模电实验共射级单管放大电路

合集下载

模电实验晶体管共射极单管放大器实验指导书

模电实验晶体管共射极单管放大器实验指导书

共射极单管放大器实验指导书一、实验目的1 了解晶体管及相关器件的基本特性;2 熟悉常用仪器的使用方法;3 掌握放大电路的主要指标和测试方法;4 掌握放大电路指标与电路参数的相互关系。

二、实验仪器及器件设备条件:万用表,示波器,函数发生器,直流稳压电源实验器材 表2.1三、 预习要求1什么是静态工作点,如何测量静态工作点,如何调节静态工作点;2电路放大倍数的定义和测量方法; 3输入电阻、输出电阻的测量方法; 4最大不失真输出电压的测量方法; 5 实验电路器件布局。

四、实验原理基本放大电路有共射极、共基极、共集电极三种构成方式,本次实验采用共射极放大电路,如图1.1所示。

三极管是一个电流控制电流源器件(即I C =βI B ),通过合理设置静态工作点,实现对交流电压信号的放大。

放大电路的主要参数有电压放大倍数A v 、输入电阻r i 、输出电阻r o 。

o Li bev R Av v r β'-==..............................................(1) ||i be b r r R = . (2)o C r R = (3)式(1)中:||L C L R R R '= ,211(//)b W R R R R =+,R C 为集电极电阻,R L 为负载电阻。

26300(1)be Er I β=++ ………………….(4) 由式(1)(2)(4)可以看出: I B ↑→I E ↑→r be ↓→r i ↓→A V ↑ 由式(1)(3)可以看出:R C ↑→r O ↑→A V ↑在负载开路(R L =∞)时: L C o R R r '== ,忽略偏置电路对输入电流的影响r i =r be 式(1)可以写成:o ir Av r β-=上式表明电路放大倍数A v 与输出电阻r o 成正比,与输入电阻r i 成反比。

图1.1 单管放大器共射极电路五、实验内容 5.1 静态工作点的设置1什么是静态工作点静态工作点是指在电路输入信号为零时,电路中各支路电流和各节点的电压值。

模电实验(附答案)

模电实验(附答案)

实验一 晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调式方法和测量方法。

2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影响。

3.熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2—1为电阻分压式工作点稳定单管放大器实验电路图。

偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。

三、实验设备1、 信号发生器2、 双踪示波器3、 交流毫伏表4、 模拟电路实验箱5、 万用表四、实验内容1.测量静态工作点实验电路如图1所示,它的静态工作点估算方法为:U B ≈211B B CCB R R U R +⨯图1 共射极单管放大器实验电路图I E =EBEB R U U -≈Ic U CE = U CC -I C (R C +R E )实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。

1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。

2)检查接线无误后,接通电源。

3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。

然后测量U B 、U C ,记入表1中。

表1测 量 值计 算 值U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2.627.2600.65.22B2所有测量结果记入表2—1中。

5)根据实验结果可用:I C ≈I E =EER U 或I C =C C CC R U U -U BE =U B -U EU CE =U C -U E计算出放大器的静态工作点。

2.测量电压放大倍数各仪器与放大器之间的连接图关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。

《模拟电子线路实验》实验二 晶体管共射极单管放大器

《模拟电子线路实验》实验二 晶体管共射极单管放大器

模拟电子线路实验实验二晶体管共射极单管放大器【实验名称】晶体管共射极单管放大器【实验目的】1.学习单管放大器静态工作点的测量方法。

2.学习单管放大电路交流放大倍数的测量方法。

3.了解放大电路的静态工作点对动态特性的影响。

4.熟悉常用电子仪器及电子技术实验台的使用。

【预习要点】1.复习课件中有关单管放大电路工作点稳定问题的内容。

2.放大电路输出信号波形在哪些情况下可能产生失真?应如何消除失真?【实验仪器设备】【实验原理】实验电路图如图2-1所示。

温度的变化会导致三极管的性能发生变化,致使放大器的工作点发生变化,R和射极电阻影响放大器的正常工作。

图2-1所示电路中通过增加下偏置电阻B2R来改善直流工作点的稳定性,其工作原理如下:E图2-1 分压偏置共射极放大电路①利用B1R 和B2R 的分压作用固定基极电压V B 。

当B1R 、B2R 选择适当,满足I B1>> I B 时,有B2B CC B1B2R V V R R =+式中B1R 、B2R 和CC V 都是固定的,不随温度变化,所以基极电位V B 基本上为一定值。

②通过E R 的负反馈作用,限制C I 的改变,使工作点保持稳定。

具体稳定过程如下:CT ︒I电容C 1、C 2有隔直通交的作用,C 1滤除输入信号的直流成份,C 2滤除输出信号的直流成份。

射极电容C E 在静态时稳定工作点;动态时短路R E ,增大放大倍数。

当流过偏置电阻B1R (b1R 和电位器W R 的阻值和)的电流I B1远大于晶体管的基极电流B I (一般5~10倍),基极电压V B 远大于V BE 时,它的静态工作点可用下式估算B1B CC B1B2R V V R R =+B BEC E E=V V I I R ≈- CE CC C C E =(+)V V I R R -当放大器的输入端加交流输入信号i v 后,基极回路便有交流输入b i 产生,经过放大在集电极回路产生β倍的c i ,同时在负载输出o c L 'v i R =,从而实现了电压放大。

模电实验共射级单管放大电路

模电实验共射级单管放大电路

实验报告实验名称课程名称共射级单管放大电路模拟电子技术实验院系:控计学院专业名称:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期:华北电力大学实验报告要求:一、实验目的及要求:学会放大电路静态工作点的调试方法,分析静态工作点对放大电路性能的影响。

