电压并联负反馈放大电路实验报告
负反馈放大电路实验报告

一、实验目的加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。
二、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、万用表5、晶体三极管3DG6×2(β=50~100)或9011×2 电阻器、电容器若干。
三、实验原理负反馈放大器有四种组态,即电压串联、电压并联、电流串联、电流并联。
本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。
1、图3-1为带有负反馈的两级阻容耦合放大电路,在电路中通过f R 把输出电压O U 引回到输入端,加在晶体管T1的发射极上,在发射极电阻1F R 上形成反馈电压f U 。
根据反馈的判断法可知,它属于电压串联负反馈。
带有电压串联负反馈的两级阻容耦合放大器主要性能指标如下①闭环电压放大倍数:u u uuf F A 1A A +=其中I O u U U A /=——基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数。
u u F A +1——反馈深度,它的大小决定了负反馈对放大器性能改善的程度。
②反馈系数:F1f F1u R R R F +=③输入电阻:i u u if R F A R )1(+=,i R ——基本放大器的输入电阻④输出电阻:uuO Oof F A 1R R +=,of R :基本放大器的输出电阻 uo A :基本放大器∞=L R 时的电压放大倍数 ①在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令0=O U ,此时f R 相当于并联在1F R 上。
②在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T1管的射极)开路,此时)1F f R R +(相当于并接在输出端。
可近似认为f R 并接在输出端。
根据上述规律,就可得到所要求的如图3-2所示的基本放大器。
四、实验步骤1、测量静态工作点数模实验箱按图3-3连接实验电路,模拟电子技术实验箱按图3-4连接实验电 路,首先取 适量,频率为1KHz 左右,调节电位器使放大器的输出不出现失真,然后使 (即断开信号源的输出连接线),用万用表直流电压档分别测量第一级、第二级的静态工作点,记入表3-1。
负反馈调节电路实验报告

一、实验目的1. 了解负反馈调节电路的基本原理和结构;2. 掌握负反馈调节电路的调试方法;3. 分析负反馈调节电路的性能指标,如稳定性、带宽、灵敏度等;4. 比较不同类型负反馈调节电路的特点和应用。
二、实验原理负反馈调节电路是一种广泛应用于自动控制系统和信号处理的电路。
其基本原理是将输出信号的一部分或全部反馈到输入端,与输入信号进行比较,通过调节反馈信号的幅度和相位,使输出信号趋于稳定。
负反馈调节电路分为四种类型:电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈。
本实验主要研究电压串联负反馈调节电路。
三、实验仪器与设备1. 实验平台:示波器、信号发生器、数字多用表、稳压电源、放大器模块等;2. 实验电路:负反馈调节电路实验板;3. 实验软件:数据采集软件、仿真软件等。
四、实验内容1. 电压串联负反馈调节电路的搭建与调试(1)根据实验板提供的电路图,搭建电压串联负反馈调节电路;(2)使用数字多用表测量电路中的各个电阻、电容等元件的参数;(3)使用示波器观察电路的输入、输出波形,并记录相关数据;(4)根据实验数据,调整电路中的反馈电阻,观察输出波形的变化,分析反馈深度对电路性能的影响。
2. 负反馈调节电路性能指标的测量与分析(1)测量电路的带宽:调整信号发生器的频率,观察输出波形的变化,记录带宽;(2)测量电路的稳定性:通过改变输入信号幅度,观察输出波形的变化,分析电路的稳定性;(3)测量电路的灵敏度:调整输入信号幅度,观察输出波形的变化,分析电路的灵敏度;(4)分析不同类型负反馈调节电路的特点和应用。
五、实验结果与分析1. 电压串联负反馈调节电路的搭建与调试根据实验板提供的电路图,成功搭建了电压串联负反馈调节电路。
通过调整反馈电阻,观察到了输出波形的变化,证实了负反馈对电路性能的影响。
2. 负反馈调节电路性能指标的测量与分析(1)带宽:通过调整信号发生器的频率,测量了电路的带宽,发现带宽随着反馈深度的增加而增加;(2)稳定性:通过改变输入信号幅度,观察到了输出波形的变化,证实了电路的稳定性;(3)灵敏度:通过调整输入信号幅度,观察到了输出波形的变化,分析了电路的灵敏度;(4)不同类型负反馈调节电路的特点和应用:通过对比分析,了解了不同类型负反馈调节电路的特点和应用。
负反馈放大电路实验报告

