光模块工作原理

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


APON/BPON
• APON是基于ATM的PON 其标准是G.983.1 工作速率为155Mbps 622Mbps 上行光波长为1310nm 下行光波长为1550nm • BPON即宽带PON 是在APON基础上加上动态带宽分配(DBA) 在G.983.3/.4/.5 指定了标准;通常下行为622Mbps 上行为155Mbps(或622Mbps);(G.983.1AMD下行速率可达到1.25Gbps) • 上行光波长为1310nm 下行光波长为1490nm 1550nm作为传输视频信号用 • 传输码型为扰码的不归零码,CID抗扰度大于72bit
抖 动
• 抖动是数字信号的取样时刻相对于理想参考时刻位置的短时间偏离,抖动 的单位是UI,即1bit码时间间隔 • 光模块电路中的直流漂移和耦合电容都会引起输出光信号或电信号的抖 动,信号的抖动会造成通信系统性能下降,因此,抖动性能也是光发射和光 接收的重要指标
抖动特性
1. 抖动传输—输出信号抖动与输入 信号抖动的线性比值随频率变化 的关系 抖动容限—施加到接收机输入信 号上引起接收灵敏度1dB代价的 正弦抖动峰-峰值 抖动产生—当输入无抖动信号时, 输出信号产生的在规定频率范围 内的抖动峰-峰值
光模块工作原理
生产部 艾玉伟
内容摘要
1. 2. 3. 4. 5. 6. 7. 光模块在光通信设备中的作用 光发射组件和光发射模块基本原理 光接收组件和光接收模块基本原理 单纤双向(收发一体)光模块基本原理 用于PON的突发式光模块 光模块发展趋势 光模块常见失效模式
光模块在通信设备中的作用
光模块的作用:完成光电转换和电光转换 信号通过光模块实现传输媒体的转换(光纤←→铜线)
LD的温度特性
• LD是半导体器件,它的特性 与半导体二极管类似 • 温度升高 阈值电流Ith增大 斜效率S降低 • 为了保持输出平均光功率和消 光比不变,在温度上升时要增 大IBIAS和IMOD
光发射组件(TOSA)
• 光发射组件是光发射模块的主要部件,其中光源(半导体发光二极管或激 光二极管)是核心 • 将LD芯片和监测光电二极管(MD)加上其他元件封装在一个紧密结构中 (TO同轴封装或蝶形封装),就构成光发射组件(TOSA)
Clock
Pattern Generator
比特误码率
• 比特误码率(BER—Bit Error Ratio)是衡量光接收机性能的最基本的参数 BER= 接收的误码比特数 = 被接收到的比特数
(N是正整数)
在测量时间内误码数 比特率×测量时间
• BER的表示形式:1×10-N 或者 1.0E-N
伪随机二进制序列(PRBS)
前置(跨阻)放大器
• 经光电探测器产生的微弱信号电流, 由前置放大器转换成有足够幅度的 信号电压输出 • 为适应高速率应用,前置放大器由跨 阻放大器(TIA—Tranimpedance Amplifier )构成 • 跨阻放大器就是一个I-V变换器 • TIA中还有AGC功能电路,以保证足 够的信号动态范围
光发射模块
光发射模块是由将带有信息的电 信号转换成光信号的转换装置和 将光信号送入光纤的传输装置组 成 右图是光发射模块的示意图
RF输入 放大驱动电路 (电流开关)
MD
LD
光功率监控 自动功率控制
直流偏置
光发射器件(FP-LD、DFB-LD)
法布里-帕罗型激光二极管(FP-LD)和分布反馈激光二极管(DFB-LD)是光通 信设备中最常用的半导体光发射器件,与其他激光器相比,LD具有体积小 、重量轻、低功率驱动、输出光功率大、调制方便、寿命长和易于集成 等一系列优点,这两种LD是目前在接入网光模块中用得最多的光发射器件
无源光网络(PON)
• 接入有多种方式— 点对点(以太网)、铜线、XDSL、无线(WLAN)、XPON等 • 无源光网络(PON)一直被认为是光接入网中颇具应用前景的技术,它打破 了传统的点到点解决方法,在解决宽带接入问题上是一种经济的、面向 未来多业务的用户接入技术 • PON自出现以来,已经过多年的发展,形成了APON、BPON、GPON EPON等一系列概念、规范及产品序列 • PON作为一种点到多点的光网络,指的是信号的通道从源头到目的节点 间都是通过无源器件完成的,这些无源的器件包括单模光纤光缆、无源 光分束器/耦合器、连接器和接头等等
Hale Waihona Puke Baidu
激光二极管的特性
• 激光二极管(LD—Laser diode)是一个电流器件, 只在它通过的正向电流超 过阈值电流Ith(Threhold current)时它发出激光 • 为了使LD高速开关工作, 必须对它加上略大于阈值 电流的直流偏置电流IBIAS • LD的两个主要参数:阈值 电流Ith和斜效率S(Slope efficiency)是温度的函数 ,且具有较大的离散性
误码仪(BERT)
• 误码仪(Bit Error Ratio Tester)由图案发生器和误码分析仪组成 • 它通过比较图案发生器产生的数据码和光接收机收到并转换成电信号的数据码来测 试待测光接收机在不同输入光功率时的误码率
Patter Generator
Clock Source Pattern Generator Data Buffer
2.