掌握放大电路电压放大倍数和最大不失真输出电压的测试方法。

熟悉常用电子仪器及模拟电路实验设备的使用。

仪器用具三、实验原理图1-2共射极单管放大器实验电路如图所示为电阻分压式工作点稳定单管放大电路实验电路图。

它,U B U B EI EFT"V CCRB1 RB2UCE =Ucc- Ic(Rc+ RE) Ri = RB1//RB2// r be的偏置电路米用Rb1和Rb2组成的分压电路,并在发射极中接有电阻RE 以稳定放大电路的静态工作点。

挡在放大电路的输入端加入输入 信号ui 后,在放大电路的输出端便可得到一个与 ui 相位相反,幅值 被放大了的输出信号uo ,从而实现了电压放大。

在图1-2电路中,当流过偏置电阻R BI 和R B 2的电流远大于晶体管T 的基极电流I B (一般5〜10倍),则它的静态工作点可用下式估算:U B电压放大倍数AR B //R LA u输入电阻输出电阻:Ro ^ Rc 。

由于电子器件性能的分散性比较大,因此在设计和制作晶体管放 大电路时,离不开测量和调试技术。

在设计前应测量所用元器件的参 数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测 量和调试放大器的静态工作点和各项性能指标。

一个优质放大器,必 定是理论设计与实验调整相结合的产物。

因此,除了学习放大器的理 论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大电路的测量和调试一般包括:放大电路的静态工作点的测量与调试,消除干扰与自激振荡及放大电路各项动态指标的测量与调试1. 放大电路静态工作点的测量与测试(1)静态工作点的测量。

为了减小误差,提高测量精度,应选用内阻较高的直流电压表,一般数字万用表的输入阻抗为100兆欧左右。

模电实验共射级单管放大电路

模电实验共射级单管放大电路

实验报告实验名称共射级单管放大电路课程名称模拟电子技术实验院系:控计学院专业名称:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期:华北电力大学实验报告要求:一、实验目的及要求:学会放大电路静态工作点的调试方法,分析静态工作点对放大电路性能的影响。

掌握放大电路电压放大倍数和最大不失真输出电压的测试方法。

熟悉常用电子仪器及模拟电路实验设备的使用。

二、仪器用具仪器名称规格/型号数量备注模拟电路实验箱 1函数信号发生器 1双踪示波器 1交流毫伏表 1数字万用表 12.4千欧电阻器 1三、实验原理图1-2 共射极单管放大器实验电路如图所示为电阻分压式工作点稳定单管放大电路实验电路图。

它的偏置电路采用Rb1和Rb2组成的分压电路,并在发射极中接有电阻RE ,以稳定放大电路的静态工作点。

挡在放大电路的输入端加入输入信号ui 后,在放大电路的输出端便可得到一个与ui 相位相反,幅值被放大了的输出信号uo ,从而实现了电压放大。

在图1-2电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B (一般5~10倍),则它的静态工作点可用下式估算:CCB2B1B1B V R R R U ⨯+=C E BEB E I R U U I ≈-=UCE =Ucc- Ic(Rc+ RE)电压放大倍数be B u r //R A LR β-=输入电阻Ri = RB1//RB2// r be输出电阻:Ro ≈Rc 。

由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。

一个优质放大器,必定是理论设计与实验调整相结合的产物。

因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大电路的测量和调试一般包括:放大电路的静态工作点的测量与调试,消除干扰与自激振荡及放大电路各项动态指标的测量与调试等。

模拟电路实验报告单级共射放大电路

模拟电路实验报告单级共射放大电路

模拟电子系统设计实验第2次实验报告1 实验原理:一:单级共射放大电路电路原理图如下:当I 1>>I BQ 时,有:CC b2b1b2B V R R R V ⋅+≈eBE B E C R V V I I -=≈)(e c C CC e E c C CC CE R R I V R I R I V V +-≈--=βCB I I =调节Rp大小可以改变电路的静态工作点。

接入100mV,1kHz正弦波后,在实验要求的30~50倍增益条件下,调节Rp使输入电压幅值增大时,输出波形波峰和波谷同时开始失真,则静态工作点设置合适,可以作为后续电路电压比较器的输入之一二:三角波产生电路、电压比较器及功率放大器(一)三角波产生电路1.施密特触发器:电路符号如下:输入输出特性图线如下:2.积分电路3.三角波发生器积分后反馈至施密特触发器。

(二)比较器:功能:比较同相输入端和反相输入端的电压,前者高则输出高,反之输出低。

电路包含一个正反馈。

(三)功率放大器:对输入音频做PWM,然后驱动半桥做功率放大,最后滤波2实验元器件仪器:EE1643C型信号发生器/计算器TDS2001C型示波器稳压电源万用表电烙铁主要器件:电阻,电容,电位器,面包板,BJT,各类运放(如TL082,TL3116等)3实验结果和分析D类功率放大器在焊板上走锡线,注意信号线与地线的布线。