一、实验目的1.了解N 沟道结型场效应管的特性和工作原理;2.熟悉两级放大电路的设计和调试方法;3.理解负反馈对放大电路性能的影响。
二,理论估计电压并联负反馈放大电路方框图如图1 所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ 。
两级放大电路的参考电路如图2 所示。
图中R g3 选择910kΩ ,R g1、R g2 应大于100k Ω ;C1~C3 容量为10μ F,C e 容量为47μ F。
考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f,见图2,理由详见“五附录-2”。
b. 静态工作点的调试第一级电路:调整电阻参数,使得静态工作点满足:I DQ 约为2mA,U GDQ < - 4V。
记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。
第二级电路:通过调节R b2,使得静态工作点满足:I CQ 约为2mA,U CEQ = 2~3V。
记录电路参数及静态工作点的相关数据(I CQ,U CEQ)。
设场效应管栅极电位为,则,即同时,,又因为由此得到.其中,应该尽量大,参考器件盒中的电阻值,故取取, 要让I DQ 为2mA,对JEFF管进行直流扫描分析,得对表格进行放大由游标数值读出当时,此时,根据器件盒内的电阻阻值可取.此时,A点电位(即两端电压)两端电压.对于第二级电路,当时,由于故根据器件盒子里的电阻阻值,可以选择开环动态参数的估算由JFET 2N5486的转移特性曲线可知,可得时第一级输入电阻90.90.,第二级输入电阻 2.22.第一级输出电阻第一级电压放大倍数第二级输出电阻.第二级电压放大倍数 1电路的电压放大倍数输入电阻.输出电阻闭环参数的估算.又因为,所以三、实验内容1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。
(1)静态和动态参数要求✓ 放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V , 晶体管的管压降U CEQ = 2~3V ;✓ 开环时,两级放大电路的输入电阻约为100k Ω ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 100;✓ 闭环电压放大倍数为 10so sf -≈=U U A u 。
负反馈放大电路实验报告

负反馈放大电路实验报告一、实验目的。
本实验旨在通过搭建和测试负反馈放大电路,加深对负反馈原理的理解,掌握负反馈放大电路的基本特性和工作原理。
二、实验原理。
负反馈放大电路是在放大器的输出端和输入端之间加入反馈电路,使得输出信号的一部分反馈到输入端,从而抑制放大器的增益,降低失真,提高稳定性和线性度。
三、实验器材。
1. 信号发生器。
2. 示波器。
3. 电阻、电容。
4. 电压表。
5. 万用表。
6. 负反馈放大电路实验箱。
四、实验步骤。
1. 按照实验箱上的示意图连接负反馈放大电路。
2. 调节信号发生器的频率和幅度,观察输出端的波形变化,并用示波器观察输入输出波形的相位差。
3. 测量输入端和输出端的电压、电流,计算增益和带宽。
4. 调节反馈电路的参数,观察输出波形的变化。
五、实验结果与分析。
通过实验我们观察到,在负反馈放大电路中,输出波形的失真明显降低,相位差减小,增益稳定性提高。
当调节反馈电路的参数时,输出波形的变化也相对灵活,这说明负反馈放大电路具有较好的调节性能。
六、实验结论。
负反馈放大电路可以有效地降低失真,提高稳定性和线性度,是一种常用的放大电路结构。
掌握负反馈放大电路的基本特性和工作原理,对于电子工程技术人员来说具有重要的意义。
七、实验总结。
通过本次实验,我们深入了解了负反馈放大电路的工作原理和特性,并通过实际操作加深了对其的理解。
在今后的学习和工作中,我们将更加熟练地运用负反馈放大电路,为电子技术的发展贡献自己的力量。
八、参考文献。
1. 《电子技术基础》,XXX,XXX出版社,200X年。
2. 《电子电路设计与仿真》,XXX,XXX出版社,200X年。
以上为负反馈放大电路实验报告的内容,希望对大家有所帮助。
负反馈放大电路实验报告

负反馈放大电路实验报告3)闭环电压放大倍数为10so sf-≈=U U Au 。
(2)参考电路1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。
图1 电压并联负反馈放大电路方框图2)两级放大电路的参考电路如图2所示。
图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。
考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。
图2 两级放大电路实验时也可以采用其它电路形式构成两级放大电路。
3.3k Ω(3)实验方法与步骤1)两级放大电路的调试a. 电路图:(具体参数已标明)¸b. 静态工作点的调试实验方法:用数字万用表进行测量相应的静态工作点,基本的直流电路原理。
第一级电路:调整电阻参数, 4.2sR k≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。
记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。
实验中,静态工作点调整,实际4sR k=Ω第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。
记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。
实验中,静态工作点调整,实际241b R k =Ωc. 动态参数的调试输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数so11U U A u =、so U U Au=、输入电阻R i 和输出电阻R o 。
电压放大倍数:(直接用示波器测量输入输出电压幅值)o1UsUoU1u A输入电阻: 测试电路:¸开关闭合、打开,分别测输出电压1oV和2oV,代入表达式:2112oio oVR RV V=-输出电阻:测试电路:¸记录此时的输出:0.79V olV=1.57(1)=32.960.79o o L o V R R k V '=-⨯Ω=Ω(-1)k2)两级放大电路闭环测试在上述两级放大电路中,引入电压并联负反馈。
反馈放大电路设计实验报告模版

