建筑热工学三.ppt
2022建筑热工学建筑保温优秀ppt
的重百量分湿比度和体v积湿VV12度的10换00算0 :
v 1000w
材料受潮后,导热系数显著增大。原因是由于孔 隙中有了水分后,附加了水蒸气扩散的传热量,此外 还增加了毛细孔中的液态水分所传导的热量。
一般情况下,水的导热系数约为,冰的导热系数 约为,都远大于空气的导热系数。
20
n:考虑外表面位置的修正系数。由于计算最小总热阻公式
中统一取当地的室外气温的计算值,这对外墙、屋顶等直接 接触大气的围护结构来说符合实际,但对那些不直接接触室 外空气的结构来说则需要修正。如:顶棚的上部是闷顶空间 ,其温度比室外气温要高一些。见下表
允t 许温差。见表。使用质量要求较高的房间,
约为0.35w/(m2k)。我国北京为0.9w/(m2k)。
2022/1/13
23
围护结构的保温构造
一:绝热材料 二:绝热材料的选择
三、围护结构构造方案的选择
2022/1/13
24
一:绝热材料:
绝热材料:指那些绝热性能较好,即导热系数较小的 材料,通 常把导热系数小于 并能用于绝热工程的材料。
量(W/m2); t——传热时数(h); F——围护结构的总面积(m2)。
由此可看出,在建筑设计中,优化平面形式 和建筑体形、减少外围护结构的总面积是一项 减少能耗的有效措施。
2022/1/13
10
所谓建筑物体形系数,是指建筑物与室外大 气接触的外表面积与其所包围的体积的比值。
在外表面积中,不包括地面和不采暖楼梯间隔 墙和户门的面积。
系数不仅不再降低,还会变大,存在有最佳容重。例
如图9-2。
原因是:孔隙率太大,不仅意味着孔隙的数量增
建筑物理热工学建筑日照与遮阳课件
02
建筑日照原理
日照的基本概念
日照是指太阳光照射 到地面的时间,通常 以小时为单位计算。
日照时数受到地理位 置、季节、气候等因 素的影响。
日照时数和日照质量 是衡量一个地区太阳 辐射能量的重要指标 。
日照的获取与利用
在建筑设计时,应充分考虑日照 的获取与利用,以实现节能、环
保和舒适的目的。
利用计算机模拟软件对建筑进行 日照分析,可以预测建筑在不同 季节、不同时间段的日照情况。Leabharlann 建筑外观的协调性和美观性。
遮阳设施的安装与维护
安装遮阳设施
根据设计要求,正确安装遮阳设 施,确保其稳定性和安全性。
定期检查和维护
定期检查遮阳设施的完好程度, 及时修复损坏部分,清理灰尘和 污垢,以保证其正常运转和使用 效果。
04
建筑物理热工学实践案例
案例一:某住宅楼的日照与遮阳设计
总结词
合理利用日照,降低能耗
热对流
总结词
热对流是指由于物质中不同部分的温度差导致密度差,进而引起物质流动,使热量传递 的过程。
详细描述
热对流主要发生在流体中,如空气、水和油等。当流体的温度不均匀时,密度会发生变 化,产生密度梯度,导致流体的流动。在建筑环境中,热对流可以影响室内温度分布和 通风效果。建筑设计时可以通过合理的气流组织来调节室内环境,例如利用自然通风来
详细描述
某住宅楼在设计时充分考虑了日照的影响,通过合理布局和窗户设计,确保冬季有足够的阳光进入, 夏季则能有效遮挡阳光,减少空调能耗。同时,采用了遮阳设施,如百叶窗、遮阳板等,进一步降低 夏季室内温度,提高居住舒适度。
案例二:某商业大厦的节能设计
总结词
创新技术应用,实现绿色节能
3建筑物理(热工学)_建筑气候
气温的影响因素