得到焊板如下:因实验中电路前一部分的三角波产生电路波形出了问题,所以未得到功放的测试波形。

实验中最常见的问题就是元件焊接时短路或者虚焊。

4实验总结与反思本次试验中,我主要承担了第一级BJT放大电路的搭建工作和最后一级功率放大器的焊接工作。

搭建放大电路主要是计算元件参数,在找到与理论值最接近的电阻之后,搭建电路并寻找静态工作点使得输出波形不失真。

在这个过程中,遇到了面包板接触不良,布线不合理导致干扰过大或者没有输出波形,以及直流电源的使用错误(如未按下output键)等很多问题。

模电实验_单极共射放大器静态工作点

模电实验_单极共射放大器静态工作点

实验一——单极共射放大器的静态工作点实验报告一、实验目的(1)掌握用Multisim 13仿真软件分析单极放大电路主要性能指标的方法。

(2)熟悉常用电子仪器的使用方法,熟悉基本电子元器件的使用。

(3)学会并熟悉“先静态后动态”的电子线路的基本调试方法。

(4)分析静态工作点对放大器性能的影响。

二、实验原理基本电路;晶体管单极放大电路是常见的低频小信号放大电路,用于实现利用小信号来控制大信号。

其电路如图3.1.1所示:电路在接通直流电源而未加输入信号时,电路中产生的电流,电压为直流量,记为V BEQ,V CEQ,I BQ,I CQ,由它们确定了电路的一个工作点,称为静态工作点Q。

三极管的静态工作点可由下士近似估算:V BEQ=(0.6~0.7)V硅管;(0.2~0.3)V锗管V CEQ=V CC-I CQ(R c+R e)V BQ=R2V CC/(R P+R1+R2)I CQ≈I EQ=(V BQ-V BEQ)/R eI BQ=I CQ/β(2)最佳静态工作点的调整和测量;放大器静态工作点的选择是指对三极管集电极电流I C或V CE的调整与测试。

实际工作中往往通过调节基极偏置电阻的大小,观察输出波形的变化,来调节静态工作点。

当输入电压逐渐增大时,若输出波形正负同时出现削波现象,即表明此时放大电路的静态工作点选择合适,此时放大电路动态范围最大。

如图 3.1.2所示:三、实验内容最佳静态工作点的调整和测量;四、实验仪表及元器件(1)双路直流稳压电源一台;(2)函数信号发生器一台;(3)示波器一台;(4)毫伏表一台;(5)万用表一台;(6)三极管一个;(7)电阻1kΩ一个,2kΩ两个,5.1kΩ两个,47kΩ电位器一个;(8)电解电容10μF两个,100μF一个;(9)模拟电路试验箱一台。

五、实验过程最佳静态工作点的调整和测量;1按照实验原理图3.1.1在Multisim仿真软件面板上连接电路,检查无误后接通12V直流电源。

模电实验报告(新)

模电实验报告(新)

实验目的掌握共射放大电路的静态工作点(Q )、电压放大倍数(A u )的测试方法。

观测电路参数变化对放大电路的静态工作点、电压放大倍数及输出波形的影响。

实验仪器与元器件直流稳压电源 信号发生器 交直流毫伏毫安表6502型示波器单管放大电路模块实验内容及步骤熟悉实验面板上各元件的位置。

按图示电路 接线,基极接入 R b2,集电极接入 R 尸2k Q ,发射极接 入旁路电容C e,负载电阻R L = 8(开路)检查接线无误后,将直流电源输出的 到实验板上,并校准12V O1. 测量静态工作点、卄将电路的输入端对地短路。

调节P , 保持R p 不变。

分别测量U B 、U E 的值,并将测量结果记入表2-3-1中。

2. 测量电压放大倍数 A u去掉输入端对地短路线。

从电路输入端送入U i = 5mV (有效值)、f = 1kHz 的正弦波信号,当示波器观察 的输出波形为放大的、不失真的正弦波时 ,测量输出电压U 。

的值,并将测量结果及波形记入表2-3-2中。

关闭电源开关。

3. 观测电路参数变化对电路的 Q 点、A u 及输出波形的影响 (1) R c 变化:R c = 3k Q, R L = 8, R p 保持不变。

专业实验名称 实验类型同组人实验三单管共射放大电路 验证型年 月指导教师任文霞(任课教师)批阅教师-O+咯O12V 电压加使 U C = 9V ,3DS6Q单管放大电路去掉输入信号,测量 U c 、U B 和U E 的值,将测量结果记入表 2-3-1中。

电路的输入端接入 U i = 5mV 、f =1kHz 正弦波信号,测量输出电压 U o 的值,用示波器观察输出信号的波形,将结果记入表关闭电源开关。

(2) R L 变化:改变R c = 2k Q, R L = 2k Q, R p 保持不变。

重复3. (1)中的测量步骤,并将测量结果及波形记入表关闭电源开关4. 观测静态工作点设置不合适时对电路输出波形的影响(1) R c = 2k Q, R L =S ,将R p 调至最小值。

模电实验一 单级共射放大电路

模电实验一   单级共射放大电路

模电仿真实验报告单级共射放大电路班级:电子信息类一班学号:2014117225姓名:梁霄实验一单级共射放大电路实验目的:1.熟悉常用电子仪器的使用方法。

2.掌握放大器静态工作点的调试方法及其对放大电路性能的影响。

3.掌握放大器动态性能参数的测试方法。

4.进一步掌握单级放大电路的工作原理。

实验仪器:1.示波器2.型号发生器3.数字万用表4.交流毫伏表5.直流稳压源实验原理:1.电路静态工作点的调整将放大电路的输入端短路,让其工作在直流状态,用直流电压表测量三极管C,E 间电压,调整电位器使UCE在4-6V之间,这表明放大电路的静态工作点基本设置在放大区,然后测量B极对地的电位并记录。