深圳大学实验报告课程名称:模拟电路实验名称:负反馈放大电路设计学院:信息工程学院专业:信息工程班级:组号:指导教师:田明报告人:学号:实验地点N102 实验时间:实验报告提交时间:教务处制一.实验名称:负反馈放大电路设计二.实验目的:加深对负反馈放大电路原理的理解.学习集成运算反馈放大电路、晶体管反馈放大电路的设计方法. 掌握集成运算反馈放大电路、多级晶体管反馈放大电路的安装调试及测试方法.三.实验仪器:双踪示波器一台/组信号发生器一台/组直流稳压电源一台/组万用表一台/组四.实验容:设计一个多级晶体管负反馈放大电路或集成运算负反馈放大电路,性能要求如下:闭环电压放大倍:30---120输入信号频率围:1KHZ-------10KHZ.电压输出幅度≥1.5V输出电阻≤3KΩ五.实验步骤:1.选择负反馈放大电路的类型,一般有晶体管负反馈放大电路、集成运算负反馈放大电路.为满足上述放大倍数的要求,晶体管负反馈放大电路最少需要二级放大,其连接形式有直接耦合和阻容耦合,阻容耦合可以消除放大器各级静态工作点之间的影响,本设计采用两者相结合的方式;对于各级放大器,其组态有多种多样,有共发射极,共基极和共集电极。
本设计可以采用共发射极-共基极-共集电极放大电路。
对于负反馈形式,有电压串联、电压并联、电流串联、电流并联。
本设计采用电压并联负反馈形式。
2.设计电路,画出电路图.下面是电源输入电路,通过并联两个电容的滤波电路形式,以效消除干扰,保证电路稳定工作,否则容易产生自激振荡。
整体原理图如下:从上图可以看出来,整个电路由三级放大和一路负反馈回路构成,第一级电路是NPN管构成的共发射极电路,通过直接耦合的方式输出给第二级的共基极电路,因此两级直接的静态工作点会相互影响。
第二级放大电路通过电容输出给第三级。
第三级放大电路是共集电极电路,射极跟随输出到负载。
整体参数设计:假设输入电压峰峰值为50mv,输出电压峰峰值不小于1.5V,电压放大倍数>30 倍。
实验四 负反馈放大器

实验四 负反馈放大器一. 实验目的1.加深理解负反馈对放大器性能的影响。
2.学会测量放大器的输入电阻、输出电阻以及电压放大倍数。
二. 预习要求1.复习教科书中有关负反馈的内容,负反馈放大器的工作原理。
2.掌握输入、输出电阻的测量方法、测量步骤。
三. 实验原理放大器加入负反馈后,由于反馈信号是削弱输入信号的,结果将使放大倍数降低,但却提高了放大倍数的稳定性、扩展了通频带、减小了非线性失真、并能抑制干扰和噪声,变换放大器的输入和输出电阻等。
1.负反馈对放大器放大倍数的影响 负反馈放大器由基本放大器和反馈网络组成, 如图1所示。
图中的X 表示信号,它即可代表电压又可 代表电流,箭头表示信号传输的方向。
反馈网络 图1 负反馈放大器的组成框图从输出信号o X 中取出反馈信号f X ,使f X 与外加输入信号i X 相叠加,得到净输入信号di X 。
对于负反馈来说: di X = iX -f X (1) 上式中,i X 与f X 的相位相同,故di X < iX 。
从图中可以看出,基本放大器(无反馈时)的放大倍数A(开环放大倍数)和反馈网络的反馈系数F 分别为: dio X X A= (2) ofXX F= (3)反馈放大器的放大倍数fA (闭环放大倍数)为: io f X X A = (4) 联立求解式(1)、(2)、(3)、(4)便得到闭环放大倍数的一般表达式。
F AA A f +=1 (5) A是在无反馈时,需考虑负载电阻R L 和反馈网络的负载作用时基本放大器的放大倍数。
从式(5)可知,加入负反馈后,放大器的放大倍数减小到开环放大倍数的1/(1+A F )倍。
(1+AF )称为反馈深度。
当A F >>1,称为深度负反馈,此时: FA f 1≈= 放大器的放大倍数只由反馈系数F决定,与晶体管的参数无关。
2. 负反馈的基本类型根据反馈网络在放大器输出端的取样信号是电压还是电流,负反馈可分为电压负反馈 和电流负反馈,根据反馈信号在放大器的输入端与输入信号是串联还是并联,负反馈又可分为串联负反馈和并联负反馈。
实验三--负反馈放大电路的研究(1)

