电电压允许偏差: ( 1) 35kV 及以上供电电压正、负偏差的绝对值 之和不超过额定电压的10%; ( 2) 10kV 及以下三相供电电压允许偏差为额定 电压的±7% ; ( 3) 220V 单相供电电压允许偏差为额定电压的 +7%、-10%。
(2)220kV的短路容量:1715.73 MVA-7697.7 MVA 2006年对国内华北某电网4个110kV变电站、10个
,
1 I 0 I 1 1 1 3 I 2 1
1 1 I A a a2 I B I C 2 a a
1个站400kV
1个站400kV 1个站400kV
世界主要高速铁路国家电铁供电电源电压等级
西 班 牙
德国
3个站132kV, 马德里-塞维利亚 250 220 短路容量不 小于2000MVA 马德里-巴塞罗那 350 400 3个站220kV 德国高速铁路最高速度330km/h,采用由铁路自建电网 供电。供电制式为15kV、16又2/3Hz,采用独特的同相 供电方式,牵引站间隔约为普通不同相供电方式的1/3, 牵引变压器容量一般为2×15MVA。牵引站外部电源采用 110kV,系统短路容量不小于1000MVA。
高速铁路牵引供电技术
• 1、牵引供电系统对外部电源的要求
• 2、牵引网供电方式的比较
• 3、直供加回流线供电方式分析
• 4、AT供电方式分析
牵引供电系统对外部电源的要求
1)电压水平对外部电源短路容量的要求
GB 12325—90电能质量 供电电压允许偏差 交流 50Hz 电力系统供电电压偏差定义为实测电 压与额定电压之差,以额定电压的百分数表示。 供电电压允许偏差: ( 1) 35kV 及以上供电电压正、负偏差的绝对值 之和不超过额定电压的10%; ( 2) 10kV 及以下三相供电电压允许偏差为额定 电压的±7% ; ( 3) 220V 单相供电电压允许偏差为额定电压的 +7%、-10%。
(2)220kV的短路容量:1715.73 MVA-7697.7 MVA 2006年对国内华北某电网4个110kV变电站、10个
铁路牵引供电系统基础知识ppt课件
21
AT供电方式的工作原理
22
工作原理
牵引变电所牵引侧电压为2X27.5KV,其绕组两端分别接至到55KV,AT供电方式每隔10~~15KM ,在接触网与钢轨间并接入一台自耦变压器,自耦变压器将牵引网的电压提高一倍,而供 给电力机车的额定电压仍为25KV,称为AT所。
总结
31
23
工作原理
由于自耦变压器的作用,接触网和正馈线的电流均为I/2,方向相反,有 效地减少牵引网对通信线的干扰。
由于自耦变压器的中性点与钢轨相连,牵引网的供电电压为2 x 27.5 kV,电压提高了一倍,因此牵引变电所的间距理论上提高了一倍。例如 直供+回流线供电方式牵引变电所间距为20-30km,则AT供电方式为4060km。 AT供电方式用于重载、高速需大电流的牵引供电系统。馈线电流只有直 供方式的一半。
6
牵引网
牵引网是由馈电线 〔供电线)、接触网 、钢轨、大地和回流 线组成的供电系统, 完成对电力机车的送 电任务。
馈电线:连接牵引变电所和接触网的导线和电缆。它把牵引变电所 主变压器二次侧27.5KV的电压输送到接触网。
接触网:一种特殊的输电线,架设在铁路上方,机车受电弓与其磨 擦受电。
钢轨、大地和回流线:牵引变电所处的横向回流线,它将轨或与轨 平行的其它导线与牵引变压器指定端子相联。又能大大降低牵引负 荷电流对通信的干扰。
和保护线间的辅助联接PW 保护线 R 钢轨 ATP 自耦变压器所SP分 区所 AT处采用横向连接线CPW实现轨道、保护线和AT中性点的连接,通过 放电器〔SD〕将AT的中性点与大地相连。与不并联的AT供电方式比 ,全并联AT供电更具有线路载流能力大、供电区段长、适应高速等 优点。
29
越区供电
AT供电方式的工作原理
22
工作原理
牵引变电所牵引侧电压为2X27.5KV,其绕组两端分别接至到55KV,AT供电方式每隔10~~15KM ,在接触网与钢轨间并接入一台自耦变压器,自耦变压器将牵引网的电压提高一倍,而供 给电力机车的额定电压仍为25KV,称为AT所。
总结
31
23