2.电压放大倍数的测量放大电路静态工作点设置合理后,在电路的输入端加入正弦信号,用示波器观察放大电路的输出波形,并调节输入信号幅度,使输出波形基本不失真。

用交流毫伏表或示波器分别测量放大电路的输入,输出电压,按定义式计算。

3.输入电阻Ri 的测量测量输入电阻时,可采用串联电阻法来进行。

4.输出电阻Ro的测量测量输出电阻时采用单负载电阻法。

实验内容:1.装接电路1).用万用表判断试验箱上三极管,电解电容的极性好坏,测试三极管的放大倍数。

2).按图示连接电路,将电位器调到电阻最大位置。

3).接线后仔细检查电路,确认无误后接通电源。

2.静态工作点的调整测量1)同时,在示波器的另一通道监视放大器输出电压U0的波形调整RP的阻值,是静态工作点处于合适的位置,UCE=5.16V。

2)保持静态工作点不变撤去输入信号源,使电路工作在直流状态,用直流电压表测量UB,UC,UE的值,在计算静态工作点的值,并和理论计算值进行比较。

3.电压放大倍数的测量与计算1).放大电路的静态测量完毕后,输入端加上正弦信号,在输出波形不失真的情况下,测量输入信号电压UI和输出信号电压U0的电压值。

改变UI值,在测量U0的值以计算电压放大倍数的平均值,减小测量误差。

模电共射放大电路实验报告

模电共射放大电路实验报告

实验一 BJT单管共射电压放大电路实验报告自动化一班李振昌一、实验目的(1)掌握共射放大电路的基本调试方法。

(2)掌握放大电路电压放大倍数、输入电阻、输出电阻的基本分析方法。

(3)进一步熟练电子仪器的使用。

二、实验内容和原理仿真电路图静态工作点变化而引起的饱和失真与截止失真静态工作点的调整和测量 : 调节RW1,使Q 点满足要求(ICQ =1.5mA)。

测量个点的静态电压值RL =∞及RL =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器监视输出波形,交流毫伏表测出有效值。

RL =∞时,最大不失真输出电压Vomax(有效值)≥3V : 增大输入信号幅度与调节RW1,用示波器监视输出波形、交流毫伏表测出最大不失真输出电压Vomax 。

输入电阻和输出电阻的测量 : 采用分压法或半压法测量输入、输出电阻。

放大电路上限频率fH 、下限频率fL 的测量 : 改变输入信号频率,下降到中频段输出电压的0.707倍。

观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。

三、主要仪器设备示波器、函数信号发生器、12V 稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等四、操作方法和实验步骤 准备工作: 修改实验电路将K1用连接线短路(短接R7);RW2用连接线短路;在V1处插入NPN型三极管(9013);将RL接入到A为RL=2k,不接入为RL=∞(开路) 。

开启直流稳压电源,将直流稳压电源的输出调整到12V,并用万用表检测输出电压。

确认输出电压为12V后,关闭直流稳压电源。

用导线将电路板的工作电源与12V直流稳压电源连接。

开启直流稳压电源。

此时,放大电路已处于工作状态。

实验步骤1.测量并调整放大电路的静态工作点调节电位器RW1,使电路满足ICQ=1.5mA。

为方便起见,测量ICQ时,一般采用测量电阻Rc两端的压降VRc,然后根据ICQ=VRc/Rc计算出ICQ 。

单管共射极放大电路实验报告

单管共射极放大电路实验报告

单管共射极放大电路实验报告Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT实验一、单管共射极放大电路实验1. 实验目的(1) 掌握单管放大电路的静态工作点和电压放大倍数的测量方法。

(2) 了解电路中元件的参数改变对静态工作点及电压放大倍数的影响。

(3) 掌握放大电路的输入和输出电阻的测量方法。

2. 实验仪器① 示波器② 低频模拟电路实验箱 ③ 低频信号发生器 ④ 数字式万用表 3. 实验原理(图)实验原理图如图1所示——共射极放大电路。

4. 实验步骤 (1) 按图1连接共射极放大电路。

(2)测量静态工作点。

② 仔细检查已连接好的电路,确认无误后接通直流电源。

③ 调节RP1使RP1+RB11=30k④ 按表1测量各静态电压值,并将结果记入表1中。

表1 静态工作点实验数据Rs 4.7K(1)测量电压放大倍数①将低频信号发生器和万用表接入放大器的输入端Ui,放大电路输出端接入示波器,如图2所示,信号发生器和示波器接入直流电源,调整信号发生器的频率为1KHZ,输入信号幅度为20mv左右的正弦波,从示波器上观察放大电路的输出电压UO的波形,分别测Ui和UO的值,求出放大电路电压放大倍数AU。

图2 实验电路与所用仪器连接图②保持输入信号大小不变,改变RL,观察负载电阻的改变对电压放大倍数的影响,并将测量结果记入表2中。

表2 电压放大倍数实测数据(保持U I不变)(4)观察工作点变化对输出波形的影响①实验电路为共射极放大电路②调整信号发生器的输出电压幅值(增大放大器的输入电压U i),观察放大电路的输出电压的波形,使放大电路处于最大不失真状态时(同时调节RP1与输入电压使输出电压达到最大又不失真),记录此时的RP1+RB11值,测量此时的静态工作点,保持输入信号不变。

改变RP1使RP1+RB11分别为25KΩ和100K Ω,将所测量的结果记入表3中。

模电实验三-基本放大电路实验

模电实验三-基本放大电路实验

实验三基本放大电路实验验证性实验——晶体管共射放大电路1.实验目的①掌握放大电路的静态工作点和电压放大倍数的测量方法。

②了解电路元件参数改变对静态工作点及电压放大倍数的影响。

③掌握放大电路输入、输出电阻的测量方法。

2.实验电路及仪器设备⑴实验电路单管共射放大电路如图1-6所示。

图1-6 单级共射放大电路R b1 20kΩR b2 10kΩR c、R s、R L 3kΩR e 2kΩC1、C210μF C e 47μF V 3DG6 β 50~60 V CC 12V⑵实验仪器设备①双踪示波器 1台②直流稳压电源 1台③信号发生器 1台④交流毫伏表 1台⑤数字(或指针)式万用表 1块3.实验内容及步骤⑴测量静态工作点①先将直流电源调整到12V,关闭电源。