实验三 负反馈放大器电路的研究一. 实验目的1.加深理解负反馈对放大器性能的影响。
2.学会测量放大器的输入电阻、输出电阻以及电压放大倍数。
二、实验设备与器件名称数量函数信号发生器 1示波器 1万用表 1直流稳压电源 1741/LM324 2电阻若干三. 实验原理放大器加入负反馈后,由于反馈信号是削弱输入信号的,结果将使放大倍数降低,但却提高了放大倍数的稳定性、扩展了通频带、减小了非线性失真、并能抑制干扰和噪声,变换放大器的输入和输出电阻等。
1、把输出信号的一部分或全部通过一定的方式引回到输入端的过程称为反馈。
反馈放大电路由基本放大电路和反馈网络组成,其基本关系式为Af=A/(1+AF)。
判断一个电路有无反馈,只要看它有无反馈网络。
反馈网络指将输出回路与输入回路联系起来的电路,构成反馈网络的元件称为反馈元件。
反馈有正、负之分,可采用瞬时极性法加以判断:先假设输入信号的瞬时极性,然后顺着信号传输方向逐步推出有关量的瞬时极性,最后得到反馈信号的瞬时极性,若反馈信号为削弱净输入信号的,则为负反馈,若为加强净输入信号的,则为正反馈。
反馈还有直流反馈和交流反馈之分。
若反馈电路中参与反馈的各个电量均为直流量,则称为直流反馈,直流负反馈影响放大电路的直流性能,常用以稳定静态工作点。
若参与反馈的各个电量均为交流量,则称为交流反馈,交流负反馈用来改善放大电路的交流性能。
2、负反馈放大电路有四种基本类型:电压串联负反馈、电流串联负反馈、电压并联负反馈和电流并联负反馈。
反馈信号取样于输出电压的,称电压反馈,取样于电流的,则称电流反馈。
若反馈网络与信号源、基本放大电路串联连接,则称为串联反馈,其反馈信号为uf,比较式为uid=uI-uf,此时信号源内阻越小,反馈效果越好;若反馈网络与信号源、基本放大电路并联连接,则称为并联反馈,其反馈信号为if,比较式为Iid=iI-if,此时信号源内阻越大,反馈效果越好。
3、负反馈放大电路性能的改善与反馈深度(1+AF)的大小有关,其值越大,性能改善越显著。
实验三负反馈放大电路

实验三 负反馈放大电路
一、实验目的
1、研究负反馈对放大器性能的影响。
2、掌握反馈放大器性能的测试方法。
二、实验原理
反馈在电子技术中得到广泛应用。所谓反馈就是将放大器的输出信号(电压或电流)的一部分或全部,通过适当的电路(反馈网络)送回到放大电路的输入回路,使放大器获得某些性能的改善。在电子技术中,对反馈来说,有正反馈和负反馈两类。但如何判断电路的反馈是属哪一类呢?可以采用瞬时极性法。先假定输入信号处于某一个瞬时极性,然后逐级推出电路其他有关各点瞬时信号极性情况,最后判断反馈到输入端信号的瞬时极性是增强还是削弱了原来的输入信号。如果反馈回来的信号增强了原输入信号则为正反馈。相反,削弱了输入信号就是负反馈。
559
闭环
∞
1
29.9
29.9
46.6
1.5K
1
29
29
Multisim仿真:
软件版本号:Multisim 14.2
三极管型号:2N1711
仿真步骤:
(1)开环电路
在Multisim中选择元器件,搭建图1所示电路,暂不接入反馈信号Rf与Cf,按照图1修改元器件参数,直流电压源为+12V。
选择交流电压源V1,频率设为10KHz,从R1处输入信号。在Vi处放置电压探针,调节V1幅值,直至Vi显示电压有效值为1mV.
图8反馈接入基极(仿真)
(4)总结反馈对失真改善的特点。
特点:引入电压串联负反馈后,电路在采集原始信号时其真度提高,与上一级电路的衔接性增强,可改善波形失真。对于同一放大电路,若引入负反馈,当输出波形刚出现失真时,对应的输入电压将远大于无负反馈时刚出现失真所对应的输入电压。
3.测放大器频率特性
负反馈放大电路设计实验报告

负反馈放大电路设计实验报告无07 李杭 2010011147一.实验目的(1)通过实验,学习并初步掌握负反馈放大电路的设计及电路安装、调试方法。
(2)学习用CAD 工具PSpice (或EWB )设计较复杂电路的方法。
(3)深入理解负反馈对放大电路性能的影响。
(4)巩固放大电路主要性能指标的测度方法。
二.实验任务按实验室给定的晶体管型号、参数以及电阻、电容系列值,设计一个负反馈电压放大电 路。
其输入、输出采用电容耦合。
设负载电阻2.2 R L = k Ω ,信号源内阻50 R S = Ω。
主要性能要求如下:vf i o A 40(10%)10R 15k R 10010,?1L H f Hz f MHz =±≥Ω≤Ω≤ ≥,反馈深度不低于,频率响应。
三.实验原理(1)负反馈的类型根据输入端基本放大电路和反馈网络的连接方式有并联和串联2 种,输出端取样方式 有电压取样和电流取样2 种,所以负反馈放大电路有4 种类型,即:电压串联负反馈、电 压并联负反馈、电流串联负反馈、电流并联负反馈。
(2)负反馈对放大电路性能的影响①负反馈降低增益 ②负反馈提高增益稳定性 ③负反馈影响输入输出电阻④负反馈展宽频带⑤负反馈改善非线性失真(3)消除自激的方法①加入补偿电容。
缺点:对放大电路的频率响应的影响很大。
只是要想实现放大电路的稳定,必然要牺牲一部分频带的指标。
②在射极跟随器的基极串入电阻抵消负阻效应。
对放大电路的频率特性有影响。
判断是否是由于负阻效应引起的振荡可以把示波器的探头的衰减器从´1档变为´10档,如果振荡减弱即是由于负阻引起的。
③电路要有良好的接地,尽量加粗接地线,消除干扰信号通过地线引起的影响。
这个方法只对设计印刷电路板有指导作用。
④插入电源去耦电路,抵消反馈的影响。
这种方法是最有效的,且是对放大电路的性能指标影响最小的。
⑤消除外界干扰。
如果前面的措施都解决不了的时候,就要考虑振荡的根源不是出自于自身,而是由外界传入的。
电压串联负反馈电路实验报告