3.
时钟和数据恢复(CDR)电路
• 在数字通信系统中,码元同步是系统正常工作的必要条件 • 时钟和数据恢复电路(Clock and Data Recovery —CDR)的作用就是在输入数 据信号中提取时钟信号并找出数据和时钟正确的相位关系 • CDR电路大多基于锁相环(PLL)原理
锁相环(PLL)电路
PON技术特点
• • • PON与光模块有关的技术特点: 在OLT到ONU 下行方向采用TDM (Time Division Multiplexing ) 方式,以广播方 式送至每一个ONU,OLT的发送部分和ONU的接收部分都是连续工作方式 ONU到OLT 的上行信号的传输采用TDMA (Time Division Multiple Access)技 术; OLT的接收部分和ONU的发送部分都是突发模式工作 OLT光接收机必须能够适应不同ONU 信号的不同光功率,接收机需要有一 个很大的动态范围,并设定判决门限,以最快的速度来判决; OLT光接收机 必须能够迅速恢复从不同节点传来的每个突发信号的正确时钟,在上行信 元到达OLT 的前几个bits内实现快速突发比特同步 ONU光发送机必须能够快速开/关; 当发送机不发送时只能“泄漏”极小的光 功率—比接收灵敏度低10dB
Vcc
PIN
Rf
i
u o =iR f
跨阻放大器原理图
光接收组件(ROSA)
• 在高速率光模块中,通常都是将PIN(或者APD)光电二极管TIA组装在一个密 封的金属外壳内,这就构成了光接收组件(ROSA)
限幅放大器
• TIA输出的是模拟信号,要把它转换成数字信号才能被信号处理电路识别 • 限幅放大器起的作用就是把TIA输出的幅度不同的信号处理成等幅的数字 信号 • 限幅放大器 Limiting Amplifier 主放大器 Post Amplifier Quantizer 量化器
影响灵敏度的因素
• • • • • • • 信号噪声比(SNR) 光信号的消光比 传输速率(数据比特率) 抖动 信号码型 工作波长 码间干扰
接收机最小过载光功率
• 最小过载光功率定义为: 接收机满足指定比特误码率(如10-10或10-12)时可接收的最大平均光功率 (dBm) • 最小过载和灵敏度之间的差值(dB)就是接收机的动态范围 • 接收机的过载能力主要取决于TIA的AGC性能
消光比
• 消光比(re)的定义: re=P1/P0
其中: P1是‘1’码的光功率值 P0是‘0’码的光功率值
用对数表示: EX=10lg(P1/P2) • 消光比是光发射机的一个非常重要的指标, 因为它反映了光信号的相对幅度
光眼图
• 将光发射模块输出的(NRZ码)光信号送入取样示波器,就可以观察到光信号 波形的“眼图” • 光脉冲信号的质量都可以在光眼图上观察到 • 光脉冲波形的上升时间、下降时间、过冲和下冲应加以控制,以免降低接 收灵敏度 • 光脉冲形状特性由眼图模板给出,眼图模板在光通信系统的标准中都已做 了具体的规定
限幅放大器工作原理和典型电路
限幅放大器主要由三部分组成: 直流耦合多级放大器 直流漂移补偿(自动调零)电路 光功率检测告警电路(有滞回的比 较器)
接收灵敏度
• 接收灵敏度指光接收机满足指定比 特误码率(如10-10或10-12)时可接收 的最小平均光功率(dBm) 这是光接收机的重要指标之一 • 噪声是限制接收灵敏度的最主要因 素 • 右图就是误码率和信噪比的关系曲 线 • 只要知道了TIA的等效输入噪声电 流,应用此曲线就可推算出接收灵 敏度
• 基本锁相环(PLL)电路主要由三部分组成: 相位检测器(鉴相器 PD) 低通滤波器(LPF) 压控振荡器(VCO)