②按图1-6连接电路,注意电容器C1、C2、C e的极性不要接反,最后连接电源线。

③仔细检查连接好的电路,确认无误后,接通直流稳压电源。

④按表1-5用数字万用表测量各静态电压值,并将结果记入表1-5中。

表1-5 静态工作点实验数据测量值测算值理论值U B /V U C /V U E /V U CE /V I C /mA U B /V U C /V U E /V U CE /V I C /mA⑵测量电压放大倍数①按图1-7将信号发生器和交流毫伏表接入放大器的输入端,示波器接入放大器的输出端。

调节信号发生器为放大电路提供输入信号为1kHz 的正弦波i U ,示波器用来观察输出电压o U 的波形。

适当调整信号发生器的值,确保输出电压o U 不失真时,分别测出o U 和i U 的值,求出放大电路的电压放大倍数u A 。

图1-7 实验线路与所用仪器连接图②观察交流毫伏表读数,保持U i 不变,改变R L ,观察负载电阻改变对电压放大倍数的影响,将测量结果记入表1-6中。

表1-6 电压放大倍数实测数据(保持U i 不变)R L /Ω U o /V A u 测量值 A u 理论值∞ 3k Ω 1k Ω 500Ω⑶ 观察工作点变化对输出波形的影响 调整信号发生器的输出电压幅值(增大放大器的输入电压U i ),观察放大电路的输出电压的波形,使放大电路处于最大不失真电压时,逐个改变基极电阻R b1的值,分别观察R b1变化对静态工作点及输出波形的影响,将所测结果记入表1-7中。

模电实验单级共射放大电路

模电实验单级共射放大电路

模电实验单级共射放⼤电路单极共射放⼤电路⼀、实验⽬的(1)掌握⽤Multisim 13 仿真软件分析单极放⼤电路主要性能指标的⽅法。

(2)熟悉掌握常⽤电⼦仪器的使⽤⽅法,熟悉基本电⼦元器件的作⽤。

(3)学会并熟悉“先静态后动态”的电⼦线路的基本调试⽅法。

(4)分析静态⼯作点对放⼤器性能的影响,学会调试放⼤器的静态⼯作点。

(5)掌握放⼤器的放⼤倍数、输⼊电阻、输出电阻及最⼤不失真输出电压的测试⽅法。

(5)测量放⼤电路的频率特性。

⼆、实验原理1.基本电路电路在接通直流电源CC V ⽽未加⼊输⼊信号时(通过隔直流电容1C 将输⼊端接地),电路中产⽣的电流、电压为直流量,记为BEQ V ,CEQ V ,BQ I ,CQ I ,由它们确定了电路的⼀个⼯作点,称为静态⼯作的Q 。

三极管的静态⼯作点可⽤下式近似估算:)7.0~6.0(=BEQ V V 硅管;(0.2~0.3)V 锗管()e c CQ CC CEQ R R I V V +-=CC P BQ V R R R R V 212++= EBEQBQ EQ CQ R V V I I -=≈βCQ BQ I I =2.静态⼯作点的选择放⼤器静态⼯作点的选择是指对三极管集电极电流C I (或CE V )的调整与测试。

在晶体管低频放⼤电路中,静态⼯作点的选择及稳定具有举⾜轻重的作⽤,直接关系到放⼤电路能否正常可靠地⼯作。

若⼯作点偏⾼(C I 放⼤),则放⼤器在加⼊交流信号以后易产⽣饱和失真,此时输出信号o u 的负半周将被削底;若⼯作点偏低,则易产⽣截⽌失真,即o u 的正半周被削顶(⼀般截⽌失真不如饱和失真明显)。

这些情况都不符合不失真放⼤的要求。

所以在选定⼯作点以后还必须进⾏动态调试,即在放⼤电路的输⼊端加⼊⼀定的输⼊电压i u ,并检查输出电压o u 的⼤⼩和波形是否满⾜要求。

如不满⾜,则应调节静态⼯作点的位置。

还应说明的是,上⾯所说的⼯作点“偏⾼”或“偏低”不是绝对的,应该是相对信号的幅度⽽⾔。

实验二晶体管共射极单管放大电路-模拟电子技术

实验二晶体管共射极单管放大电路-模拟电子技术

实验二 晶体管共射极单管放大电路一、实验目的1.学习如何设置放大电路静态工作点及其调试方法。

2.掌握放大电路的静态测试和动态测试的方法。

3.研究静态工作点对动态性能的影响。

4.掌握低频信号发生器、晶体管毫伏表、电子示波器等常用电子仪器的正确使用方法。

二、原理说明在实践中,放大电路的用途是非常广泛的,单管放大电路是最基本的放大电路。

共射极单管放大电路是电流负反馈工作点稳定电路,它的放大能力可达到几十到几百倍,频率响应在几十赫兹到上千赫兹范围。

不论是单级或多级放大器它的基本任务是相同的,就是对信号给予不失真的、稳定的放大。

1.放大电路静态工作点的选择当放大电路仅提供直流电源,不提供输入信号时,称为静态工作情况,这时三极管的各电极的直流电压和电流的数值,将在三极管的特性曲线上确定一点,这点常称为Q 点。