第一,到达地面的太阳辐射热量起决定性的作用- 第一,到达地面的太阳辐射热量起决定性的作用-四季 太阳辐射热量起决定性的作用 变化、日变化、随地理纬度的变化。 变化、日变化、随地理纬度的变化。 第二,大气对流作用以最强的方式影响气温- 第二,大气对流作用以最强的方式影响气温-无论是水 以最强的方式影响气温 平方向或垂直方向的空气流动,都会使高低温空气混合, 平方向或垂直方向的空气流动,都会使高低温空气混合, 减少地域间气温的差异。 减少地域间气温的差异。 第三,下垫面性质的影响也很重要-山川、平原、盆地; 第三,下垫面性质的影响也很重要-山川、平原、盆地; 的影响也很重要 草原、森林、沙漠、河流、海洋;砂土、松干土、粘土。 草原、森林、沙漠、河流、海洋;砂土、松干土、粘土。
第三章 建筑气候
气候: 气候:
大气多年(几十或几百年)的平均状态(气温、 大气多年(几十或几百年)的平均状态(气温、 气压、湿度、 降水) 气压、湿度、风、降水) 形成因素:太阳辐射、大气环流、 形成因素:太阳辐射、大气环流、下垫面性质等
建筑气候: 建筑气候:
建筑~气候(相互作用和影响关系) 建筑~气候(相互作用和影响关系) 大气候背景下应用于建筑领域的局部微气候 营造适应当地气候特征的建筑物
建筑对争取日照的需求
生物体新陈代谢(幼儿活动室、蔬菜大棚) 生物体新陈代谢(幼儿活动室、蔬菜大棚) 紫外线预防治疗疾病(重大卫生意义)(病房) 紫外线预防治疗疾病(重大卫生意义)(病房) )(病房 红外线和可见光在冬季照射进入室内, 红外线和可见光在冬季照射进入室内,取暖和干燥 降低采暖能耗) (降低采暖能耗) 增强建筑物的立体艺术感 采光照明
1− Pm ISH = 0.5I0 sin hs 1− 1−1.4ln P
建筑物理 建筑热工学(三)
第一节、稳定传热之五
——封闭空气间层的热阻 2、减少辐射换热量的方法: 1、将空气间层布置在围护结构的冷侧,降低间层的平均温度。
(效果不够显著)
2、在间层壁面涂贴辐射系数小的反射材料(铝箔等) 一般建筑材料的辐射系数: 4~4.5 J/(m2hk4) 例如:铝的辐射系数 0.25~0.96 J/(m2hk4) 4——间层内有一表面贴有铝箔 5——间层内两表面都贴有铝箔 增效不显著!故以一个表面贴反 射材料为宜
Ri
1iΒιβλιοθήκη 内表面热转移阻 RiRI (m2•K)/W) 0.11
有肋状突出物的顶棚(h/s>0.3)
7.6
0.13
第一节、稳定传热之二
——平壁的稳定传热
二、平壁材料层导热阶段
i e q d
ti
w/m2 ℃
θi
λ d
θe
te
q
——通过平壁的导热量 ——平壁外表面的温度
e
三、外表面散热阶段
*当热面在上方时,间层内可视为不存在对流。 *当热面在下方时,热气流的上升和冷气流的
下沉相互交替,形成自然对流,此时自然对流 换热最强。
二、不同传热方式的传热量比较:
通过间层的辐射换热量与间层表面 材料的辐射性能和间层的平均温度高低 有关。1—纯导热换热量;2—对流换热 量;3—总换热量
1、结论:普通空气间层的传热量 中辐射换热占很大比例,要提高 空气间层的热阻须减少辐射传热 量。
ti
θi λ d
te
ti
——室内空气及其它表面的温度 ——围护结构内表面的温度
i
第一节、稳定传热之二
——平壁的稳定传热
一、内表面吸热阶段
(ti i ) (ti i ) qi 1 i Ri
建筑物理(热工学)_建筑防热PPT演示课件
层内气流组织方式
26
通风隔热屋顶设计原则