竭诚为您提供优质文档/双击可除电压串联负反馈电路实验报告篇一:负反馈电路实验报告一.实验目的加深理解放大电路中引入负反馈的方法和负反馈对放大器各项指标的影响。
二.实验原理负反馈在电子电路中的作用:改善放大器的动态指标,如稳定放大倍数,改变输入输出电阻,减小非线性失真和展宽通频带,但同时也会使放大器的放大倍数降低。
负反馈的几种状态:电压串联,电压并联,电流串联,电流并联。
本实验以电压串联为例,分析负反馈对放大器指标的影响。
1.下图为带有电压串联负反馈的两极阻容耦合放大器电路,在电路中通过Rr把输出电压uo引回到输入端,家在晶体管T1的发射极上,在发射极电阻Rf1上形成反馈电压uf。
主要性能指标如下:(1)闭环电压放大倍数Ar=Av/1+AvFv,Av为开环放大倍数。
负反馈放大器图1为带有电压串联负反馈的两极阻容耦合放大器(2)反馈系数Fv=RF1/Rf+RF1(3)输入电阻R1f=(1+AvFv)RfRf为基本放大器的输入电阻(4)输出电阻Rof=Ro/(1+AvoFv)Ro为基本放大器的输出电阻Avo为基本放大器Rl=∞时的电压放大倍数。
2.本实验还需测量放大器的动态参数,即去掉图1的反馈作用,得到基本放大器电路如下图2图2基本放大器三.实验设备与器件模拟实验箱,函数信号发生器,双踪示波器,交流伏安表,数字万用表。
四.实验内容1.静态工作点的测量条件:ucc=12V,ui=0V用直流电压表测第一级,第二级的静态工作点。
表3—12.测量基本放大器的各项性能指标实验将图2改接,即把Rf断开后风别并在RF1和RL上。
(1)测量中频电压放大倍数Av,输入输出电阻Ri和Ro。
条件;f=1Kh,us=5mV的正弦信号,用示波器监视输出波形,在输出波形不失真的情况下用交流毫伏表测量us,ui,uL计入3—2表表3—2(2)保持us不变,,断开负载电阻RL,测量空载时的输出电压uo计入3—2表1观察负反馈对非线性失真的改善(1)实验电路改接成基本放大器形式,在输入端加入f=1Kh的正弦信号,输出端接示波器,逐步增大输入信号的幅度,使输出波形开始出现失真,记下此时的波形和输出电压的幅度。
电压并联负反馈放大电路分析

33/99反馈信号与输入信号是电流相加减的关系。
I o E C 四、电压并联负反馈放大电路
1.判断反馈的类型1)找出反馈网络—R f
2) 判断反馈的类型① 将输出对地短路,反
馈消失,因此是电压反馈。
② 输入信号和反馈信号
加在三极管的同一输入端,
故为并联反馈。
③ 由瞬时极性法可判断:I f 的方向由输入端流入R f , I di =I i -I f < I i ,因此是负反馈。
+-
④ 电路中无电容,因此是交直流反馈。
I f
+-U i A R I di R c2B G
R f I i I f +-
U o 2. 增益及反馈系数开环增益di o R I U A =闭环增益i o Rf I U A =反馈系数o f G U I B =反馈方程式G R R Rf 1B A A A +=反馈深度G R 1B A F +=I o E C 具有电导量纲称互导反馈系数具有电阻量纲
称互阻增益i di f o G o R I I I U B U
A =++34/99
制作单位:北京交通大学电子信息工程学院 《模拟电子技术》课程组。
负反馈放大器实验报告