静态工作点的选取十分重要,它影响放大器的放大倍数、波形失真及工作稳定性等。

静态工作点如果选择不当会产生饱和失真或截止失真。

一般情况下,调整静态工作点,就是调整电路有关电阻(如R Bl),使U CEQ达到合适的值。

由于放大电路中晶体管特性的非线性或不均匀性,会造成非线性失真(又称固体失真),在单管放大电路中不可避免,为了降低这种非线性失真,必须使输入信号的幅值较小。

2.放大电路的基本性能当放大电路静态工作点调好后,输入交流信号u i,这时电路处于动态工作情况,放大电路的基本性能主要是动态参数,包括电压放大倍数、频率响应、输入电阻、输出电阻。

这些参数必须在输出信号不失真的情况下才有意义。

基本性能测量的原理电路如图1-2-1所示。

图1-2-1交流放大电路实验原理图(1)电压放大倍数A u的测量用晶体管毫伏表测量图1-2-1中U i和U o的值。

即:A u =U o /U i(2)输入电阻r i 的测量如图1-2-1所示,放大器的输入电阻r i 就是从放大器输入端看进去的等效电阻。

即:r i =U i /I i通常测量r i 的方法是:在放大器的输入回路串一个己知电阻R,选用R≈r i (这里的r i为理论估算值)。

模电实验-分压式单管共射放大电路

模电实验-分压式单管共射放大电路

模电实验-分压式单管共射放大电路
分压式单管共射放大电路是一种常见的模拟电子电路,用于放大信号。

它由一个晶体管和几个电阻组成,以下是该电路的实验步骤:
1. 准备所需的元器件:一个NPN型晶体管(例如2N3904),两个电阻(通常为1kΩ和10kΩ),一个电容(通常为
10μF),以及一个信号源(例如函数发生器)和一个示波器。

2. 按照如下图所示的电路连接晶体管和电阻:将电阻1连接到晶体管的基极,电阻2连接到晶体管的发射极,将电压源接地连接到发射极,将信号源连接到基极,并将示波器连接到发射极。

VB --- R1 --- B
|
E --- R2 --- C
|
GND
3. 将信号源调整为适当的频率和幅度,并连接到电路的输入。

4. 打开电源,调整直流电压源,使晶体管的发射极电压约为
0.6-0.7V,并确保电路稳定。

5. 调整信号源产生的信号频率和幅度,以使输入信号合适。

6. 使用示波器测量放大后的信号。

将示波器探头连接到晶体管
的发射极,将其地线接地。

7. 观察并记录输出信号的波形、幅度和频率。

通过这些步骤,您可以实验和观察分压式单管共射放大电路的放大行为。

您还可以尝试使用不同的电阻值和电容值,以观察它们对放大效果的影响。

模电实验二 单管共射放大电路和放大电路静态工作点及电压放大倍数的测试

模电实验二 单管共射放大电路和放大电路静态工作点及电压放大倍数的测试

物联网工程学院模拟电子技术实验报告班级:学号:姓名:时间:实验一:实验名称:利用“直流扫描分析”测试基本共射放大电路电压传输特性实验内容:利用仿真软件作出仿真电路,所谓电压传输特性,是指一个电路输出电压u0与输入电压u1之间的函数关系,通常用曲线表示。

电压传输特性是稳态特性,可用逐点测试的方法获得。

实验步骤:1.选择元件:在Multisim电路图区搭建基本共射放大电路。

在主界面的左侧元器件栏中选择5千欧姆的R1,24千欧姆的R2,1V的直流电压V1,12V的直流电压V2,三极管Q1,并将它们拖至电路图窗口。

连接好电路,如下图所示。

图12.设置直流扫描分析参数,在分析参数栏目中选定V1为自变量输入电压,设定其起始值0、停止值2和步长0.01,在输出栏目中选定节点3作为输出电压,也就是晶体管的管压降,如下图2和3所示。

图2图33.按仿真(Simulate)按钮即得到基本共射放大电路的电压传输特性,如图4所示。

实验数据:如图4所示,图4仿真结果分析:在仿真电路中,应将V1理解为加在输人的交、直流总量。

从图4能够读出使晶体管处于放大区时V1的近似值,当V1 <0.6V时晶体管截止,当V1 >1.0 V晶体管饱和,当0.6 V<V1<1.0 V时晶体管工作在放大区,静态工作点Q应设置在这个区域。

当已知Q在曲线上的位置时,就可得出,电路不出现失真时输人交流信号的峰值。

从另一角度讲,若已知输人交流信号的峰值,则可确定出使电路不失真的Q点的合适位置;当然,也可能Q点没有合适的位置,需要重新选择电路参数。

实验二:实验名称:放大电路静态工作点及电压放大倍数的测试。

实验内容:1.仿真电路2.静态与动态的测试实验步骤:1.选择元件:分别选取晶体管、直流电压源(12V)、6个电阻,3个电容拖到电路图窗口。

2.选择仪器:与示波器,2个万用表和函数发生器一起搭建阻容耦合静态工作点稳定电路,组成仿真电路如图5所示。

模电实验-分压式单管共射放大电路

模电实验-分压式单管共射放大电路

实验报告课程名称:模拟电子技术实验项目:分压式单管共射放大电路一、实验项目分压式单管共射放大电路二、实验目的1.学会正确使用万用表、直流稳压电源、信号发生器、2.掌握放大电路静态工作点的调试方法及其对放大器性能的影响。