工作原理
由于自耦变压器的作用,接触网和正馈线的电流均为I/2,方向相反,有 效地减少牵引网对通信线的干扰。
由于自耦变压器的中性点与钢轨相连,牵引网的供电电压为2 x 27.5 kV,电压提高了一倍,因此牵引变电所的间距理论上提高了一倍。例如 直供+回流线供电方式牵引变电所间距为20-30km,则AT供电方式为4060km。 AT供电方式用于重载、高速需大电流的牵引供电系统。馈线电流只有直 供方式的一半。
6
牵引网
牵引网是由馈电线 〔供电线)、接触网 、钢轨、大地和回流 线组成的供电系统, 完成对电力机车的送 电任务。
馈电线:连接牵引变电所和接触网的导线和电缆。它把牵引变电所 主变压器二次侧27.5KV的电压输送到接触网。
接触网:一种特殊的输电线,架设在铁路上方,机车受电弓与其磨 擦受电。
钢轨、大地和回流线:牵引变电所处的横向回流线,它将轨或与轨 平行的其它导线与牵引变压器指定端子相联。又能大大降低牵引负 荷电流对通信的干扰。
和保护线间的辅助联接PW 保护线 R 钢轨 ATP 自耦变压器所SP分 区所 AT处采用横向连接线CPW实现轨道、保护线和AT中性点的连接,通过 放电器〔SD〕将AT的中性点与大地相连。与不并联的AT供电方式比 ,全并联AT供电更具有线路载流能力大、供电区段长、适应高速等 优点。
29
越区供电
高速动车组概论4共同体 牵引供电演示课件
16/77
二、牵引变电所 1.牵引变电所的作用
我国电气化铁路采用的是工频单相 25kV交 流制,而电力系统是一个三相交流系统,需要 经过变换电压等级和由三相变换成单相才能使 用。电气化铁路产生的负序和高次谐波对电力 系统会造成多种不良影响,需要通过牵引变电 所来解决。因此,牵引变电所应具有以下两个 方面的作用 :
第四章 动车组牵引供电
第一节 动车组供电 第二节 高速接触网 第三节 高速受电弓
1/77
第一节 动车组供电
一、供电方式 二、牵引变电所
2/77
动车组牵引供电系统的组成
动车组牵引供电系统
牵引变电所
保证质量良好并不 间断地向动车组供 电
接触网
在动车组运行中通 过与受电弓良好的 摩擦接触将电能传 给动车组
17/77
( 1 )将电力系统的电能变换成适合动车组 使用的电能。
在牵引变电所内装设有牵引变压器(也称 主变压器),将电力系统的高压(一般为 110kV或220kV)降为 27.5kV 或 2×27.5kV(自 耦变压器供电方式),以单相电馈送给接触网, 供动车组使用。国外有些国家的电气化铁路采 用的是直流制式,或是低频( 16 2/3Hz )交流 制式,因此,还需要将交流电整流成直流电, 或将工频变换成 16 2/3Hz ,这些变换工作都由 牵引变电所来完成。
8/77
吸流变压器的变比为 1:1,它的一次绕组
串接在接触网( T)上,二次绕组串接在专为
牵Байду номын сангаас引 电 流 流 回 牵 引变电 所而特 设的回 流 线
( NF )上,所以也称吸流变压器-回流线供
电方式(简称吸-回方式)
9/77
3.带回流线的直接供电方式 带回流线的直接供电方式是在接触
二、牵引变电所 1.牵引变电所的作用
我国电气化铁路采用的是工频单相 25kV交 流制,而电力系统是一个三相交流系统,需要 经过变换电压等级和由三相变换成单相才能使 用。电气化铁路产生的负序和高次谐波对电力 系统会造成多种不良影响,需要通过牵引变电 所来解决。因此,牵引变电所应具有以下两个 方面的作用 :
第四章 动车组牵引供电
第一节 动车组供电 第二节 高速接触网 第三节 高速受电弓
1/77
第一节 动车组供电
一、供电方式 二、牵引变电所
2/77
动车组牵引供电系统的组成
动车组牵引供电系统
牵引变电所
保证质量良好并不 间断地向动车组供 电
接触网
在动车组运行中通 过与受电弓良好的 摩擦接触将电能传 给动车组
17/77
( 1 )将电力系统的电能变换成适合动车组 使用的电能。