a.屋面外表面应刷白或浅色; b.通风空气间层的高度在 200-240mm 之间为宜; c.应在通风屋面的进出口间造成一个压差,以增加间层内的空气 流动速度; d.太长的通风间层要避免; e.通风间层内空气流动方向应与该建筑物所在地的夏季主导风向 一致,以获得较大的通风量; f.当通风屋面带有保温材料时,应该将保温材料布置在下层屋面; g.通风屋面这重结构不适用于冬季时间长,夏季时间短的地区。
ae
(
I
ae
s
te
e )
ae (tsa e )
将室外空气温度和太阳辐射的作用综合起来, 等效于室外综合温度的作用:
tsa
I s
ae
te
太阳辐射当量温度
13
室外综合温度
广州市某建筑平屋顶的表面状况实测值;
太阳辐射当量温度所占比例相当大;
室外综合温度以24小时为周期波动。
3
室内热环境的影响因素
通过屋顶、墙、地 面和窗的导热
室内各表面间 辐射换热
通过敞开的门和 窗的对流换热
室内的内热源 (电器、人体)
太阳辐射透过玻璃被 室内墙面和地面吸收
4
建筑保温的途径
建筑体形; 建筑物朝向和间距; 防风; 防潮; 围护结构保温;
5
建筑体形
6
建筑体形
体形系数:建筑物与室外大 气接触的外表面积与其所包围 的体积的比值。 体形系数越大,散热量越大。 一般控制在0.3以下。 体形系数与建筑物横截面形 状和层数有关。
9
建筑防热的途径
围护结构隔热; 窗口遮阳; 自然通风;
10
建筑热工PPT课件
0.20 0.10
2
第三章 建筑保温
• 建筑保温的目的和意义
➢ 名词解释
• 采暖期、采暖地区 采暖期:日均气温≤5℃ 采暖地区:一年内日均气温≤5℃的天数超过90天的地区, 一般为秦岭-淮河一线以北地区
• 采暖度日数(Heating Degree Day, HDD) • 体形系数 • 换气次数(Air Change Rate, ACR) • 窗墙面积比
整个采暖期的能耗QH:
QH A0 qH Z 24/1000
2021年6月6日星期日
12
第12页/共47页第三章 建筑保温来自• 3.2 建筑保温设计
➢ 建筑保温的最低要求及最小总热阻的计算
• 最小总热阻R0,min的计算
R 0,min =
(ti -te ) n [t]
Ri
• 最小总热阻R0,min计算中应注意的问题 ✓ 室外计算温度的取值,根据热惰性指标而定 ✓ 具体的材料的导热系数及蓄热系数应根据构造、施工
室内计算温度每升高1℃,采暖能耗增加多少?(以北京为例)
北京(te=-1.6 ℃) 16℃ 17℃ 18℃ 19℃ 20℃
耗热量指标 20.6 22.0 23.4 24.8 26.1
百分数(%) 100 106.7 113.5 120.1 126.9
2021年6月6日星期日
21
第21页/共47页
第三章 建筑保温
19
第19页/共47页
第三章 建筑保温
• 3.2 建筑保温设计>>节能建筑的设计指标及计算
➢ 节能建筑的设计指标及计算
• 采暖能耗QH与采暖度日数的关系 QH A0 qH Z 24/1000 = A0 (qHT qINF qIH ) Z 24/1000
建筑物理复习(建筑热工学)
盛年不重来,一日难再晨。
及时宜自勉,岁月不待人。
第一篇 建筑热工学第1章 建筑热工学基础知识1.室内热环境构成要素:室内空气温度、空气湿度、气流速度和环境辐射温度构成。
2.人体的热舒适①热舒适的必要条件:人体内产生的热量=向环境散发的热量。
m e r cq q q q q ∆=-±±m q ——人体新陈代谢产热量e q ——人体蒸发散热量r q ——人体与环境辐射换热量 c q ——人体与环境对流换热量②充分条件:所谓按正常比例散热,指的是对流换热约占总散热量的25-30% ,辐射散热约为45-50%,呼吸和无感觉蒸发散热约占 25-30%。