负反馈放大器【实验目的】1、 加深负反馈对放大器工作性能影响的认识。
2、 掌握负反馈放大器性能指标的测试方法。
【实验仪器】双踪示波器、低频信号发生器、万用表、直流稳压电源 【实验原理】 1、 基本概念及分类负反馈放大器就是采用了负反馈措施(即将输出信号的部分或全部通过反馈网络送回输入端,以消弱原输入信号)的放大器。
负反馈放大器有电压串联、电压并联、电流串联和电流并联四种基本组态。
如图1所示的方框图有:图 1 负反馈放大器方框图01f f x A A x AF==+ 1B AF =+B 称为反馈深度。
当1D时,1f A F≈2、 负反馈放大器对性能的影响 (1)放大倍数的稳定性提高11f fA AA AF A∆∆=•+ (2)通频带扩展为原有的(1+AF )倍。
(3)减少非线性失真及抑制噪声。
(4)对输入、输出电阻的影响。
串联负反馈输入电阻增加,并联负反馈输入电阻减小;电压负反馈输出电阻减小,电流负反馈输出电阻减少,电流负反馈输出电阻增大。
【实验内容及步骤】 实验电路如图2所示:图 2 负反馈放大器实验电路1、 调整各级静态工作点2、 测量负反馈对放大倍数稳定性的影响(1) 测量基本放大器放大倍数的变化量。
(2) 测量负反馈放大器放大倍数的变化量。
(3) 计算相对变化量。
3、 观测负反馈放大器扩展通频带的作用。
4、 测量负反馈对输入电阻的影响。
【数据记录】实验数据记录在表1中:表格 1【数据分析与处理】由记录的数据可以看出,有反馈时:6.25%21.587A A ∆== 无反馈时:203046.58%A A ∆== 可见增益稳定性提高了,但并不理想,考虑到实验条件,示波器显示不准,读数有误差应为主要原因。
【总结】由这次试验可明显得到以下结论: 1、 引入负反馈会牺牲增益;2、引入负反馈后增益的稳定性提高了;3、引入负反馈能大大扩宽通频带;4、引入负反馈能增大输入电阻。
负反馈放大电路实验报告

负反馈放大电路实验报告物理与电子信息学院学年论文负反馈放大电路实验报告李耀光(学号:20121104736)(物理与电子信息学院 12级电子信息工程3班,内蒙古呼和浩特 010022) 指导教师:段国俊摘要:负反馈在电子线路中有着非常广泛的应用~采用负反馈是以降低放大倍数为代价的~目的是为了改善放大电路的工作性能~如稳定放大倍数、改变输入和输出电阻、降低电路增益、减少非线性失真、展宽通频带等~所以在实用放大器中几乎都引入负反馈。
而在各种放大电路中~其主要用于稳定静态工作点、稳定放大倍数、防止自激振荡、补偿温度漂移等。
关键词:负反馈,性能,稳定1.实验目的1.1通过实验,学习并初步掌握负反馈放大电路的设计及调试方法。
2.2深入理解负反馈对放大电路性能的影响。
1.3巩固放大电路主要指标的测试方法。
2.实验任务采用双极型晶体管以及电阻、电容系列,设计一个负反馈电压放大电路,输入、输出采用电容耦合。
要求当时:A,40(1,10%),反馈深度不低于10 R,2k,vfLR,15k,,R,100,io频率响应。
f,10Hz,f,1MHzLH,当负载RL=2.2k时:(有效值) V,1.0Vo3.实验原理3.1反馈的类型在输出端,取样方式分为电压取样(电压反馈)和电流取样(电流反馈),在输入端,比较方式分为串联比较(串联反馈)和并联比较(并联反馈)。
因此负反馈放大电路有四种类型:电压串联、电压并联、电流串联、电流并联。
3.2负反馈对放大电路性能的影响学年论文题目 3.2.1引入负反馈使增益下降闭环增益表达式为,,A A,f,,1,AF,,D,1,AF其中为反馈深度。
深度负反馈D>>1条件下,1 A,f,F3.2.2负反馈提高增益的稳定性易得,,,dAdAdA11f ,,,,,,,,,DA,AFAA1f上式表明,反馈越深,闭环增益的稳定性越好。
3.2.3负反馈对输入电阻和输出电阻的影响串联负反馈使 R增加,并联负反馈使 R下降。
负反馈放大器实验报告

电工电子实验报告学生姓名:朱光耀学生学号:201324122225 系别班级:13电气2报告性质:课程名称:电工电子实验实验项目:负反馈放大器实验地点:实验楼206 实验日期:11月23号成绩评定:教师签名:实验四 负反馈放大器一、实验目的加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。
二、实验原理负反馈在电子电路中有着非常广泛的应用,虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽通频带等。
因此,几乎所有的实用放大器都带有负反馈。
负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。
本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。
1、图4-1为带有负反馈的两级阻容耦合放大电路,在电路中通过R f 把输出电压u o 引回到输入端,加在晶体管T 1的发射极上,在发射极电阻R F1上形成反馈电压u f 。
根据反馈的判断法可知,它属于电压串联负反馈。
主要性能指标如下 1) 闭环电压放大倍数VV VVf F A 1A A +=其中 A V =U O /U i — 基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数。
图4-1 带有电压串联负反馈的两级阻容耦合放大器2) 反馈系数F1f F1V R R R F +=3) 输入电阻R if =(1+A V F V )R iR i — 基本放大器的输入电阻4) 输出电阻VVO OOf F A 1R R +=R O — 基本放大器的输出电阻A VO — 基本放大器R L =∞时的电压放大倍数1) 在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令u O =0,此时 R f 相当于并联在R F1上。
2) 在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T 1 管的射极)开路,此时(R f +R F1)相当于并接在输出端。
(完整word版)负反馈放大电路实验报告