在牵引变电所内装设有牵引变压器(也称 主变压器),将电力系统的高压(一般为 110kV或220kV)降为 27.5kV 或 2×27.5kV(自 耦变压器供电方式),以单相电馈送给接触网, 供动车组使用。国外有些国家的电气化铁路采 用的是直流制式,或是低频( 16 2/3Hz )交流 制式,因此,还需要将交流电整流成直流电, 或将工频变换成 16 2/3Hz ,这些变换工作都由 牵引变电所来完成。
8/77
吸流变压器的变比为 1:1,它的一次绕组
串接在接触网( T)上,二次绕组串接在专为
牵Байду номын сангаас引 电 流 流 回 牵 引变电 所而特 设的回 流 线
( NF )上,所以也称吸流变压器-回流线供
电方式(简称吸-回方式)
9/77
3.带回流线的直接供电方式 带回流线的直接供电方式是在接触
牵引供电PPT课件全
牵引供电
第1页/共58页
项目一:认知电力牵引供电系统
任务二:认知牵引供电系统
•任务描述:
通过学生绘制电气化铁道牵引供电系统示意图,列表说明 牵引变电所引入线方式、接触网供电方式、牵引供电系统供电 方式等技能训练,使学生认知牵引供电系统相关知识,能根据 实际线路设计合理的牵引供电方式。
•成果展示:
牵引电力系统原理示意图 变电所一次侧的主接线方式列表 接触网的供电方式列表 牵引供电系统供电方式列表 识别**变电所引入线方式、**线路接触网供电方式、 牵引供电系统供电方式
第21页/共58页
• 开闭所是扩充馈线用的,象编组站、机务段等; • 分区所是复线电气化铁路不同供电臂之间为提供上下行接
触网并联和越区供电功能而设置的。
第22页/共58页
3)分段绝缘器:
分段绝缘器又称分区绝缘器,是接触网电气分段的常用 设备。它安装在各车站装卸线、机车整备线、电力机车库线、 专用线等处。在正常情况下,机车受电弓带电滑行通过。
第37页/共58页
×
×
×
×
×
×
× ×
×
双 “T”方式
第38页/共58页
C
C
B
A
第39页/共58页
第40页/共58页
2)双边供电:机车由相邻的两个变电所供电,由断路器合闸实现。 要求:设置分区所来缩小故障范围,和检修的停电范围。
复线双边供电设备复杂,保护困难,目前我国只采用复线单 边供电。 三、牵引供电系统向电力机车的供电方式 ( 一)直接供电方式
受电弓-接触网系统是高速列车获得动力的唯一途径
第4页/共58页
一、牵引供电系统的组成与作用
G 电力系统(发电厂)
第1页/共58页
项目一:认知电力牵引供电系统
任务二:认知牵引供电系统
•任务描述:
通过学生绘制电气化铁道牵引供电系统示意图,列表说明 牵引变电所引入线方式、接触网供电方式、牵引供电系统供电 方式等技能训练,使学生认知牵引供电系统相关知识,能根据 实际线路设计合理的牵引供电方式。
•成果展示:
牵引电力系统原理示意图 变电所一次侧的主接线方式列表 接触网的供电方式列表 牵引供电系统供电方式列表 识别**变电所引入线方式、**线路接触网供电方式、 牵引供电系统供电方式
第21页/共58页
• 开闭所是扩充馈线用的,象编组站、机务段等; • 分区所是复线电气化铁路不同供电臂之间为提供上下行接
触网并联和越区供电功能而设置的。
第22页/共58页
3)分段绝缘器:
分段绝缘器又称分区绝缘器,是接触网电气分段的常用 设备。它安装在各车站装卸线、机车整备线、电力机车库线、 专用线等处。在正常情况下,机车受电弓带电滑行通过。
第37页/共58页
×
×
×
×
×
×
× ×
×
双 “T”方式
第38页/共58页
C
C
B
A
第39页/共58页
第40页/共58页
2)双边供电:机车由相邻的两个变电所供电,由断路器合闸实现。 要求:设置分区所来缩小故障范围,和检修的停电范围。
复线双边供电设备复杂,保护困难,目前我国只采用复线单 边供电。 三、牵引供电系统向电力机车的供电方式 ( 一)直接供电方式
受电弓-接触网系统是高速列车获得动力的唯一途径
第4页/共58页
一、牵引供电系统的组成与作用
G 电力系统(发电厂)
模块2.牵引供电系统《高速铁路牵引供电》教学课件
2.1.4 高速铁路牵引供电系统
3. 高速铁路变电所、分区所主接线及接触网标称电压