3.学习测量放大器Q点、Av、ri、r0的方法,了解共射极放大电路的特性4.学习放大器的动态性能三、实验原理及电路图1.三极管及单管放大器工作原理。

2.放大器动态及静态测量方法。

1.装接电路四、实验容及步骤1.装接电路(1)按上图所示连接电路(注意接线前先测量+12V电源,关断电源后再接线),Rb1’先不接,Rb1p调到电阻最大位置。

(2)接线后仔细检查,确认无误后接通电源。

2.静态调整调整Rb1p,使VE= 2.12 V左右,测试并记录到表1-1中3.动态研究(1)加入正弦信号ui,f=1KHz, 3mV,测ui、uo的幅度、相位、画出ui、uo波形。

(2)空载RL=∞下测试:观察uo不失真时的最大值,并填入表1-2。

五、数据表格及分析:原始记录(图),数据分析与处理。

1.装接电路图2.静态调整调整Rb1p,使V E= 2.1 -2.2 V,测试并记录到表1-1中。

表1-1 静态工作点测试记录表(ui=0条件下)实测U E= 2.12 V实测记录数据计算处理U BE(V) U B(V) U CE(V) Rb1(k) I B(uA) I C(mA) 772.996mv 2.893 5.013 70 Ic/β0.96图3.动态研究(1)加入正弦信号ui,f=1KHz, 3mV,测ui、uo的幅度、相位、画出ui、uo波形。

(2)空载RL=∞下测试:观察uo不失真时的最大值,并填入表1-2。

实测实测计算理论估算ui (mV) uo (mV) A V A V3 481.974 160.658 170表中A V:电压放大倍数。

(3)加载RL下测试:改变RL,记入表1-3。

断掉给定参数实测实测计算理论估算R C RL Vi(mV) Vo(mV) A V A V3 240.988 80.32 1005.1 K 5.1 K3 135.768 45.26 505.1 K 2 K图4. 静态工作点改变对于输出波形的影响R C=5.1K、RL=5.1K下:①在工作点为合适的情况下,调出最大不失真的uo波形,并临募绘制uo波形,再测记此时对应的静态工作点电平值,记录于表2-5第一栏中;并注意应保持此时的ui值在以下的测试中始终不变;②增大Rb1p到其最大,观察绘制uo波形,并测试此时所对应的静态工作点电平;记录于表2-5第二栏中;③减小Rb1p到其最小,观察绘制uo波形;并测试此时所对应的静态工作点电平;记录于表2-5第三栏中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
实验名称共射级单管放大电路
课程名称模拟电子技术实验
院系:控计学院专业名称:
学生姓名:学号:
同组人:实验台号:
指导教师:成绩:
实验日期:
华北电力大学
实验报告要求:
一、实验目的及要求:
学会放大电路静态工作点的调试方法,分析静态工作点对放大电路性能的影响。

掌握放大电路电压放大倍数与最大不失真输出电压的测试方法。

熟悉常用电子仪器及模拟电路实验设备的使用。

二、仪器用具
数字万用表 1
2、4千欧电阻器 1
三、实验原理
如图所示为电阻分压式工作点稳定单管放大电路实验电路图。

它的偏置电路采用Rb1与Rb2组成的分压电路,并在发射极中接有电阻RE,以稳定放大电路的静态工作点。

挡在放大电路的输入端加入输入信号ui后,在放大电路的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电压放大。

在图1-2电路中,当流过偏置电阻R B1与R B2的电流远大于晶体管T 的基极
电流I B(一般5~10倍),则它的静态工作点可用下式估算:
CC
B2
B1
B1
B
V
R
R
R
U⨯
+
=
C
E
BE
B
E
I
R
U
U
I≈
-
=
UCE =Ucc- Ic(Rc+ RE)
电压放大倍数
be
B
u r
//
R
A L
R
β
-
=
输入电阻
Ri = RB1//RB2// r be
图1-2 共射极单管放大器实验电路
输出电阻:Ro≈Rc。

由于电子器件性能的分散性比较大,因此在设计与制作晶体管放大电路时,离不开测量与调试技术。

在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计与装配以后,还必须测量与调试放大器的静态工作点与各项性能指标。

一个优质放大器,必定就是理论设计与实验调整相结合的产物。

因此,除了学习放大器的理论知识与设计方法外,还必须掌握必要的测量与调试技术。

放大电路的测量与调试一般包括:放大电路的静态工作点的测量与调试,消除干扰与自激振荡及放大电路各项动态指标的测量与调试等。

1、放大电路静态工作点的测量与测试
(1)静态工作点的测量。

为了减小误差,提高测量精度,应选用内阻较高的直流电压表,一般数字万用表的输入阻抗为100兆欧左右。

(2)静态工作点的调试。

放大电路静态点的调试就是指对管子集电极电流Ic(或Uce)的调整与测试。

静态工作点就是否合适,对放大电路的性能与输出波形都有很大影响。

改变电路参数Ucc、Rc、RB(RB1、RB2)都会引起静态工作点的变化,如图1-4所示。

但通常多采用调节偏置电阻RB2的方法来改变静态工作点,如减小RB2,则可使静态工作点提高等。

最后还要说明的就是,上面所说的工作点“偏高”或“偏低”不就是绝对的,应该就是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。

所以确切地说,产生波形失真就是信号幅度与静态工作点设置配合不当所致。

如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。

2、放大电路动态指标测试
(1)电压放大倍数Au 的测量。

调整放大电路到合适的静态工作点,然后加入输入电压ui,在输出电压uo 不失真的情况下,用交流毫伏表测出ui 与uo 的有效值Ui 与Uo,则
Au=Uo/Ui
(2)输入电阻Ri 的测量。

