matlab瑞利衰落信道仿真(2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB 通信仿真设计指导书
一.设计导读
1、设计目的
由于多径和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,如时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着至关重要的影响,而多径信道的包络统计特性成为我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布和Nakagami-m分布。在设计中,专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。
2、仿真原理
(1)瑞利分布简介
环境条件:
通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径,存在大量反射波;到达接收天线的方向角随机且在(0~2π)均匀分布;各反射波的幅度和相位都统计独立。
幅度、相位的分布特性:
包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分布的概率分布密度如图1所示:
图1 瑞利分布的概率分布密度
(2)多径衰落信道基本模型
根据ITU-RM.1125标准,离散多径衰落信道模型为
()
1
()()()
N t k k k y t r t x t τ==-∑ (1)
其中,()k r t 复路径衰落,服从瑞利分布; k τ是多径时延。 多径衰落信道模型框图如图2所示:
图2 多径衰落信道模型框图
(3)产生服从瑞利分布的路径衰落r(t)
利用窄带高斯过程的特性,其振幅服从瑞利分布,即
22
()()()c s r t n t n t =+ (2)
上式中,()c n t 、()s n t 分别为窄带高斯过程的同相和正交支路的基带信号。
首先产生独立的复高斯噪声的样本,并经过FFT 后形成频域的样本,然后与S (f )开方后的值相乘,以获得满足多普勒频谱特性要求的信号,经IFFT 后变换成时域波形,再经过平方,将两路的信号相加并进行开方运算后,形成瑞利衰落的信号r(t)。如下图3所示:
图3 瑞利衰落的产生示意图
其中,
2()1()
c m
m
S f f f f f π=
-- (3)
τ
(4)产生多径延时k
多径/延时参数如表1所示:
表1 多径延时参数
3、仿真框架
根据多径衰落信道模型(见图2),利用瑞利分布的路径衰落r(t)(见图3)
τ(见表1),我们可以得到多径信道的仿真框图,如图4所示;和多径延时参数k
图4 多径信道的仿真框图
4、参考仿真结果
(1)多普勒滤波器的频响
图5多普勒滤波器的频响
(2)多普勒滤波器的统计特性
图6 多普勒滤波器的统计特性(3)信道的时域输入/输出波形
图7信道的时域输入/输出波形
二、设计任务
(1)查找资料,了解瑞利衰落信道模型的分类,结合某种模型,掌握瑞利分布的多径信道仿真原理,用MATLAB仿真实现瑞利分布的多径信道的仿真;
(2)根据已学的知识,实现一种基带信号的模拟调制并做出仿真;
(3)结合(1)步和(2)步,观察已调信号通过瑞利信道后的时域波形图和频谱图。
(4)对仿真结果做适当分析。
MATLAB 仿真程序要求:
(1)参数设计准确、合理;
(2)关键语句加注释;
(3)仿真结果正确,图形清晰;
三、部分参考仿真代码
%main.m
clc;
LengthOfSignal=10240; %信号长度(最好大于两倍fc)
fm=512; %最大多普勒频移
fc=5120; %载波频率
t=1:LengthOfSignal; % SignalInput=sin(t/100);
SignalInput=sin(t/100)+cos(t/65); %信号输入
delay=[0 31 71 109 173 251];
power=[0 -1 -9 -10 -15 -20]; %dB
y_in=[zeros(1,delay(6)) SignalInput]; %为时移补零
y_out=zeros(1,LengthOfSignal); %用于信号输出
for i=1:6
Rayl;
y_out=y_out+r.*y_in(delay(6)+1-delay(i):delay(6)+LengthOfSignal-delay(i))*10^(power (i)/20);
end;
figure(1);
subplot(2,1,1);
plot(SignalInput(delay(6)+1:LengthOfSignal)); %去除时延造成的空白信号title('Signal Input');
subplot(2,1,2);
plot(y_out(delay(6)+1:LengthOfSignal)); %去除时延造成的空白信号
title('Signal Output');
figure(2);
subplot(2,1,1);
hist(r,256);
title('Amplitude Distribution Of Rayleigh Signal')
subplot(2,1,2);
hist(angle(r0));
title('Angle Distribution Of Rayleigh Signal');
figure(3);
plot(Sf1);
title('The Frequency Response of Doppler Filter');
%Rayl.m
f=1:2*fm-1; %通频带长度
y=0.5./((1-((f-fm)/fm).^2).^(1/2))/pi; %多普勒功率谱(基带)
Sf=zeros(1,LengthOfSignal);
Sf1=y;%多普勒滤波器的频响
Sf(fc-fm+1:fc+fm-1)=y; %(把基带映射到载波频率)
x1=randn(1,LengthOfSignal);
x2=randn(1,LengthOfSignal);
nc=ifft(fft(x1+i*x2).*sqrt(Sf)); %同相分量
x3=randn(1,LengthOfSignal);
x4=randn(1,LengthOfSignal);
ns=ifft(fft(x3+i*x4).*sqrt(Sf)); %正交分量
r0=(real(nc)+j*real(ns)); %瑞利信号
r=abs(r0); %瑞利信号幅值