1 牵引变电所电源侧主接线 电源侧主接线应结合外部电源条件确定,两路电压均可靠时,采用线路变压器组接线。 采用分支接线,在两回线间设置由隔离开关分段的跨条,实现电源进线与变压器交叉供电。 2 牵引变电所馈线侧接线 采用户外单体布置时,实现上、下行断路器互为备用的联络开关设置在所内线路侧;采 用GIS柜布置时,联络开关设置在所外上网开关的线路侧。
额定电压(kV) 输送功率(MV·A ) 输送距离(km)
110
10~50
50~150
220
100~150
100~300ຫໍສະໝຸດ 5001 000~1 500
150~850
世界各国采用工频、单相、交流接触网额定电压为25 kV的高速电气化铁路,毫无例外地 均采用高压供电。
日本山阳等新干线,牵引变电所的进线电压采用27.5 kV。电源的变动和不平衡承受能力 都有所提高,更能保证机车稳定、高速运行,也更加经济。法国大部分牵引变电所的进线电 压为225 kV,只有一个变电所为63 kV。德国牵引网电压采用15 kV,牵引变电所进线电压采 用110 kV。另外,它使用 Hz频率给铁路专门供电,有其特殊性。
带回流线的直接供电方式,机车部分电流通过钢轨和大地流回牵引变电所(约70%), 其余通过回流线流回牵引变电所(约30%)。
2.2.3 BT供电方式
BT(Booster Transformer)供电方式又称吸流变压器供电方式,其主要目的是提高牵引 网防干扰能力,目前已经基本不采用,如图所示。
BT供电方式存在着一种现象:当机车处在BT间隔内时会失去吸流防护效果。同等条件下, BT供电方式变电所的间距要小很多,且每隔3~4 km在接触网内存在断口,机车通过断口时 可能会产生电火花,缩短接触网的使用寿命。
模块3.高速铁路电力供电系统《高速铁路牵引供电》教学课件
② 设备类型及布置。箱式变电站采用中压预装箱式变电站,SF6负荷开关,其操作电源 采用交流并配置UPS装置作为备用电源。沿线区间供电的箱式变电站采用基本统一模式。通 信、信号双电源专用箱变与通信基站、信号中继站机房相邻设置,其他箱变独立设置。箱式 变电站设高压环网开关间隔和变压器、低压开关、RTU间隔。
3.1.1 电力系统概述
1. 发电厂
发电厂就是将煤、水力、原子能等一次能源转换为电能——二次能源的工厂,分为火力 发电厂、水力发电厂、原子能发电厂等,除此之外,还有风力、地热和太阳能发电等。
2. 电力网
电力网担负着将发电厂和电能 用户连接起来组成系统的任务。右 图是电力系统组成示意图,虚线框 内是电力系统的电力网部分。
《高速铁路牵引供电》
第三章
高速铁路电力 供电系统
目录
目录
3.1 电力供电系统 3.2 高速铁路电力SCADA系统
第一节
电力供电系统
1. 电力系统概述 2. 高速铁路电力系统
3.1.1 电力系统概述
电力系统是由发电厂、变电站、输电线、配电系统和负荷组成的有机整体,是现 代社会最重要、最庞杂的系统之一。通常把包括动力、发电、变电、输电、配电及用 电的全部系统称为动力系统。将电力系统中输送、变换和分配电能的整个环节称为电 力网。它们的关系如图所示(以水力发电为例)。
3.1.2 高速铁路电力系统
1. 高速铁路电力系统构成
2)电力变(配)电所 (3)
10/0.4 kV箱式变电站
① 接线型式。10/0.4 kV箱式变电站10 kV侧进出线回路设高压负荷开关,环网接线,变 压器回路采用带熔断器负荷开关保护。箱式变电站内负荷开关均采用电动操作机构纳入 SCADA系统,实现自动隔离故障电力线路、故障定位、非故障段自动恢复供电等功能。区间 10 kV电力贯通线路上设置箱式电抗器,补偿贯通线路电容电流。
3.1.1 电力系统概述
1. 发电厂
发电厂就是将煤、水力、原子能等一次能源转换为电能——二次能源的工厂,分为火力 发电厂、水力发电厂、原子能发电厂等,除此之外,还有风力、地热和太阳能发电等。
2. 电力网
电力网担负着将发电厂和电能 用户连接起来组成系统的任务。右 图是电力系统组成示意图,虚线框 内是电力系统的电力网部分。
《高速铁路牵引供电》
第三章
高速铁路电力 供电系统
目录
目录
3.1 电力供电系统 3.2 高速铁路电力SCADA系统
第一节
电力供电系统
1. 电力系统概述 2. 高速铁路电力系统