根据定义可得:
Rs Ui
Us Ui Rs Ur Ui Ii Ui Ri -===/ 测量时应注意下列几点:
1)由于电阻Rs 两端没有电路公共接点,所以测量Rs 两端电压Ur 时必须分别测出Us 与Ui,然后按Ur=Us-Ui 求出Ur 值。

2)电阻Rs 的值不易取得过大或过小,以免产生较大的测量误差,通常Rs 与Ri 为同一数量级为好。

图1-4 电路参数对静态工作点的影响
(3)输出电阻Ro 的测量。

(4)最大不失真输出电压Uop-p 的测量。

(5)放大电路幅频特性的测量。

四、 实验步骤(包括原理图、实验结果与数据处理)
实验电路如图1-2所示。

为防止干扰,各仪器的公共端必须连在一起,同时信号源,交流毫伏表与示波器的引线应采用专用电缆线或屏蔽线,如使用屏蔽线,则屏蔽线的黑夹子应接在公共接地端上。

1、调试静态工作点
表1-5 调试静态工作点Ue=2、0V
接通+12V 电源,调节Rp,使Ue=2、0V,用万用表的直流电压档测量Ub,Ue,Uc,然后断开+12V 电源或关闭电源开关,断开与Rb2相连的开关,用万用电表电阻档测量Rb2值。

记入表1-5。

静态工作点理论计算:
V Ucc Rb Rb b b 312*1000
*601000*201000*20211R U =+=+≈ m V 818.1100
1000711.0711.21Re =+-=≈+-≈Ic Rf Ue Ub Ie ()V Rf Rc Ic Ucc 637.5)10001002400(*00181.012Re 1Uce =++-=++-=
2、测量不同负载下的电压放大倍数。

在放大电路输入端加入频率f=1千赫兹,Ui 约等于10毫伏的正
弦信号ui,同时用示波器观察放大器输出电压uo 波形,在波形不失真的条件下测量下述两种情况下的Uo 值,并用双踪示波器同时观察ui 与uo 的相位关系,记入表1-6。

表1-6 测量不同负载下的电压放大倍数Ue=2、0V Ui=10mV
总结:由表1-6可知,当R L 增大时,Au 减小,同理,可知当R C 增大时,可
知Au 同样减小。

电压放大倍数理论计算:
Ω=++=++=k Ie mV rbe 644.1818
.126*)1001(20026)1(200β 当没有负载: 4.20100*)1001(16442400*1001)1(A =++-=++-=Rf rbe Rc u ββ
当有负载时:2.10100
*)1001(16442400//2400*1001)1(//A =++-=++-=Rf rbe Rl Rc u ββ 3、观察静态工作点对输出波形失真的影响。

置Rc=2、4千欧,Rl=∞,ui=0,调节Rp,使Ue=2、0V,测出Uce 值。

在逐步加大输入信号,使输出电压uo 足够大但不失真。

然后保持输入信号不变,分别增大与减小Rw,使波形出现饱与与截止失真,绘出uo 的波形,并测出失真情况下的Uce 值,解释观察到的就是真波形就是饱与失真还就是截止失真?记入表1-7。

表1-7 观察静态工作点对输出波形失真的影响
0、0142 11、998 截止失真工作在饱与区
2、0 5、542 不失真工作在放大区
2、993
3、145 饱与失真工作在截至区
总结:由表1-7可知,若选取的静态工作点不合适,静会导致放大器产生输出波形的饱与失真或截止失真。

静态工作点过高,可能会产生饱与失真,静态工作点过低,可能会产生截止失真。

4、测量最大不失真输出电压
置Rc=2、4千欧,Rl=2、4千欧,调节输入信号的幅度与电位器Rp,使uo最大且不失真,用示波器与交流毫伏表测量Uop-p及uo值,记入表1-8。

表1-8测量最大不失真输出电压
U i m(mV) U0m(V) U o pp(V)
1、59 1、68 4、704
五、讨论与结论(对实验现象、实验故障及处理方法、实验中存
在的问题等进行分析与讨论,对实验的进一步想法或改进意见。

)
遇到的问题及处理方法:
1、开始检查三极管的时候,打开万用表,怎么弄都没有数字
显示。

最后按下HOLD键才有数字显示。

2、按照要求连接好电路,却发现怎么弄都不能再示波器上显示波形。

最后发现就是电路有问题,没有短路,并且也没有加电源。

经过相关调试,示波器上有的波形处出现。

3、测量Rb2时,万用表上基本没有数字显示,一开始以为就是电阻的问题,用旁边那组的万用表一测量,发现有数字显示,最后才发现就是自己的万用表的量程太小。

课后思考题答案:
1、可以用万用表测量Rb2的电阻,当电路出现截止失真时,Rb2减小,因此Ub减小,Ic减小,因此Uce增大;反之,当电路出现饱与失真时,Rb2真大,因此Ub增大,Ic增大,Uce减小。

2、因为晶体管共发射极放大电路属于音频放大电路,或者叫做低频放大电路,这种电路的频率特性就是对于50HZ-20000HZ之间的频率信号有正常的放大作用。

在这个频带以外的频率不能正常放大。

或者失去放大作用。

1KHZ就是音频的中间频率,用这个频率的信号既代表了信号的主要特点有能使放大器工作在正常范围。

信号大小的选择:在几十毫伏--100毫伏之间。

3、衰减器可以使输入信号在一定的频率范围内变化,而不至于输入信号频率过大或过小利用衰减器可以有效的保持输入信号的稳定。

4、电阻R C、电阻R B、以及直流稳压源V CC的改变都会引起静态工作点的改变。

六、实验原始数据
实验原始记录粘贴处
指导教师:张青
2012年3 月22 日。

相关文档
最新文档