处于舒适状况的热平衡,可称之为“正常热平衡”。
(注意与“负热平衡区分”)③影响人体热舒适感觉的因素:1.温度;2.湿度;3.速度;4.平均辐射温度;5.人体新陈代谢产热率;6.人体衣着状况。
3.湿空气的物理性质①湿空气组成:干空气+水蒸气=湿空气②水蒸气分压力:指一定温度下湿空气中水蒸气部分所产生的压力。
⑴未饱和湿空气的总压力:w d P P P=+w P ——湿空气的总压力(Pa ) d P ——干空气的分压力(Pa ) P ——水蒸气的分压力(Pa )⑵饱和状态湿空气中水蒸气分压力:s P ——饱和水蒸气分压力注:标准大气压下,s P 随着温度的升高而变大(见本篇附录2)。
表明在一定的大气压下,湿空气温度越高,其一定容积中所能容纳的水蒸气越少,因而水蒸气呈现出的压力越大。
③空气湿度:表明空气的干湿程度,有绝对湿度和相对湿度两种不同的表示方法。
⑴绝对湿度:单位体积空气所含水蒸气的重量,用f 表示(g/m 3)。
饱和状态下的绝对湿度则用饱和水蒸气量max f (g/m 3)表示。
⑵相对湿度:一定温度,一定大气压力下,湿空气的绝对湿度f ,与同温同压下饱和水蒸气量max f 的百分比:max100%ff ϕ=⨯⑶同一温度(T 相对湿度又可表示为空气中100%sPP ϕ=⨯P ——空气的实际水蒸气分压力 (Pa s P ——同温下的饱和水蒸气分压力 (Pa )。
03热工学基本知识
λ值与材料的容重、温度和湿度相关:1、一般,容重小, λ 值也小,但容重降低到一定程度以后,继续降低容重, λ值 反而增大 ;2、湿度越大, λ值越大;3、金属的λ值随温度 增加而减少,非金属的λ值随温度的降低而增加。
材料的导热系数及其影响因素:
(2)材料干密度的影响 干密度:材料的密实程度。 最佳干密度:导热系数最小时的干
黑体的全辐射力:黑体不但能将 一切波长的外来辐射全部吸
收,而且能向外发射一切波长的辐射。单位时间内在物体单 位表面积上辐射的波长从0~ ∞范围的总能量,称为黑体的全 辐射力。 斯蒂芬—波尔兹曼定律:
Eb
Cb
Tb 100
4
C b5.68 W /(M 2•K 2) 黑体的辐射系数
特点:辐射换热时有能量转化:热能 --辐射能- 热能
参与换热的物体无须接触。
一切物体,不论温度高低都在不停地对外辐射电磁波,辐 射换热是两物体互相辐射的结果。
高温
低温
辐射能的吸收、反射和透射
物体对外来射线的反应遵循与可见光相同的规律。
设有能量为I0 的热射线投射到物体表面,则其中
Ir 被反射,Ia 被吸收,It 可能透过物体。
对流换热计算公式:
qc ac(t)
对流换热系数 a c
对流换热系数包含了影响对流换热强度的一切因素,因此 不是一个固定不变的常数,而是一个取决于许多因素的物 理量。
建筑维护结构的对流换热的传热量:
(1)自然对流换热:因温差而引起的对流换热。
对流换热系数: 当平壁处于垂直状态时:
c 24t
当平壁处于水平状态时:
物理意义:材料单位厚 度的温度差为1k时,在 1h内通过1m2表面积的 热量。
热工学课件第三章
s c p
T1
T2
dT p R ln 2 T p1
3-3 理想气体的热力性质
从:
s f (T , v) f ( p, v) f (T , p)
s
p2 v2 c p cv dp dv v1 v p
p1
3-3 理想气体的热力性质
如果 ΔT 比较小, cp, cv 取固定值, 则:
qr T2 dT v2 T2 dT p2 s cv R ln c p R ln T1 T T v1 T1 T p1
3-3 理想气体的热力性质
例:已知某理想气体的定容比热Cv=a+bT,其中a,b为常 数,求内能、焓和熵的计算式。
du cv dT
dh q p c p dT
理想气体混合物可作为R混和M混的“某种”理想气体。
3-4 理想混合气体
2.理想混合气体的成分
质量分数
体积分数
摩尔分数
mi i m m mi
Vi i V V Vi
i
1
i
1
x
ni xi n n ni
i
1
3-4 理想混合气体
3.三种分数的联系
Mi R i i i M Ri
i xi
4. 平均分子质量
M M i xi M ii
i 1 i 1 n n
3-4 理想混合气体
5.道尔顿分压定理Dalton’s law
分压力——组分气体处在与混合气体相同容积、相同
温度单独对壁面的作用力。
Gas 1
Gas 2 +
3-3 理想气体的热力性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ri
1
i
经验数据:
表面特性
墙面、地面、表面平整或有肋状 突出物的顶棚(h/s0.3) 有肋状突出物的顶棚(h/s>0.3)
内表面热转移阻 Ri
I W/(m2•K) 8.7
RI (m2•K)/W) 0.11
7.6
0.13
第一节、稳定传热之二
——平壁的稳定传热
二、平壁材料层导热阶段
q
i e d
第一篇、建筑热工学
第二章、 建筑围护结构的 传热原理及计算
建筑科学与工程学院 栾 蓉
第一节、稳定传热之一
——一种最简单和最基本的传热方式
恒定的热作用
ti
te
——通常用于采暖房
间冬季条件下的保温
设计
周期热作用
ti
te
——用于空调房间的 隔热设计
ti
——用于自然通风房
间的夏季隔热设计
te
第一节、稳定传热之二
,且θ不随时间变化
e
2、3 表示层间接触面的温度。
整个平壁看作三个单层壁组成,分 别计算通过每一层的热流强度。
tiθi
θe te
λ1 λ2 λ3
d1
d2
d3
θi θ2 θ3 θe λ1 λ2 λ3 d1 d2 d3
第一节、稳定传热之四
——材料层热阻的计算分析
q1
1
d1
( i
2 )
设: ti > te
2、同一材质的平壁内部各界面温度分布呈直线
t 关系。即温度随距离的变化规律为直线。
注:
i
te
建筑热工中的“平壁”不仅是指平直的墙体,还包括
地板、平屋顶及曲率半径较大的穹顶、拱顶等结构。 稳定传热是指我们所研究的物体或者体系,无论整体
还是局部都保持与时间无关的恒定温度状态。通常指采 暖房屋冬季条件下的保温设计。
第一节、稳定传热之二
——平壁的稳定传热
传热过程经历以下三个阶段: 一、内表面吸热阶段
ti>θi ,内表面以对流和辐射的方式吸热
qi qic qir (ic ir )(ti i )
qi i (ti i )
qi ——平壁内表面吸热量w/m2
qic
——室内空气以对流形式传给平壁内表面 的热量
tiθi
θe te
q ——通过平壁的导热量 w/m2 e ——平壁外表面的温度 ℃
λd
三、外表面散热阶段
θe >te ,外表面把热量以对流和辐射的方式传给室外的空气
qe e (e te )
e ec er
qe ——外表面的散热量, w/m2 e ——外表面的热转移系数, w/(m2K)
Ⅲ等部分。分别计算各部分的热阻RⅠ、RⅡ 、RⅢ
设组合壁的平均热阻为 : R
R
F
R
F
F F R
FN FN
........ RN
.......