3.1.1 电力系统概述
电力系统是由发电厂、变电站、输电线、配电系统和负荷组成的有机整体,是现 代社会最重要、最庞杂的系统之一。通常把包括动力、发电、变电、输电、配电及用 电的全部系统称为动力系统。将电力系统中输送、变换和分配电能的整个环节称为电 力网。它们的关系如图所示(以水力发电为例)。
3.1.2 高速铁路电力系统
1. 高速铁路电力系统构成
2)电力变(配)电所 (3)
10/0.4 kV箱式变电站
① 接线型式。10/0.4 kV箱式变电站10 kV侧进出线回路设高压负荷开关,环网接线,变 压器回路采用带熔断器负荷开关保护。箱式变电站内负荷开关均采用电动操作机构纳入 SCADA系统,实现自动隔离故障电力线路、故障定位、非故障段自动恢复供电等功能。区间 10 kV电力贯通线路上设置箱式电抗器,补偿贯通线路电容电流。
高速铁路的牵引供电系统(课堂PPT)
13
接触网悬挂形式:简单接触悬挂、弹力接触悬挂和链形 接触网悬挂。
简单接触悬挂:无连续承力索,结构简单,接触线驰度 大,支柱间距离必须小,才能保证接触网的高度。
弹力接触悬挂:将接触线通过三角形的跨接线与支持装
置相连接。
承力索
链形接触网悬挂:在接触线上方悬挂一根或两根承力索 ,承力索通过吊悬挂接触线。
19
20
受电弓
受电弓技术要求
受电弓是靠一定的抬升力让滑板与接触网接触的,列
车高速运行时受电弓的滑板就像飞机的机翼,受气流
离
的作用也会产生一定的抬升力,列车运行速度越快,
线
抬升力也就随之增加,那么接触网就会随之上下振动,
振动波也就随之往前传送,这对受电弓和接触网的良
好接触带来困难。
分析:受电弓和接触网如果速度越 接近,那么离线率就会越高。
22
◎检修 (1)接触网的检修修程
小修:维持性修理 大修:恢复性的彻底修理(周期:20-25年的)
(2)接触网的检修作业
停电作业、状态修
(3)接触网的检修计划与实施(天窗)
年度监测计划、月度维修计划
23
16
17
受电弓
18
受电弓
1.升弓:压缩空气经电空阀均匀进入传动气缸,气缸活
塞压缩气缸内的降弓弹簧,升弓弹簧使下臂杆转动,
工
抬起上框架和滑板,受电弓匀速上升,在接近接触网 时会缓慢停滞,然后再迅速接近接触网
作
原
理
1.降弓:传动缸内压缩空气经受电弓缓冲阀迅速排向大 气,在降弓弹簧的作用下,克服升弓弹簧的作用力, 使受电弓迅速下降,脱离接触网
2.分区所:在牵引 变电所中间设置处 所,常用分相绝缘 器断开,并设置开 关。 作用:1)单线牵引 网,两相邻供电臂 可单独或实现越区 供电;2)双线牵引 网,上、下行接触 网并联,提高末端 电压;3)缩小事故 范围
接触网悬挂形式:简单接触悬挂、弹力接触悬挂和链形 接触网悬挂。
简单接触悬挂:无连续承力索,结构简单,接触线驰度 大,支柱间距离必须小,才能保证接触网的高度。
弹力接触悬挂:将接触线通过三角形的跨接线与支持装
置相连接。
承力索
链形接触网悬挂:在接触线上方悬挂一根或两根承力索 ,承力索通过吊悬挂接触线。
19
20
受电弓
受电弓技术要求
受电弓是靠一定的抬升力让滑板与接触网接触的,列
车高速运行时受电弓的滑板就像飞机的机翼,受气流
离
的作用也会产生一定的抬升力,列车运行速度越快,
线
抬升力也就随之增加,那么接触网就会随之上下振动,
振动波也就随之往前传送,这对受电弓和接触网的良
好接触带来困难。
分析:受电弓和接触网如果速度越 接近,那么离线率就会越高。
22
◎检修 (1)接触网的检修修程
小修:维持性修理 大修:恢复性的彻底修理(周期:20-25年的)
(2)接触网的检修作业
停电作业、状态修
(3)接触网的检修计划与实施(天窗)
年度监测计划、月度维修计划
23
16
17
受电弓
18
受电弓
1.升弓:压缩空气经电空阀均匀进入传动气缸,气缸活
塞压缩气缸内的降弓弹簧,升弓弹簧使下臂杆转动,
工
抬起上框架和滑板,受电弓匀速上升,在接近接触网 时会缓慢停滞,然后再迅速接近接触网
作
原
理
1.降弓:传动缸内压缩空气经受电弓缓冲阀迅速排向大 气,在降弓弹簧的作用下,克服升弓弹簧的作用力, 使受电弓迅速下降,脱离接触网