模拟电路实验实验报告负反应放大电路负反应放大器一、实验目的1.进一步认识负反应放大器性能的影响。
2.进一步掌握放大器性能指标的丈量方法。
实验设施1.示波器2.函数信号发生器3.沟通毫伏表4.直流稳压电源5.万用表6.实验箱一台一台一台一台一只一台二、实验原理放大器中采纳负反应,在降低放大倍数的同时,能够使放大器的某些性能大大改良。
所谓负反应,就是以某种方式从输出端拿出信号,再以必定方式加到输入回路中。
若所加入的信号极性与原输入信号极性相反,则是负反应。
依据拿出信号极性与加入到输入回路的方式不同,反应可分为四类:串连电压反应、串联电流反应、并联电压反应与并联电流反应。
如图3-1 所示。
从网络方框图来看,反应的这四种分类使得基本放大网络与反应网络的联接在输入、输出端互不同样。
从实质电路来看,反应信号若直接加到输入端,是并联反应,不然是串连反应,反应信号若直接取自输出电压,是电压反应,不然是电流反应。
1.负反应时输入、输出阻抗的影响负反应对输入、输出阻抗的影响比较复杂,不同的反应形式,对阻抗的影响也不同样,一般而言,凡是并联负反应,其输入阻抗降低;凡是串连负反应,其输入阻抗高升;设主网络的输入电阻为R i,则串连负反应的输入电阻为R if=(1+FA V)R i设主网络的输入电阻为R o,电压负反应放大器的输出电阻为R of =R O1 A V F可见,电压串连负反应放大器的输入电阻增大( 1+A V F )倍,而输出电阻则降落到 1/(1+A V F )倍。
2. 负反应放大倍数和稳固度负反应使放大器的净输入信号有所减小,因此使放大器增益降落, 但却改良了放大性能,提升了它的稳固性。
反应放大倍数为A vf =A V( A v 为开环放大倍数)A V F 1反应放大倍数稳固度与无反应放大器放大倍数稳固度有以下关系:A VfA V 1AVf=1 A V FA V式中 A V VA V / A V 称无反应时的放大器放大 f/A f 称负反应放大器放大倍数的稳固度。
负反馈放大电路仿真实验

实验三负反馈放大电路仿真实验一、实验目的(1)、进一步熟悉multisim10软件的使用方法(2)、学会用该软件对负反馈放大电路进行仿真分析(3)、研究负反馈对放大电路性能的影响(4)、掌握负反馈电路的测试方法二、实验原理1、负反馈可以稳定放大倍数,但是其稳定性是以损失放大倍数为代价的,即Af减小到A的(1+AF)分之一,才使其稳定性提高到A的(1+AF)倍;2、负反馈改变输入电阻和输出电阻串联负反馈增大输入内阻,R(if)=(1+AF)Ri3、电压负反馈减小输出电阻: R(of)=Ro/(1+AF);4、引入负反馈后,各种原因引起的放大倍数的变化都将减小,当然也包括因信号频率变化而引起的放大倍数的变化,因此其效果是展宽了同频带;负反馈下线频率为:f Lf=f L/(1+A m F);负反馈上限频率为: f Hf=f H(1+A m F)。
三、实验步骤及内容1、组建负反馈放大仿真电路图1 两级阻容耦合放大电路2、负反馈放大电路开环、闭环放大倍数的测试2.1 开环电路测试(1) 开关S1、 S2打开的情况下,通过示波器,读取输入输出波形的峰值,从而得到没有加反馈、无负载时的开环电压放大倍数Au.(2) 关闭仿真开关,在输出端接上10K电阻,重新开启仿真开关,利用读数指针读出波形的峰值,冰球出在没有加反馈时的开环电压放大倍数Au,并计算电压放大倍数变化量,填入表1中。
2.2 闭环电路测试(1)闭合开关S1,断开S2,使电路引入负反馈环节,测出空载的放大倍数、放大倍数变化量等,并填入表中(2)闭合开关S1、S2,开启仿真开关,,做带负载的闭环电路测试,并将结果填入表1中。
表1 测试开环、闭环电路电压放大倍数数据解:放大倍数A U=U OU i ; ∆A A=A VO−A VLA VO.根据计算可见:①外加负载会使电路的放大倍数减小,但对闭环电路的影响明显小于对开环电路的影响;说明闭环电路稳定性更好。
②闭环电路的放大倍数远小于开环电路的放大倍数。
实验四 电压并联负反馈放大电路

电压负反馈放大电路
一. 实验目的
1.研究负反馈对放大电路性能的影响
2.掌握负反馈放大电路性能的测试方法
3.掌握负反馈放大电路频率特性的测试方法
二. 实验仪器
函数发生器示波器数字式万用表
三、实验内容及步骤
1.用集成运放uA741设计一个电压并联负反馈放大电路,要求Au=-10,输入电阻Ri=10kΩ。
(1) 测量闭环电压增益(负载不变)
(2) 输入电压U i 不变(20mV),改变负载电阻R L 的值,测量输出电压。
(3) 输入电阻R i
S i
S i
i R U U U R -=
(输入电阻测量连接如右所示图) (4) 输出电阻R o
L L
O
O R U U R ⋅-=)1(
(5) 求上限频率f H
输入电压不变,改变输入信号的频率,使输出电压为原来的0.707倍,此时的频率为上限频率。
2.用集成运放uA741设计一个电压串联负反馈放大电路,要求Au=11,输入电阻Ri >10k Ω。
(1) 测量闭环电压增益(负载不变)
(2) 输入电压U i不变(20mV),改变负载电阻R L的值,测量输出电压。
(3) 输入电阻R i
S i
S i
i R U U U R -=
(4) 输出电阻R o L L
O
O R U U R ⋅-=)1(
(5) 求上限频率f H
输入电压不变,改变输入信号的频率,使输出电压为原来的0.707倍,此时的频率为上限频率。
实验五 电压并联负反馈