CDR典型电路(1)
光收发一体模块
• 由于微电子技术、有源和无源光器件技术的发展,将传统的分离发射、接 收模块组装在同一外壳中的光收发一体模块近年来已经成为普通光模块 的主流产品 • 这种光收发一体模块的优点: 小型化—目前做到SFF、SFP封装,目前还有进一步小型化的趋势 降低成本 可靠性提高 性能提高—由于PCB缩小,寄生参数减小,高频性能提高
• 在测试通信系统的性能时,经常使用的编码图案是不归零码(NRZ)伪随机二进制序 列(PRBS—Pseudo Random Binary Sequence) • PRBS相当于“随机数据”(在一个序列长度内的数据‘0’和‘1’码是随机排列,且‘0’和‘1’ 码的数目相等),因此它的频谱特征(在有限频带内)与白噪声接近,所以它适合用于 测试通信系统的性能 • 但是这种数据的排列规则又是确定的,序列长度为 2n-1比特,每隔2n-1个比特就重复同样的一组“随机数据”,这样就为测试误码率提供 了方便
1244.16Mbps 0.28/0.72 0.40/0.60 -0.20/0.80
2488.32Mbps --0.2/0.8 0.25/0.75
光眼图实例
光接收模块
• 光接收模块的作用是把经过传输后的微弱光信号转换为电信号,并放大、 整形恢复为原输入的电信号;光接收模块的原理框图如下
偏置电压
PD/APD TIA 光接收组件(ROSA)
主放
DATA 判决/限幅放大 DATA SD/LOS
信号检测
光接收器件
• 光接收器件是利用光电效应把通信中光信号转换为电信号的光电检测器 • 光纤通信中常用的光电检测器是PIN光电二极管和雪崩光电二极管(APD) • PIN的响应度通常为 0.65~0.97A/W(λ=0.9~1.7μm) • APD是利用雪崩倍增效应使光电流得到倍增的高灵敏度光电检测器,它可 以使接收灵敏度提高6~10dB
激光二极管驱动电路
驱动电路实质上就是一个高速电流开关
驱动电路原理电路
LD调制电流输出电路原理图
LD直流耦合接口电路原理图
激光器驱动电路原理图
驱动电路结构
一个典型的激光器驱动电路包括下列部分: 1. 差分电流开关电路—向LD输出调制电流 2. 偏置电流发生器—向LD提供直流偏置电流 3. 自动功率控制(APC)电路—在不同温度和LD老化的情况下,改变IBIAS,保 持PAVG不变 4. 故障告警、保护电路 5. 调制电流、偏置电流监控电路 6. 输入端整形电路(D触发器)
眼图模板
右图是ITU-T G.983.1 G.984.2 规定的上行 光信号的眼图模板
155.52Mbps x1/x4 x2/x3 x3-x2 y1/y2 0.15/0.85 0.36/0.65 -0.20/0.80
622.08Mbps 0.25/0.75 0.40/0.60 -0.20/0.80
光收发一体模块的构成
光源(激光器) + 驱动器
光收发一体模块 =
光电检测器
+
+ 放大器
单纤双向光组件(BOSA)
• 单纤双向光组件(BOSA)是将光 源(FP-LD或DFB-LD)、PIN-TIA、 分光片、光纤等另部件用同轴 耦合工艺全部集成于一体
WDM分光片
λ1 λ2
TO-LD 光纤
TO-PIN-TIA
Error Detector Data
Optical Transmitter Optical Variabl Attenuator Optical Data Receiver Decision Circuit Error Detector Counter
Optical Powermater Clock Buffer
相关文档
最新文档