2.分区所:在牵引 变电所中间设置处 所,常用分相绝缘 器断开,并设置开 关。 作用:1)单线牵引 网,两相邻供电臂 可单独或实现越区 供电;2)双线牵引 网,上、下行接触 网并联,提高末端 电压;3)缩小事故 范围
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①在2×25kV系统中,供电电压比直供方式高一 倍,而牵引网单位阻抗仅为直接供电方式的57 %左右,电能损失小,显示了良好的供电特性;
②牵引变电所的间距大,易选址,减少了外部电 源的工程数量和投资;
③牵引网回路是平衡回路,屏蔽系数为直接供电 方式的1/20左右,防干扰效果好,可改善电磁 环境,并减少防干扰费用;
⑦ 牵引网结构复杂,导线数量多,造价高。
高速铁路牵引供电技术
2.牵引网供电方式的比较
2)直接供电方式
①在1×25kV系统中,变电设施较为简单,接触 网在一般情况下(重负荷除外)也比较简单, 但在接触网使用加强导线的情况下,牵引网结 构已与AT供电方式相当;
②牵引变电所的间距较小,这大大增加了电分相 数量,不利于列车的高速运行,外部电源的工 程数量和投资较大;
④减少了电分相数量,有利于列车的高速运行;
高速铁路牵引供电技术
2.牵引网供电方式的比较
⑤ 牵引网系统需设正馈线,较一般直接供电方 式复杂,但在重负荷区段不必设加强导线,可 与直接供电方式相当;变电系统较直接供电方 式减少了牵引变电所的数量,但需设AT所,开 关设备需用双极;
⑥ 适用于高速和重载的重负荷铁路及运输繁忙 双线区段;
高速铁路牵引供电技术
4.牵引变压器选型及容量
平衡型牵引变压器:两臂牵引负荷相等 的前提下,平衡型牵引变压器的原边三相 是对称的,它的过载能力强,容量利用率 较高。可改善牵引变电所发生三相不平衡 的概率和减少对电力系统的负序影响,但 是其结构复杂,特别是高速列车采用再生 制动方式,可能造成牵引变压器的平衡效 果的严重恶化。
2.牵引网供电方式的比较
牵引网供电方式有: 1)直接供电方式(含带回流线、加强线) 2)BT供电方式 3)AT供电方式 4)CC(同轴电力电缆)供电方式 对于高速电气化工程,BT和CC供电方式 均存在致命的弱点,是不能予以考虑的 供电方式。
高速铁路牵引供电技术
2.牵引网供电方式的比较
1)AT供电方式特点
高速铁路牵引供电技术
2.牵引网供电方式的比较
3)供电方式选择
在AT和直接两种供电方式中,高速铁路供电 系统电源取自公共电网的国家,牵引网均采用AT 供电方式,电压较直供方式提高一倍,供电臂长 度增加一倍,同时满足大功率负荷的需求。牵引 网采用直接供电方式只有德国采用,因为德国采 用独立自用电源系统,全线接触网可实现纵向并 联方式运行,没有电分相,不存在通过电分相对 列车速度的影响问题。
高速铁路牵引供电技术
3.供电方式对外部电源的要求
2)采用单相牵引变压器对外部电源的要求
采用单相牵引变压器的负序功率等于牵引负荷功率。 电力系统公共连接点处的电压不平衡度应满足国家标准 (GB/T 15543-95)的要求,电压不平衡度εU的最大限值 是连接点处三相短路容量的4%。
牵引变电所的最大单相功率一般不超过120MVA,因此 电力系统在正常的最小运行方式下,公共连接点处的三 相短路容量应大于3000MVA,220kV电网的三相短路容量 通常在3000MVA以上时,在公共连接点处引起的电压不平 衡度和谐波电压畸变率可以满足国家标准要求。
高速铁路牵引供电技术
1.高速铁路的特点 2.牵引网供电方式的比较 3.外部电源对供电方式的影响 4.牵引变压器选型及容量 5.无功补偿及滤波装置 6.牵引供电所设计 7.设备选型原则 8.综合调度系统
高速铁路牵引供电技术
1.高速铁路的特点
1)线路特点
正线数目:双线全封闭客运专线; 最大坡度:12‰; 到发线有效长度:650m; 最小曲线半径:一般7000m,困难5500m; 线间距:5.0m; 设计速度:列车运行速度在200~350km/h之间, 线路平纵断面和基础设施满足350km/h的条件; 牵引种类:电力; 列车类型:大功率流线型交--直--交动车组;