实验六 电压并联负反馈一、实验目的1.进一步学会识别放大器中负反馈电路的类型。
2.了解不同反馈形式对放大器输入、输出电阻的不同影响。
3.加深理解负反馈对放大器性能的影响。
二、实验原理图6-1为电压并联负反馈电路。
电路中将反馈电阻接在集电极与基极之间,利用输出电压U 0在R F 中形成的电流IF 反馈到输入端,与输入信号电流I S 并联,成为分流支路,使晶体管基极注入电流I B 减小。
图6-1 电压并联负反馈放大器三、实验设备、部件与器件1.+12V 直流电源2.函数信号发生器3.双踪示波器(另配)4.频率计5.交流毫伏表6.直流电压表7.晶体三极管3DG6、电阻、电容及插线若干。
四、实验内容1.测量和调整静态工作点。
图6-2 单级无反馈放大器将实验台面板上的单管/负反馈两级放大器接成图6-2所示电路。
此时电路处于无反馈状态。
调节R W1,使得I E =ER U E =2mA ,用直流电压表测出晶体管集电极对地电压U C ,基极对地电压U B 和发射极对地电压U E 。
2.测量基本放大器的各项性能指标1)测量电压放大倍数A V在放大器输入端(B 点)加入U I =5mV ,1KHz 的正弦信号,用示波器观察放大器输出电压U L 的波形。
在不失真的情况下,用交流毫伏表测量U L 。
利用A V =I L U U 求出基本放大器的电压放大倍数。
2)测量输出电阻Ro保持U I =5mV 不变,断开负载电阻R L1,测量空载时的输出电压U 0,利用公式R 0=(L U Uo -1)R L1,求出输出电阻R 0。
3)测量输入电阻R I在电路的A 点输入频率为1KHz 的正弦信号,调节“幅度”调节旋钮,使得U I =5mV ,再测出A 点的输入电压U S 。
利用公式R I =R U U U IS I 计算出输入电阻R I 。
4)测量负反馈放大器的各项性能指标将实验电路恢复为图6-1。
重复2中的测试内容,得到负反馈放大器的A VF 、R 0F 、R IF .五、实验报告1.将基本放大器和负反馈放大器动态参数的实测值和理论估算值列表进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压并联负反馈放大电路实验报告
一.原理:
1.对交变信号而言,若基本放大器、反馈网络、负载三者在取样端是并联连接,则称为电压取样,对交流信号而言,信号源、基本放大器、反馈网络三者在比较端是并联连接,则称为并联反馈。
上图中对交变信号而言,反馈网络Rf与负载是并联连接的且与负载Rl也是并联连接的。
对交流信号而言,信号源Is、与基本放大器、反馈网络Rf三者在比较端是并联连接,所以上图是一个电压并联负反馈的电路。
它有一下两个特点:
①输出电压趋向于维持恒定。
②因为Ii=If+Id,所以要求Rs越大,反馈信号越明显。
2并联负反馈对输入和输出电阻的影响
①由于是并联,闭环输入Rif电阻小于开环输入电阻Ri。
②Ri=Vi/Iid, Rif=Vi/Ii. Ii=Iid+If=(1+AF)Iid,
Rif=Vi/(1+AF)Iid=Ri/1+ArFg.所以引入负反馈后输入电阻减小了。
③同理分析:闭环输出电阻是开环输入电阻的1/(1+AF)倍,即
Rof=Ro/(1+AroFg).
2实验过程
以上是对电压并联负反馈放大电路的一些分析,下面两图是我们根据以上分析得出的2级放大电路图。
由上图可看出仿真的输出波形没有失真,输出电压2.28v,对输入电压10mv来说,放大了228倍。
3结果分析
有输出和输入的峰峰值分别为1.42v。
6.16mv可知,放大了212倍。
由于在再放大过程中要使波形不失真,我们要的考虑到静态工作点对失的影响,但静态工作点选择过低,即Ibq和Vbeq过小,使BJT会在交流信号Vbe副半周的进入截止区,使波形失真。
当选择地静态工作点过高,则会使BJT会在交流信号副半周进入饱和区。
以上两种失真分别叫做截止失真和饱和失真。
但但输入信号的幅度过大,即使Q点的大小合理,也会产生失真。
这种失真叫做非线性失真。
因此在设计电路时我们要考虑到BJT的静态工作
点的选择。