(
Ri
Re)
其中:F是各部分在垂直热流方向的表面积m2
注: ——修正系数,
1、当围护结构有两种材料组成,1 为较大值,2为较小 值,按2 / 1取值
q
ti te R0
K 0(ti
te0
1
i
d
1
e
K0——平壁的传热系数 物理含义:当 ti-te=1 ℃ 时,单位时间内通过平壁单位表 面积的传热量 w/(m2k)
第一节、稳定传热之四
——材料层热阻的计算分析
材料层的热阻
常见的围护结构有:单一材料层、组合材料层和封闭空气间层等
2、当围护结构有三种材料组成, 1 为较大值, 按比值 (2 +3)/ 21 取值
3、若围护结构存在圆孔时,应先将圆孔折算成同等面积 的方孔。
对于n层多壁层的导热计算公式可依次类推为:
1
n1
n
Rj
式中每一项 Rj 代表第J层的热阻, n1 为
j 1
第N层外表面的温度。
结论:
多层壁的总热阻等于各层热阻之和
12 3 4
n
第一节、稳定传热之四
——材料层热阻的计算分析
2、经过组合材料层平壁的导热
如图,平行于热流方向沿材料层中不同材料的界面将其分隔为Ⅰ、Ⅱ、
q2
2
d2
( 2
3)
q3
3
d3
( 3
e )
稳定导热条件下: q q1 q2 q3 否则θ会随时间变化!
q
i e
i e
d1 1 d2 2 d3 3 R1 R2 R3
其中:R1 、R2 、 R3分别为第一、二、三层的热阻 q
夏季 外墙和屋顶
19.0 0.05
第一节、稳定传热之三
——总热阻和总传热系数
综上所述,对于一维稳定传热过程有:q qi q qe
上式 q
ti te
ti te ti te
联立:
1
i
d
1
e
Ri R Re
R0
Q ——通过平壁的传热量 w/m2
R0——平壁的总传热阻,表示热量丛平壁一侧传到另一 侧是所受到的总阻力 m2k/w
qir
——室内其它表面以辐射形式传给平壁内 表面的热量 w/m2
ti θi
te
i ——平壁内表面的热转移系数 w/(m2K)
ti ——室内空气及其它表面的温度
λd
i ——围护结构内表面的温度
第一节、稳定传热之二
一、内表面吸热阶段
qi
(ti i ) 1 i
(ti
i )
Ri
——平壁的稳定传热
(一)单一材料层的热阻 R0 Ri R Re
(二)组合材料层的热阻
组合壁:在建筑工程中,维护结构内部个别材料层常出现两
种以上材料组成的组合材料层。
第一节、稳定传热之四
——材料层热阻的计算分析
1、经过多层平壁的导热
凡是由几层不同材料组成的平壁称为“多层壁”,例如双面粉刷的砖砌体。
设 i
——平壁的稳定传热
温度场不随时间变化的传热过程——稳定传热过程
传热过程中,室内外热环境通过围护结构而进行的热量交换,包含导 热、对流以及辐射换热三种方式。
当围护结构受到恒定热作用时,围护结构内部的温度分布和通过围护结 构的传热量会处于一种不随时间而变化的稳定传热状态。
一维稳定传热特征:
1、通过平壁的热流强度q处处相等。即对平壁内 任一截面,其流进和流出的热量相等;
第一节、稳定传热之二
三、外表面散热阶段
——平壁的稳定传热
季节
表面特征
e Re
冬季 外墙、屋顶、与室外空气直接接触的表面 23.0 0.04
与室外空气相通的不采暖地下室上面楼板 17.0 0.06
闷顶、外墙上有窗不采暖地下室上面楼板 12.0 0.08
外墙上无窗的不采暖地下室上面的楼板 6.0 0.17