2)牵引负荷特点 列车运行最高速度(km/h):350km/h 列车传动方式:大功率交-直-交动车组 列车功率:≥16MW;可以近似为1MW/节 负荷电流(A):单车平均电流为770A左右 列车平均带电概率:96% 列车单位能耗(kWh/104tkm):
列车平均单位能耗为711左右 电制动方式:再生制动 功率因数:0.97 谐波含量:单次谐波含量低,但频谱较宽 追踪运行间隔(min):3min设高速计铁路,牵引供近电技期术 4min
根据我国国情,应首先选用AT供电方式。
高速铁路牵引供电技术
3.供电方式对外部电源的要求
1)外部电源电压应为220kV 京沪高速铁路是繁忙干线和重负荷线路,从
高速电铁牵引负荷的需用功率与电力系统相应电 压等级所适应的输送功率应相匹配的角度来看, 牵引变电所的外部电源电压等级应是220kV。
牵引变电所的外部电源是线路的基础设施之 一,只有采用220kV电源电压供电才能满足最高 时速为350km/h的高速列车稳定正常运行的需要。
③在牵引网的电压损失和电能损失方面较AT供电 方式为大;
高速铁路牵引供电技术
2.牵引网供电方式的比较
④牵引网回路是不平衡回路,防干扰性能差,加 设回流线后的防干扰效果一般,并需增加防干 扰费用;
⑤适用于防干扰问题不突出和外部电源投资相对 较小的区段及运输繁忙干线、重载和高速线;
⑥供电回路结构简单,运行可靠,造价低; ⑦要对绝缘子闪络采取保护措施。
高速铁路牵引供电技术
4.牵引变压器选型及容量
1)牵引变压器接线种类
牵引变压器接线型式有单相牵引变压器、V/V接 线牵引变压器、平衡型牵引变压器和三相Y/牵 引变压器
2)牵引变压器接线特点 单相牵引变压器:容量利用率高,牵引变压器 的安装容量小,负荷平稳,电能损耗小,运营费 用低,结构简单,可靠性高,设备数量少,运营 维护方便和工程投资低,减少接触网电分相数量 和有利于电力机车再生能量的利用等优点,但对 电力系统的负序影响大。
高速铁路牵引供电技术
1.高速铁路的特点
列车运行控制方式:自动控制; 行车指挥方式:综合调度集中; 运输组织模式:不同速度等级的高速列车共线运 行 闭塞方式:车载信号ATC自动闭塞; 列车追踪间隔时分: 高速列车:3min设计,近期4min使用, 设备综合维修天窗:6h。
高速铁路牵引供电技术
1.高速铁路的特点
②牵引变电所的间距大,易选址,减少了外部电 源的工程数量和投资;
③牵引网回路是平衡回路,屏蔽系数为直接供电 方式的1/20左右,防干扰效果好,可改善电磁 环境,并减少防干扰费用;
⑦ 牵引网结构复杂,导线数量多,造价高。
高速铁路牵引供电技术
2.牵引网供电方式的比较
2)直接供电方式
①在1×25kV系统中,变电设施较为简单,接触 网在一般情况下(重负荷除外)也比较简单, 但在接触网使用加强导线的情况下,牵引网结 构已与AT供电方式相当;
②牵引变电所的间距较小,这大大增加了电分相 数量,不利于列车的高速运行,外部电源的工 程数量和投资较大;
④减少了电分相数量,有利于列车的高速运行;
高速铁路牵引供电技术
2.牵引网供电方式的比较
⑤ 牵引网系统需设正馈线,较一般直接供电方 式复杂,但在重负荷区段不必设加强导线,可 与直接供电方式相当;变电系统较直接供电方 式减少了牵引变电所的数量,但需设AT所,开 关设备需用双极;
⑥ 适用于高速和重载的重负荷铁路及运输繁忙 双线区段;
高速铁路牵引供电技术
4.牵引变压器选型及容量
平衡型牵引变压器:两臂牵引负荷相等 的前提下,平衡型牵引变压器的原边三相 是对称的,它的过载能力强,容量利用率 较高。可改善牵引变电所发生三相不平衡 的概率和减少对电力系统的负序影响,但 是其结构复杂,特别是高速列车采用再生 制动方式,可能造成牵引变压器的平衡效 果的严重恶化。
2.牵引网供电方式的比较
牵引网供电方式有: 1)直接供电方式(含带回流线、加强线) 2)BT供电方式 3)AT供电方式 4)CC(同轴电力电缆)供电方式 对于高速电气化工程,BT和CC供电方式 均存在致命的弱点,是不能予以考虑的 供电方式。
高速铁路牵引供电技术
2.牵引网供电方式的比较
1)AT供电方式特点
高速铁路牵引供电技术
2.牵引网供电方式的比较
3)供电方式选择
在AT和直接两种供电方式中,高速铁路供电 系统电源取自公共电网的国家,牵引网均采用AT 供电方式,电压较直供方式提高一倍,供电臂长 度增加一倍,同时满足大功率负荷的需求。牵引 网采用直接供电方式只有德国采用,因为德国采 用独立自用电源系统,全线接触网可实现纵向并 联方式运行,没有电分相,不存在通过电分相对 列车速度的影响问题。
高速铁路牵引供电技术
3.供电方式对外部电源的要求
2)采用单相牵引变压器对外部电源的要求
采用单相牵引变压器的负序功率等于牵引负荷功率。 电力系统公共连接点处的电压不平衡度应满足国家标准 (GB/T 15543-95)的要求,电压不平衡度εU的最大限值 是连接点处三相短路容量的4%。
牵引变电所的最大单相功率一般不超过120MVA,因此 电力系统在正常的最小运行方式下,公共连接点处的三 相短路容量应大于3000MVA,220kV电网的三相短路容量 通常在3000MVA以上时,在公共连接点处引起的电压不平 衡度和谐波电压畸变率可以满足国家标准要求。
高速铁路牵引供电技术
1.高速铁路的特点 2.牵引网供电方式的比较 3.外部电源对供电方式的影响 4.牵引变压器选型及容量 5.无功补偿及滤波装置 6.牵引供电所设计 7.设备选型原则 8.综合调度系统
高速铁路牵引供电技术
1.高速铁路的特点
1)线路特点
正线数目:双线全封闭客运专线; 最大坡度:12‰; 到发线有效长度:650m; 最小曲线半径:一般7000m,困难5500m; 线间距:5.0m; 设计速度:列车运行速度在200~350km/h之间, 线路平纵断面和基础设施满足350km/h的条件; 牵引种类:电力; 列车类型:大功率流线型交--直--交动车组;
2)牵引负荷特点 列车运行最高速度(km/h):350km/h 列车传动方式:大功率交-直-交动车组 列车功率:≥16MW;可以近似为1MW/节 负荷电流(A):单车平均电流为770A左右 列车平均带电概率:96% 列车单位能耗(kWh/104tkm):
列车平均单位能耗为711左右 电制动方式:再生制动 功率因数:0.97 谐波含量:单次谐波含量低,但频谱较宽 追踪运行间隔(min):3min设高速计铁路,牵引供近电技期术 4min
根据我国国情,应首先选用AT供电方式。
高速铁路牵引供电技术
3.供电方式对外部电源的要求
1)外部电源电压应为220kV 京沪高速铁路是繁忙干线和重负荷线路,从
高速电铁牵引负荷的需用功率与电力系统相应电 压等级所适应的输送功率应相匹配的角度来看, 牵引变电所的外部电源电压等级应是220kV。
牵引变电所的外部电源是线路的基础设施之 一,只有采用220kV电源电压供电才能满足最高 时速为350km/h的高速列车稳定正常运行的需要。
③在牵引网的电压损失和电能损失方面较AT供电 方式为大;
高速铁路牵引供电技术
2.牵引网供电方式的比较
④牵引网回路是不平衡回路,防干扰性能差,加 设回流线后的防干扰效果一般,并需增加防干 扰费用;
⑤适用于防干扰问题不突出和外部电源投资相对 较小的区段及运输繁忙干线、重载和高速线;
⑥供电回路结构简单,运行可靠,造价低; ⑦要对绝缘子闪络采取保护措施。
高速铁路牵引供电技术
4.牵引变压器选型及容量
1)牵引变压器接线种类
牵引变压器接线型式有单相牵引变压器、V/V接 线牵引变压器、平衡型牵引变压器和三相Y/牵 引变压器
2)牵引变压器接线特点 单相牵引变压器:容量利用率高,牵引变压器 的安装容量小,负荷平稳,电能损耗小,运营费 用低,结构简单,可靠性高,设备数量少,运营 维护方便和工程投资低,减少接触网电分相数量 和有利于电力机车再生能量的利用等优点,但对 电力系统的负序影响大。
高速铁路牵引供电技术
1.高速铁路的特点
列车运行控制方式:自动控制; 行车指挥方式:综合调度集中; 运输组织模式:不同速度等级的高速列车共线运 行 闭塞方式:车载信号ATC自动闭塞; 列车追踪间隔时分: 高速列车:3min设计,近期4min使用, 设备综合维修天窗:6h。
高速铁路牵引供电技术
1.高速铁路的特点